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Acoustic wave
transducers as
Ground

Pencrting RADAR cooperative target

RADAR

Pt as e a passive target is illuminated by an electromagnetic wave,
et e this target is designed so that the backscattered signal is
PP
J.-M Friedt & al. representative of a measurement,
Comerati e the sensor is separated from clutter using Time Division Multiple
ooperatl\./e
target design Access (delay the sensor response beyond clutter)

e the sensor response is preferably included in a time/phase
information rather than an amplitude, sensitive to too many effects.

anema [1] C.T. Allen, S. Kun, R.G Plumb,

The use of ground-penetrating
radar with a cooperative target,
IEEE Transactions on Geoscience
and Remote Sensing, 36 (5) (Sept.
1998) pp. 1821- 1825
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[2] D. J. Thomson, D. Card, and
G. E. Bridges, RF Cavity Pas-
sive Wireless Sensors With Time-
Domain Gating-Based Interroga-
tion for SHM of Civil Structures,
IEEE Sensors Journal 9 (11) (Nov.
2009), pp.1430-1438
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Cooperative
target design

Acoustic transducers

Acoustic = mechanical wave propagating in solid media (no
relation to sound/seismics)

Surface acoustic wave transducer: use a piezoelectric substrate to
convert an electromagnetic wave to acoustic wave

Classical analog radiofrequency processing circuit (seen as an
electrical dipole by the user)

the acoustic wave is 10% slower than the electromagnetic wave

A = ¢/f: shrink ¢ = shrink A = compact sensors

Cleanroom processing since
1 m wavelength at 300 MHz
— 10 pum wavelength.

At 2.45 GHz, A =1.2 um
or 300 nm wide electrodes !
Piezoelectric substrate is
anisotropic: select crystal
orientation to maximize
sensor sensitivity (stress,
temperature, pressure,
chemical sensing)
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Cooperative
target design

Acoustic transducers as RADAR

Two ways of delaying sensor sign

cooperative targets
al beyond clutter:

e delay path long enough (1 xs=100 m-long coaxial cable but 1 mm

long acoustic path)

e resonator stores energy and
Q/(wf)

e initial returned signal level 0
given by the electro-
mechanical coupling 2
coefficient of the
piezo substrate §_4

e accurate time delay 2
as phase measurement ~ ©
using cross-correlation

-10

slowly releases it with a time constant

—— resonator, T=7 us
— resonator, 1=0.7 us

FSPL FSPL ~ 1/d*4

sensor

ement

resonator,
low Q, high K"2

resonator, delay line

high Q, low KA2

receiver noise level / \\\
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Experimental
demonstration

Experimental demonstration:

chemical sensing
e Coat the propagation path with a layer absorbing the compound to
be detected

e ¢ = /E/p with E the elastic constant and p the density:
e load mass = p 1= c |
o stiffen the layer = E 1= ¢ 1

e basic principle of the so called Quartz Crystal Microbalance
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Sub-surface hydrogen sulfide detection using custom GPR L

pulsed RADAR for probing passive sensors Rev. Sci. Instrum. 87, p.096104 (2016)

IF. Minary, D. Rabus, G. Martin, J.-M. Friedt, Note: a dual-chip stroboscopic
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demonstration

Sandbox experiment

Antenna radiation pattern characterization and interrogation range

., 250 I‘Hz ;
= shielded

nas...m_ ._;

Ve e s it-ahtén
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Experimental
demonstration

Returned signal with
depth /position Y

X
VA

Left: returned signal as a function of depth Z => 1 m range

retumned signal (a.u)
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Right: returned signal as a function of position L to dipole axis (X)
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Cooperative
target design

Experimental
demonstration

Timebase
stability issue

Dedicated
hardware for
sensor

Sandbox experiment Y

X
VA

Returned echoes as a function of the position of the sensor along the
pipe (Y), moving in a direction parallel to the length of the dipole.
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= 50° angular aperture along the dipole direction and 70° L to dipole
axis.
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J.-M Friedt & al. L eal

delay (ns)

Timebase
stability issue

std()=34 ps=1.6 K=320 ng/cm2

0 500 1000 1500 2000
time (s)

e Challenge of homemade GPR: avalanche transistor pulse generator

design
o Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 us requires
21 ps stability for 1 K resolution
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e Challenge of homemade GPR: avalanche transistor pulse generator
design

e Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 us requires
21 ps stability for 1 K resolution
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Timebase stability issues

Mala ProEx v.s homemade impulse GPR v.s iFFT (network analyzer) ?
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Temperature measurement Avalanche transistor pulse

e Challenge of homemade GPR: avalanche transistor pulse generator
design

e Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 us requires
21 ps stability for 1 K resolution
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target design
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Curing Heating at 160°C
Assess penetration depth of a 400 MHz antenna Mala probing sensors ? 12/14
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Dedicated
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sensor

Conclusion

Development of passive cooperative target for wireless sensing in
civil engineering structures and buried environments (e.g. pipes).
Acoustic (<2.4 GHz) and dielectric (10-24 GHz) resonator or relay
line demonstrated as cooperative targets for sensing applications
Systems approach: link budget from GPR emitter, to sub-surface
antenna, to transducer and back to receiver.
But practical implementation remains to be demonstrated:
e Practical implementation in a useful scenario ? impact of rebars ?
e Use of commercial GPR, dedicated GPR or dedicated cooperative
target reader 7

e Impact of strong radiofrequency emission regulations in Japan 7
A strong team of possible partners exists on both sides to achieve this goal (Pr.
Hashimoto in Chiba 2, Pr. Yamanaka 34 and Pr. Esashi ° in Sendai, Pr. Kondoh in
Shizuoka University).

2www.te.chiba-u.jp/~ken/

Swww.material.tohoku.ac. jp/~hyoka/BallSAW-H2sensor2003IEEEus. pdf

4www . tohoku.ac. jp/en/news/university_news/falling_walls_venture_
sendai_2017_1.html

5J.H. Kuypers, L.M. Reindl, S. Tanaka S, M. Esashi, Maximum accuracy
evaluation scheme for wireless saw delay-line sensors, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control. 55(7):1640-52 (2008) 13
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Conclusion

Development of passive cooperative target for wireless sensing in
civil engineering structures and buried environments (e.g. pipes).
Acoustic (<2.4 GHz) and dielectric (10-24 GHz) resonator or relay
line demonstrated as cooperative targets for sensing applications

Systems approach: link budget from GPR emitter, to sub-surface
antenna, to transducer and back to receiver.

But practical implementation remains to be demonstrated:
e Practical implementation in a useful scenario ? impact of rebars ?
e Use of commercial GPR, dedicated GPR or dedicated cooperative
target reader 7
e Impact of strong radiofrequency emission regulations in Japan ?

A strong team of possible partners exists on both sides to achieve this goal (Pr.
Hashimoto in Chiba , Pr. Yamanaka and Pr. Esashi in Sendai, Pr. Kondoh in
Shizuoka University).

Manuscript: http://jmfriedt.free.fr/fr_jp_ws2017.pdf
Slides: http://jmfriedt.free.fr/171005.pdf
Additional informations: http://jmfriedt.free.fr/
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