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RADAR cooperative target
• a passive target is illuminated by an electromagnetic wave,
• this target is designed so that the backscattered signal is

representative of a measurement,
• the sensor is separated from clutter using Time Division Multiple
Access (delay the sensor response beyond clutter)

• the sensor response is preferably included in a time/phase
information rather than an amplitude, sensitive to too many effects.

[1] C.T. Allen, S. Kun, R.G Plumb,
The use of ground-penetrating
radar with a cooperative target,
IEEE Transactions on Geoscience
and Remote Sensing, 36 (5) (Sept.
1998) pp. 1821– 1825

[2] D. J. Thomson, D. Card, and
G. E. Bridges, RF Cavity Pas-
sive Wireless Sensors With Time-
Domain Gating-Based Interroga-
tion for SHM of Civil Structures,
IEEE Sensors Journal 9 (11) (Nov.
2009), pp.1430-1438
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Acoustic transducers
• Acoustic = mechanical wave propagating in solid media (no

relation to sound/seismics)
• Surface acoustic wave transducer: use a piezoelectric substrate to

convert an electromagnetic wave to acoustic wave
• Classical analog radiofrequency processing circuit (seen as an

electrical dipole by the user)
• the acoustic wave is 105 slower than the electromagnetic wave
• λ = c/f : shrink c ⇒ shrink λ⇒ compact sensors
• Cleanroom processing since

1 m wavelength at 300 MHz
→ 10 µm wavelength.

• At 2.45 GHz, λ = 1.2 µm
or 300 nm wide electrodes !

• Piezoelectric substrate is
anisotropic: select crystal
orientation to maximize
sensor sensitivity (stress,
temperature, pressure,
chemical sensing)
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Acoustic transducers as RADAR
cooperative targets

Two ways of delaying sensor signal beyond clutter:

• delay path long enough (1 µs=100 m-long coaxial cable but 1 mm
long acoustic path)

• resonator stores energy and slowly releases it with a time constant
Q/(πf )

• initial returned signal level
given by the electro-
mechanical coupling
coefficient of the
piezo substrate

• accurate time delay
as phase measurement
using cross-correlation
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Experimental demonstration:
chemical sensing

• Coat the propagation path with a layer absorbing the compound to
be detected

• c =
√
E/ρ with E the elastic constant and ρ the density:

• load mass ⇒ ρ ↑⇒ c ↓
• stiffen the layer ⇒ E ↑⇒ c ↑

• basic principle of the so called Quartz Crystal Microbalance
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Sub-surface hydrogen sulfide detection using custom GPR 1

1F. Minary, D. Rabus, G. Martin, J.-M. Friedt, Note: a dual-chip stroboscopic
pulsed RADAR for probing passive sensors Rev. Sci. Instrum. 87, p.096104 (2016) 5 / 14
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Sandbox experiment

Antenna radiation pattern characterization and interrogation range
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Returned signal with
depth/position Y

X

Z

Left: returned signal as a function of depth Z ⇒� 1 m range
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Sandbox experiment Y

X

Z

Returned echoes as a function of the position of the sensor along the
pipe (Y), moving in a direction parallel to the length of the dipole.
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⇒ 50◦ angular aperture along the dipole direction and 70◦ ⊥ to dipole
axis.
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Timebase stability issues
Mal̊a ProEx v.s homemade impulse GPR v.s iFFT(network analyzer) ?
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• Challenge of homemade GPR: avalanche transistor pulse generator
design

• Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 µs requires
21 ps stability for 1 K resolution
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Timebase stability issues
Mal̊a ProEx v.s homemade impulse GPR v.s iFFT(network analyzer) ?
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• Challenge of homemade GPR: avalanche transistor pulse generator
design

• Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 µs requires
21 ps stability for 1 K resolution
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Timebase stability issues
Mal̊a ProEx v.s homemade impulse GPR v.s iFFT(network analyzer) ?
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• Challenge of homemade GPR: avalanche transistor pulse generator
design

• Challenge of network analyzer: time-gating for isolation

Targeted stability: 70 ppm/K for a delay difference of 0.3 µs requires
21 ps stability for 1 K resolution
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434 MHz resonator measurement
in concrete

Dedicated frequency stepped resonator measurement electronics for a
dedicated temperature sensor.

Experimental setup
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Curing Heating at 160◦C
Assess penetration depth of a 400 MHz antenna Mal̊a probing sensors ? 12 / 14



Acoustic wave
transducers as

Ground
Penetrating

RADAR
cooperative
targets for

sensing
applications

J.-M Friedt & al.

Cooperative
target design

Experimental
demonstration

Timebase
stability issue

Dedicated
hardware for
sensor

Conclusion
• Development of passive cooperative target for wireless sensing in

civil engineering structures and buried environments (e.g. pipes).
• Acoustic (≤2.4 GHz) and dielectric (10-24 GHz) resonator or relay

line demonstrated as cooperative targets for sensing applications
• Systems approach: link budget from GPR emitter, to sub-surface

antenna, to transducer and back to receiver.

But practical implementation remains to be demonstrated:
• Practical implementation in a useful scenario ? impact of rebars ?
• Use of commercial GPR, dedicated GPR or dedicated cooperative

target reader ?
• Impact of strong radiofrequency emission regulations in Japan ?

A strong team of possible partners exists on both sides to achieve this goal (Pr.
Hashimoto in Chiba 2, Pr. Yamanaka 34 and Pr. Esashi 5 in Sendai, Pr. Kondoh in
Shizuoka University).

2www.te.chiba-u.jp/~ken/
3www.material.tohoku.ac.jp/~hyoka/BallSAW-H2sensor2003IEEEus.pdf
4www.tohoku.ac.jp/en/news/university_news/falling_walls_venture_

sendai_2017_1.html
5J.H. Kuypers, L.M. Reindl, S. Tanaka S, M. Esashi, Maximum accuracy

evaluation scheme for wireless saw delay-line sensors, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control. 55(7):1640-52 (2008) 13 / 14

www.te.chiba-u.jp/~ken/
www.material.tohoku.ac.jp/~hyoka/BallSAW-H2sensor2003IEEEus.pdf
www.tohoku.ac.jp/en/news/university_news/falling_walls_venture_sendai_2017_1.html
www.tohoku.ac.jp/en/news/university_news/falling_walls_venture_sendai_2017_1.html
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Conclusion
• Development of passive cooperative target for wireless sensing in

civil engineering structures and buried environments (e.g. pipes).

• Acoustic (≤2.4 GHz) and dielectric (10-24 GHz) resonator or relay
line demonstrated as cooperative targets for sensing applications

• Systems approach: link budget from GPR emitter, to sub-surface
antenna, to transducer and back to receiver.

But practical implementation remains to be demonstrated:

• Practical implementation in a useful scenario ? impact of rebars ?

• Use of commercial GPR, dedicated GPR or dedicated cooperative
target reader ?

• Impact of strong radiofrequency emission regulations in Japan ?
A strong team of possible partners exists on both sides to achieve this goal (Pr.
Hashimoto in Chiba , Pr. Yamanaka and Pr. Esashi in Sendai, Pr. Kondoh in
Shizuoka University).

Manuscript: http://jmfriedt.free.fr/fr_jp_ws2017.pdf

Slides: http://jmfriedt.free.fr/171005.pdf

Additional informations: http://jmfriedt.free.fr/
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