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Abstract

Sensors able to operate with liquid phases are the key-point for the development of
bio-chemical lab-on-chip devices. In this work, we present the design and manufacture
of Love wave sensors equipped with a liquid cell, at the wafer scale level, to allow
operation with liquid media. Love wave sensors are fabricated on AT-cut quartz plates
(IEEE Std-176 notation (YXlt)/36/90) and passivated by a 2.5 µm thick silica overlay.
The fabrication process using the celebrated SU-8 epoxy-based photoresist combined
with silicon or quartz machined covers is presented, revealing robust enough for ensur-
ing a reproducible sensor fabrication and packaging. Results are reported emphasizing
the efficiency of the proposed approach.

Key words: Love waves sensors, liquid cell, AT-cut quartz, SU-8 epoxy, silicon,
quartz.

1. Introduction

Quartz crystal microbalance (QCM) based techniques have been developed for
years to address various kinds of biochemical analysis in liquid media. An alterna-
tive to this approach, based on guided acoustic shear waves, the so-called Love wave
devices, has been demonstrated to exhibit larger gravimetric sensitivities. However,
this approach is more complicated to implement as the surface on which reactions are
achieved is the same as the one used for electrical connection. As a consequence, a
microfluidic set-up must be implemented to prevent unwanted interactions between the
corresponding areas (InterDigitated Transducers – IDTs – and propagation path). The
main issue when using Surface Acoustic Wave (SAW) Sensors for biochemical analy-
sis in liquid media [1]-[4], especially in a commercial objective, is the development of a
reliable and reproducible fluidic system [5] meeting the main following requirements:
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i) low acoustic leakage. ii) chemically inert to biological samples. iii) reproducible
fabrication at the wafer scale level.

In the present work, we develop two packaging approaches for SAW sensors using
the SU-8 epoxy-based photoresist. In the first one, the SU-8 is patterned directly on
the silica guiding layer, preventing liquids from covering the IDTs while defining the
chemical reaction area in the region between the IDTs. In the second approach, we
explore the use of the SU-8 epoxy-based photoresist combined with silicon or quartz
machined covers for the fabrication of this fluidic circuit. The structure is fabricated
using Deep RIE chemical etching, the cover is then glued using a thin glue layer. In
this case, the packaging system prevents covering the IDTs with liquids and defines the
sensing area in the region in-between the IDTs. Following a detailed description of the
fabrication process, we analyze the influence of the proposed packaging on the device
operation by recording the evolution of the magnitude and the phase of its transfer
function for each configuration considered in order to define an optimal packaging
architecture.

2. Structure description of the Love-wave-based microbalance

Love-wave devices consist in delay lines built on 4-inch diameter, 380 µm thick
(AT) cut quartz wafers. The wave guidance is achieved by depositing a 2.5 µm thick
silica layer atop an AT-cut plate of quartz. The Love wave is excited and detected using
IDTs composed of 50 pairs of 4-finger-per-wavelength electrodes made of 200 nm
thick aluminum. The grating period is 10 µm, i.e. a wavelength of 40 µm, yielding
a frequency operation in the vicinity of 125 MHz. A 3.2 mm long cavity is defined
between the two IDTs, corresponding to the location where biochemical reactions are
assumed to take place (the so-called sensing area) and the acoustic aperture is 3.5 mm.
Figure 1 displays a schematic of the delay line configuration and figure 2 shows a
picture of the dual (differential) delay line once packaged on an FR4 printed circuit
board.

Figure 3 shows the typical response of a silica based Love-wave delay line before
packaging: insertion losses are nearly 23 dB, with a baseline lower than 50 dB. The
ripples near the band pass center are due to parasitic reflections on the device edges.

3. Microfluidic Packaging

One important challenge for the development of biosensor consists in their pack-
aging. Liquids used for bio-sensing experiments dramatically affect the transducing
efficiency while in contact with the IDTs.

In order to solve this problem, we propose the fabrication of a liquid cell isolating
the sensing area and the IDTs along two technological approaches. The first solution
consists in patterning a SU-8 based liquid cell atop the SiO2 guiding layer. For the
second solution, we propose a sensor structure for which a cover is machined and
bonded to the quartz sensor. Both are manufactured separately, and then glued together
atop the SAW devices using a thin SU-8 film deposited on the cover plate.

For both solutions, two principal aspects have been considered for the design of the
liquid cell. First, we have selected an open well configuration for an easy access to the
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sensing area. Second, the packaging must cover the smallest length on the acoustic path
to minimize acoustic perturbations while still ensuring the best liquid tightness confine-
ment. In order to evaluate the actual impact of the structure on the wave propagation,
five wall widths (80, 100, 120, 140 and 200 µm) have been tested. We particularly
intend to evaluate the influence of this parameter on the attenuation of the acoustic
wave.

3.1. SU-8 liquid cell fabrication
The negative epoxy-based photoresist SU-8 has been used extensively as a resin to

make high aspect ratio Micro-Electro-Mechanical Systems (MEMS) device structures
and packaging parts, by virtue of its good mechanical properties [7], water imperme-
ability and dielectric nature once polymerized. A main application of SU-8 is making
electroplating molds [8]-[9], injection molding masters and embossing masters [10]-
[11] for structures with high aspect ratio. Owing to its bio-compatibility and chemical
resistance, SU8 is also ideally suited for the fabrication of micro-channels for microflu-
idic and bioMEMS devices [12]-[13].

We present now the basic steps of the SU-8 technology developed here for the
fabrication of this liquid cell. Figure 4 summarizes this fabrication process. The overall
thickness of the structure is about 120 µm.

The adhesion of a thick SU-8 layer onto silica overlays is known to be poor if
cleaning and drying procedures are not carefully respected. The SU-8 2075 resist from
Microchem Corp. (MA, USA) has been used here. Prior to photoresist coating, the
quartz wafer with SAW transducers must be dehydrated at 200 ◦C for 30 minutes
(fig.4-a) in order to improve the adhesion of the SU-8 [6]. The SU-8 2075 is spread
at 300 rpm (acceleration fixed to 100 rpm s−1) during 60 s, followed by a spin-coating
at 1600 rpm (acceleration 300 rpm s−1) during another 60 s in order to achieve a layer
thickness of 120 µm (fig.4-b). After spin coating operations, an initial soft-bake is
carried out on a hotplate at 95 ◦C for 35 minutes to remove the photoresist solvents
(fig.4-b). This layer is patterned by standard photolithographic techniques to form the
walls (fig.4-c). A second bake is then performed at 95 ◦C for 15 minutes to finish
the cross-linking of the SU-8 (fig.4-d). The unexposed epoxy is then dissolved in
propylene glycol monomethyl ether acetate (PGMEA) (fig.4-e). Once these operations
achieved, the wafer must be diced to release each sensor with its patterned SU-8 fluidic
structure. Figure 5 presents a scanning electron microscope (SEM) image of the final
SAW sensor equipped with its SU-8 based liquid cell.

The resulting sensor is glued on a FR4 epoxy printed circuit, the electrical connec-
tions being performed by a conducting silver loaded epoxy between the bonding pads
and the copper tracks on the circuit.

Figures 7 and 8 show the effect of the presence of thick SU-8 photoresist walls
on the acoustic path. According to these curves, we find out that the acoustic wave is
significantly affected by the presence of the SU-8 walls and the insertion loss increases
when increasing their width. We also note that reflections of the acoustic waves on
the walls are more pronounced as the width of the walls increases. These reflections
generate ripples in the band and their spectral separation corresponds to the wave ve-
locity divided by twice the propagation length in the sensing area between the edge of
the two side walls (i.e. 5000 m.s−1/6.4 mm 800 kHz). We also observe the vanishing
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of parasitic reflections on the edges of device observed on the transfer function of the
device without liquid cell.

3.2. Silicon and quartz liquid cell fabrication
We have used a two-step method to fabricate silicon and quartz liquid cells. Both

of them are achieved at the 4-inch wafer level. The first step consists in the fabrication
of SAW sensors and silicon or quartz covers separately. We then glue the cover plate
on the SAW devices using a thin SU-8 film deposited on the cover plate.

3.2.1. Silicon covers
In order to manufacture silicon covers, we use a Deep Reactive-Ion Etching (DRIE).

The process flow-chart developed here is shown in figure 6.
The cover is etched in a double side polished silicon wafer. A 2 µm thick thermal

oxide is first grown on the wafer. The sensing area is then etched on the whole wafer
thickness (500 ± 25 µm). The wafer is cleaned in an acid solution 15:1(v/v) 96 wt%
H2O2 (so-called Piranha) for 20 minutes. After the cleaning process, the wafer is rinsed
in de-ionized water and dehydrated at 200 ◦C for 30 min (fig.6-1). The 2 µm thick
termal oxide is used as a mask to define the IDTs cavities.

The fabrication process consists of two steps: first, a double side photolitography is
carried out using the S1813 photoresist. With this resist, we define on the first side the
two IDT cavities and on the second side the alignment pattern (fig.6-2). In that purpose,
a S1813 photoresist film is spin coated onto the wafer at 4000 rpm for 30 sec and soft-
baked, followed by a soft contact lithography for patterning. Finally, the IDT cavities
and the alignment cross are obtained by dissolving the exposed epoxy in AZ726 devel-
oper. Following the development, the wafer is etched in a Buffered Hydrofloric Acid
(BHF) solution in order to remove the thermal oxide (fig.6-3). After etching the wafer,
the structures on the wafer are examined using an optical microscope. Subsequently,
the photoresist on the silicon wafer is stripped by immersing the wafer respectively in
acetone, isopropanol and de-ionized water for 5 minutes each (fig.6-4).

For the second phase, the positive photoresist and the developer used are SPR 7.0
and AZ726 from Micochem. This photoresist is used as a second mask to define the
sensing area cavity. The SPR 7.0 photoresist is spin coated onto the wafer at 2000 rpm
for 30 sec (fig.6-5), followed by an exposition step (600 mJ). Following the develop-
ment, the patterned wafer is rinsed in de-ionized water (fig.6-6). Last, the wafer is
etched using DRIE. The DRIE has an approximate etch rate of 3.5 µm/min and the
required etching delay is 70 minutes to achieve a 250 µm trench depth (fig.6-7). The
photoresist is stripped by immersing the wafer in acetone, isopropanol and de-ionized
water in order to start the second etching step of the IDT cavities and to finish the etch-
ing of the sensing area cavity (fig.6-8). Figure 9 presents a SEM photo of the silicon
cover.

3.2.2. Quartz covers
A wet etch process is used to manufacture the quartz cover: the corresponding

process flow-chart is shown in figure 10.
A double-side polished quartz ((ZXl) 1,5 ◦) wafer (4-inch diameter, 500 ±25 µm

thick) from Roditi International Corporation Ltd, UK is used. After cleaning the wafer
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in a Piranha solution, 10 nm thick chromium and 120 nm gold layers are deposited by
electron beam evaporation onto the double side wafer (metal protection layer) (fig.10-
1).

The S1813 photoresist is spin coated and patterned to define the IDT and sensing
area cavities. A Cr/Au mask is then patterned for quartz machining (fig. 10-3). Sub-
sequently, the wafer is etched using BHF solution with an approximate etch rate of
1.5 µm.min−1. After etching the wafers, the photoresist on the quartz wafer is stripped
by immersing the wafer in acetone, isopropanol and de-ionized water, following by
etching the Cr/Au protection layer (fig.10-4). Figure 11 presents a SEM view of the
quartz cover.

3.2.3. Sensors and cover assembly
Following the fabrication steps of the SAW sensors and silicon or quartz covers,

we glued the cover plate on the SAW devices. For that, both wafers are cleaned using
an UV-ozone cleaner for 60 minutes to avoid particle adherence to the silicon or quartz
surface. A thin SU-8 (NANOT M SU-8 2000 Microchem) film is then deposited on the
cover plate. To evaporate the solvent contained in the SU-8 film, the cover coated with
the SU-8 film is baked for 5 minutes at 75 ◦C. After that, the two wafers are aligned
and placed into an EVG bonding machine. During the bonding processing, we apply a
pressure of 75 N on both wafers while increasing the temperature from 60 ◦C to 95 ◦C.
After 4 hours of bonding, the wafer is diced to release each sensor with its cover. Figure
12 presents a SEM image of the final SAW sensor equipped with its quartz cover.

3.3. Evolution of the insertion loss of silicon and quartz liquid cell

Figures 13 and 14 show the evolution of the insertion loss versus the width of the
resistive silicon and quartz walls deposited on the acoustic path, measured using a
Rohde & Schwarz ZVR network analyzer.

The acoustic wave propagation is significantly affected by the presence of the sili-
con or quartz covers: the insertion loss increases when increasing the width of the walls
supporting the covers. We also observe that the quartz cover generates slightly higher
insertion loss than the silicon one.

Like SU-8 walls, quartz and silicon walls also generate acoustic reflections. On the
other hand the SU-8 walls generate less insertion losses than the cover combined with
the SU-8 glue for the same width. One can consider that these solid covers generate
more scattering, yielding more insertion loss.

We compare (Figs. 13 and 14) the evolution of the insertion losses according to
various compressive forces (75 N, 35 N, 15 N) applied on both wafers during the bond-
ing step: the insertion losses decrease significantly when reducing the compressive
force, as observed both for the silicon and quartz covers. The insertion losses decrease
is explained by the fact that the photoresist spreading over the propagation surface is
proportional to the compressive force.

The efficiency of this process has been demonstrated by using such devices as bio-
chemical sensors, as demonstrated previously [14]. During these experiments, the liq-
uid tightness was validated during chemical reaction processes lasting overs 4 hours
with acqueous solutions and overnight functionalization in organic solvents.
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4. Conclusion

Two technological approaches for SAW sensor packaging have been developed.
Both are compatible with wafer-level batch processes, and yield additional acoustic
losses as walls are directly bonded on the acoustic wave path. The SU-8 wall approach
induces the lowest additional losses, the provides no closed-capping over the IDTs,
making the resulting devices difficult to use. Capping with structured quartz and silicon
wafer provides full sealing of the area of the IDTs, but additional losses due to the
epoxy spreading on the acoustic path during the wafer bonding step.
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Figure 1: Scheme of a Love-wave based delay line.

Figure 2: Picture of the dual delay lines device glued on a FR4 epoxy printed circuit (26*26 mm).

Figure 3: Typical transfer function of delay line exploiting silica guiding overlays.
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Figure 4: SU-8 walls fabrication steps. (a) Love wave delay line with SiO2 guiding layer ; (b) spin coating
of SU8 2075 and soft-bake ; (c) soft contact lithography ;(d) post-bake ; (e) development of SU-8.

Figure 5: SEM image of the SAW device coated with a patterned thick SU-8.

Figure 6: Fabrication process of the silicon cover.

9



−90

−80

−70

−60

−50

−40

−30

−20

 120  121  122  123  124  125  126  127  128  129  130

I.
L

(d
B

)

Frequency (MHz)

Without SU−8
80 µm

100 µm
120 µm
140 µm
200 µm

Figure 7: Evolution of the insertion loss versus the width of the walls deposited on the acoustic path.
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Figure 8: Evolution of the phase versus the width of the walls deposited on the acoustic path.

Figure 9: SEM image of silicon cover.
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Figure 10: Quartz cover fabrication process flowchart.

Figure 11: SEM image of quartz cover.

Figure 12: SEM image of the SAW sensor with quartz cover.

11



−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

 119  120  121  122  123  124  125  126  127  128  129

I.
L

(d
B

)

Frequency (MHz)

80 µm
100 µm
120 µm
140 µm
200 µm

Figure 13: Evolution of the insertion loss versus the width of the silicon walls supporting the covers with a
75 N compressive force.
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Figure 14: Evolution of the insertion loss versus the width of the quartz covers with a 75 N compressive
force.
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Figure 15: Histogram of the insertion losses according to various compressive forces applied to bond the
silicon covers.
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Figure 16: Histogram of the insertion losses according to various compressive forces applied to bond the
quartz covers.
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