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ABSTRACT
The change of Austre Lovénbreen, a 4.5 km2 land-based glacier along the
west coast of Spitsbergen, is investigated using geodetic methods and
mass balance measurements over 1948–2013. For 2008−2013, annual
mass balances computed on 36-stake measurements were obtained, in
addition to annual mass balances reconstructed from the neighbouring
glaciers, Midtre Lovénbreen (1968−2007) and Austre Brøggerbreen
(1963−1967). The mean rate of glacier retreat for 1948–2013 is −16.7 ±
0.3 m a−1. Fluctuations in area (1948–2013 mean, −0.027 ±
0.002 km2 a−1) showed a slowing as the glacier recedes within its valley
from 1990 to 1995. For 1962–2013, the average volume loss calculated
by digital elevation model subtraction of −0.441 ± 0.062 m w.e. a−1 (or
−0.54 ± 0.07% a−1) is similar to the average annual mass balance
(−0.451 ± 0.007 m w.e. a−1), demonstrating a good agreement between
the loss rates computed by both methods over 1962−2013. When
divided in two periods (1962−1995 and 1995−2013), an increase in the
rate of ice mass loss is statistically significant for the glacier volume
change. The 0°C isotherm elevation (based on mean May–September air
temperatures) is estimated to have risen by about 250 m up to the
upper parts of the glacier between 1948 and 2013. The glacier area
exposed to melting during May to September almost increased by 1.8-
fold while the area reduced by a third since 1948. Within a few years,
the glacier area exposed to melting will decrease, leading the upper
glacier parts under the 0°C isotherm while the snout will keep on
retreating.
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1. Introduction

As they are more sensitive to climate change, the small glaciers and ice caps currently contribute
more to sea level rise than large ice sheets relative to their area (Paterson 1994; Meier et al. 2007;
Gregory et al. 2013; Stocker et al. 2013). To estimate the glacier contribution to sea water level
requires data of mass balance or glacier geometry change (Dyurgerov et al. 2010). In the Arctic,
the dataset sources available to assess the long-term change of glaciers (in area and in volume)
are quite rare, heterogeneous in nature and in accuracy and available for a period not exceeding a
century (Stocker et al. 2013). Among the methods used to investigate glacier geometry change,
remote sensing methods provide information from the Arctic scale (e.g. Rignot & Kanagaratnam
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2006; Korona et al. 2009) to the local scale (e.g. Rees & Arnold 2007), with the largest sources of error
at the largest scale.

With 33,837 km2 of ice caps and glaciers, Svalbard is among the largest glaciated areas in the high
Arctic (Radić et al. 2013). It has the largest density of glaciers monitored in the Arctic island zone
defined by the World Glacier Monitoring Service (WGMS 2016). Along the west coast of Spitsber-
gen, the Brøgger Peninsula displays several small valley glaciers among which Midtre Lovénbreen
(ML), Austre Lovénbreen (AL) and Austre Brøggerbreen (AB) have been studied since the 1960s
(Corbel 1966; Corbel 1970; Hagen & Liestøl 1990; Liestøl 1993; WGMS 2016). Recently, the inves-
tigations on these valley glaciers have been intensified (e.g. Rippin et al. 2003; Kohler et al. 2007;
Murray et al. 2007; Rees & Arnold 2007; Barrand et al. 2010; Mingxing et al. 2010; James et al.
2012). Most of these authors have shown a constant but irregular retreat of these glacier fronts
since the end of the Little Ice Age (LIA).

The present paper investigates the changes in length, surface and volume of AL (78.87°N,
12.15°E) over a long period (1948−2013), using measurements of front position and annual mass
balance combined to several dataset sources: a digitized contour map, aerial photographs, satellite
images and digital elevation models (DEMs). In addition, the Ny-Ålesund station (6 km west of
the study area) provides climate data from 1969. By taking into account a catchment area constant
since the LIA, we discuss the potential relation between the glacier geometry change (area, volume)
and air temperature (AT) data. The long-term evolution is discussed, combining our mass balances
obtained on the AL with those extrapolated from ML and AB following the observed close corre-
lations with these two neighbouring glaciers. The paper also provides a discussion about consistency
of methods used for assessing volume change of AL over 1962−2013. Then, in order to understand
the ongoing shrinking rates, the evolution of the average 0°C isotherm over May–September is pro-
posed and examined for seven dates between 1948 and 2013.

2. General settings

Svalbard, an archipelago with 55.5% glacier cover, represents about 10% of the total Arctic small gla-
ciers area (Liestøl 1993; Kohler et al. 2007; Radić et al. 2013). Similar to what is observed throughout
the Arctic, this area is very reactive to climate change: Hagen et al. (2003) stated that all the small
glaciers (area lower than 10 km2) have been clearly retreating since the end of the LIA. Small valley
glaciers of the Brøgger Peninsula have thus lost both in mass and in area (Lefauconnier & Hagen
1990; Hagen et al. 1993; Liestøl 1993; Lefauconnier et al. 1999; Kohler et al. 2007). In a recent
study, Kohler et al. (2007) demonstrated that the average thinning rate of ML has increased steadily
since 1936. They showed that the thinning rates from 2003 to 2005 were more than four times the
average of the first period (1936–1962).

Regarding its climate, the Brøgger Peninsula is subject to the influence of the northern extre-
mity of the warm North Atlantic current (Liestøl 1993). The climate at Ny-Ålesund (8 m a.s.l.) is
of polar oceanic type with a mean annual air temperature (MAAT) of −5.2°C and a total annual
precipitation of 427 mm water equivalent (w.e.) for 1981–2010 (Førland et al. 2011). Over an
earlier period (1961–1990), these parameters (Ny-Ålesund data for 1975–1990 and interpolated
from Longyearbyen data before 1975) were lower (−6.3°C for AT and 385 mm for precipitation),
indicating that a significant climate change occurred over the last few decades (Førland
et al. 2011).

The AL glacier is a small land-based valley glacier, 4 km long from South to North along the
Brøgger Peninsula (Figure 1). The glacier area was 4.48 km2 in 2013 and its elevation ranges from
50 to 550 m a.s.l. Its catchment area spreads over 10.577 km2, taking into account an outlet where
the main stream crosses a compact calcareous outcrop 400 m upstream from the coastline (Figure 1).
The catchment is characterized by a proglacial area downstream and the glacier it-self upstream, sur-
rounded by a series of rugged mountain peaks whose elevation reaches 880 m a.s.l. (Nobilefjellet).
The first glaciological and hydrological investigations in the Brøgger Peninsula were conducted by
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French scientists during the early 1960s on the Lovén glaciers. In 1965, Geoffray (1968) implemented
a network of 17 stakes on AL. Preliminary hydro-glaciological investigations conducted by Vivian
(1964) were pursued by Vincent and Geoffray (1970). Two decades later, Griselin (1982, 1985) pro-
posed the first hydrological balance of the AL catchment. More recently Mingxing et al. (2010) pub-
lished annual mass balance data for 2005–2006.

3. Data and methods

The techniques of airborne and satellite remote sensing combined with topographic data imported
into a GIS database are relevant tools to investigate geometry changes of glaciers (Haakensen 1986;
Rippin et al. 2003; Kohler et al. 2007; Rees & Arnold 2007; Moholdt et al. 2010; Friedt et al. 2012). In
addition, field measurements (GPS, snow drills, ice stake measurements, ground penetrating radar)
are common complements to remote sensing techniques (Østrem & Brugman 1991; Hock 2005;
Brandt & Kohler 2006; Mingxing et al. 2010; Saintenoy et al. 2013).

In the present paper, the change in AL geometry over the 1948–2013 period is investigated using
(i) geodetic methods (a topographic map, aerial photos, satellite images, GPS tracks, airborne light
detection and ranging [LIDAR]) and (ii) annual mass balance (Ba after Cogley et al. [2011])
measured from 2008 to 2015. The source materials and data vary depending on whether the glacier
change is studied in terms of length, area or volume change (Figure 2(a−f)).

Figure 1. Location of Austre Lovénbreen within the Svalbard archipelago and the Brøgger Peninsula. AL: Austre Lovénbreen; ML:
Midtre Lovénbreen; AB: Austre Brøggerbreen. On (c), the dashed line indicates the position of a calcareous, massive outcrop. The
dot in (c) is the outlet considered for delineating the watershed boundaries of AL. Photo credits: (b) CNES and (c) Formosat images,
NSPO, Distribution Airbus D&S.
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3.1. Front position and area change

. 1962–1965 German topographic map: East German scientists produced a 1/25,000 map from
1962 to 1965 (Pillewizer 1967) that we georeferenced (Figure 2(a)). In this paper, this dataset
will be referred to as the ‘1962–1965 map’ since the AL snout (elevation lower than 300 m
a.s.l.) was mapped in 1962 and the higher part of the glacier (above 300 m a.s.l.) was mapped
in 1965.

. Aerial photos: Six aerial stereographic photographs (Figure 2(b)) provided by the Norsk
Polarinstitutt (NPI) were used to determine the glacier front position at different dates:
1948 (unknown scale), 1966 (scale of 1/50,000), 1971 (1/20,000 and 1/6,000), 1977
(1/50,000), 1990 (1/50,000 and 1/15,000) and 1995 (1/15,000). We georeferenced original
aerial images with a GPS-referenced ground control points, at a density of approximately 1
point per km2 using relevant ground features on the surrounding ridges and in the glacier
forefield.

Figure 2. Documents and stake networks used to survey the Austre Lovénbreen geometry change. In (d) and (e), a line shows the
upper AL watershed boundary and the downstream watershed boundary (i.e. the proglacial moraine limit upstream the outlet) and
the line surrounding the glacier is the 2009 glacier limit. Photo credits: (a) extract from Pillewizer (1967), (b) and (c) Norsk Polar
Institute and (d) and (e) Formosat images, NSPO, provided by Spot Image.
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. Airborne and satellite data: For the period 1995–2008, the only available, dataset at high resol-
ution was a 2005 Scott Polar Institute Airborne LIDAR DEM (Rees & Arnold 2007). In this
paper, it was only used to outline the front position in 2005 since the survey only covers AL glacier
forefield and snout. A Formosat-2 image was used for 2009 (Friedt et al. 2012). Before 2006, mul-
tiple georeferenced Landsat7 images are available on the USGS website. Seven images (1985, 1989,
1990, 1998, 1999, 2002 and 2006) were analysed but rejected due to a poor pixel definition
(30 m × 30 m). Additionally, on these Landsat7 images, we found the differentiation between
the ice or snow-covered surfaces from rock or morainic material challenging, leading to an
error of ±100 m on the glacier front positioning.

. Front positioning by GPS: For the 2008–2013 period, the glacier front limit was surveyed every
year at the end of September with a Coarse Acquisition GPS. When Formosat-2 images and
GPS data were available for the same year, in situ GPS front positioning is considered more
accurate.

Thus, a total of 14 AL front positions can be investigated over 1948–2013. The front positions were
manually delineated for years between 1948 and 2005. After 2005, that is, for 2008–2013, the snout
positions were determined by GPS. Since the margin is covered with rock debris and some residual
ice may remain in the proglacial moraine, the actual glacier front is not always easy to delineate
neither on images nor in the field. Even if the limit may also have changed in the upper part of
the glacier, the available source materials are not precise enough to determine accurately any signifi-
cant difference on the upper parts of the glacier (Bernard et al. 2014). This is due to (i) the steepness
of surrounding slopes and/or (ii) the snow cover at the foot of slopes covering the rimaye (Bernard
et al. 2013). We therefore used a single image as the reference to delineate the glacier area behind the
snout (Formosat-2 image of summer 2009).

In a previous publication by our group, Friedt et al. (2012) analysed the error margin on the AL
glacier limit position. Their results are consistent with the uncertainty analysis published by Rippin
et al. (2003). As we used the same dataset sources as Friedt et al. (2012), the uncertainty analysis
made in the paper remains valid here:

. the contour map and all airborne/satellite images were re-sampled on a 5 m × 5 m grid;

. the glacier boundary analysis using manual colour identification (upper limit of the glacier for all
years and snout position before 2008) yields a 2 pixel uncertainty, that is, an uncertainty of ±10 m
and

. GPS delineation of the snout (2008–2013) yields a horizontal uncertainty of ±5 m.

Such boundary position uncertainties yield a variable uncertainty on the glacier area (Table 1): con-
sidering that the glacier limit is largely constant upstream (our reference for all years being the 2009
glacier ice-rock interface; see the thick line on Figure 3) and that only the snout position is signifi-
cantly evolving (see the length of glacier front in Table 1 and Figure 3), the area uncertainty is given
by the sum of (i) the uncertainty on the upper glacier limit (length of 12.29 km times 10 m for all
years) and (ii) the uncertainty on the independently measured snout position (the length of the
front times 10 m for 1948–2005 or times 5 m for 2008–2013).

3.2. Volume change

In order to assess the volume change of the glacier over 1962–2013 (51 years), we compared
different dataset resources available for AL, all converted into DEMs: (i) the ‘1962–1965 map’
(ii) the 1995 DEM (NPI) and (iii) 2 new DEMs produced from our GPS measurements in
2009 and 2013.

Other sources exist but, based on the elevation uncertainty analysis, only datasets exhibiting sub-
meter standard deviation (SD) on the altitude were considered. Most significantly, we rejected:
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Table 1. Austre Lovénbreen (AL) retreat in length and in area, glacier perimeter and length of glacier front from 1948 to 2013.

AL retreat (central axis) AL retreat (seven fanned out profiles)
Glacier
area Length of glacier boundary

Length between
two dates

Cumulative length
from 1948

Mean annual
rate

Length between
two dates

Cumulative length
from 1948

Mean annual
rate Mean area

Glacier
perimetera

Length of glacier
front

Year (m) (m) (m a−1) (m) (m) (m a−1) (km2) (km) (km)

1948 0 0 6.30 ± 0.17 16.87 4.58
1962 209 ± 20 209 ± 20 14.9 ± 1.4 206 ± 20 206 ± 20 14.7 ± 1.4 5.85 ± 0.16 16.21 3.91
1966 140 ± 20 349 ± 20 35.0 ± 5.0 81 ± 20 287 ± 20 20.3 ± 5.0 5.65 ± 0.16 16.25 3.96
1971 86 ± 20 435 ± 20 17.2 ± 4.0 85 ± 20 372 ± 20 17.0 ± 4.0 5.49 ± 0.16 16.01 3.72
1977 93 ± 20 528 ± 20 15.5 ± 3.3 91 ± 20 463 ± 20 15.2 ± 3.3 5.31 ± 0.16 15.71 3.42
1990 283 ± 20 811 ± 20 21.8 ± 1.5 240 ± 20 703 ± 20 18.5 ± 1.5 4.92 ± 0.15 14.96 2.67
1995 30 ± 20 841 ± 20 6.0 ± 4.0 86 ± 20 789 ± 20 17.2 ± 4.0 4.80 ± 0.15 14.85 2.56
2005 185 ± 20 1026 ± 20 18.5 ± 2.0 143 ± 20 932 ± 20 14.3 ± 2.0 4.61 ± 0.14 14.39 2.09
2008 100 ± 20 1126 ± 20 33.3 ± 6.7 61 ± 10 993 ± 20 20.3 ± 6.7 4.56 ± 0.14 14.32 2.02
2009 30 ± 10 1156 ± 20 30.0 ± 10.0 13 ± 10 1006 ± 20 13.0 ± 10.0 4.54 ± 0.14 14.40 2.11
2010 12 ± 10 1168 ± 20 12.0 ± 10.0 10 ± 10 1016 ± 20 10.0 ± 10.0 4.53 ± 0.14 14.22 1.93
2011 49 ± 10 1217 ± 20 49.0 ± 10.0 27 ± 10 1043 ± 20 27.0 ± 10.0 4.51 ± 0.14 14.23 1.94
2012 19 ± 10 1236 ± 20 19.0 ± 10.0 12 ± 10 1055 ± 20 12.0 ± 10.0 4.50 ± 0.14 14.18 1.89
2013 11 ± 10 1247 ± 20 11.0 ± 10.0 9 ± 10 1064 ± 20 9.0 ± 10.0 4.48 ± 0.14 14.04 1.75
Mean
value

19.2 ± 0.3 16.7 ± 0.3 5.39 ± 0.15 15.05
(SD = 0.96)

2.75
(SD = 0.96)

a The glacier perimeter is calculated by summing the length of glacier front (variable in time; see the thin lines for the different years on Figure 3) to that of the upper part of the glacier (considered
constant at 12.29 km; see the thick solid line on Figure 3).
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. the 2007 SPIRIT-derived DEM (SPOT5 stereoscopic survey of Polar Ice provided by CNES-
France in the frame of 2007–2009 IPY) due to a large elevation uncertainty (Korona et al. 2009);

. the 2006 DEMmentioned in Friedt et al. (2012) due to a poor coverage of some of the key areas of
the catchment;

. the 2005 Scott Polar Institute DEM derived from a LIDAR survey (Rees & Arnold 2007) which
has 0.15 m vertical accuracy but only covering part of the studied catchment (the glacier forefield
and the snout).

Figure 3. Front position of Austre Lovénbreen between 1948 and 2013. Outside the front area, since the change of the glacier limits
were considered negligible, we used the limits visible on a Formosat-2 image of August 2009. Photo credits: Formosat, NSPO,
provided by Spot Image. Aerial photos of 1948, 1966, 1971, 1977, 1990 & 1995 provided by the Norsk Polar Institute. Extract of
1962 topographic map from Pillewizer (1967).
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Hence, the three periods investigated herein for assessing the volume change are 1962–1995,
1995–2009 and 2009–2013 (Figure 2):

. 1962–1965 German topographic map (Figure 2(a); Pillewizer 1967): Original 20 m contour line
intervals were manually delineated in a vector format. Based on this linear elevation information,
interpolation was performed to obtain a continuous DEM of the glacier surface. The elevation
error was estimated by Friedt et al. (2012) by analysing DEM errors (mean and SD) in areas of
the proglacial moraine known to be static over time: the resulting SD was stated as 3 m. Carto-
graphical approximations on the original map and computation artefacts were the source of
cumulative errors (Friedt et al. 2012).

. 1995 DEM (Figure 2(c)): This DEM provided by the NPI was derived using analytical photogram-
metry from six stereo-overlapping aerial photographs taken in August 1995 (Rippin et al. 2003;
Kohler et al. 2007). According to Kohler et al. (2007) and Aas F. (personal communication), the
DEM of 1995 has an elevation uncertainty within ±1.5 m.

. 2009 DEM and 2013 DEM (Figure 2(d)): Both DEMs weremade by snowmobile carrying a dual-fre-
quency GPS (Trimble Geo XH, Zephyr antenna) in order to obtain the glacier surface elevation in
April 2010 and April 2014. The resulting dataset was post-processed for electromagnetic delay cor-
rection using reference Rinex correction files provided by the geodetic station located inNy-Ålesund.
Snow thickness interpolated from in-situmeasurements (avalanche probe and PICO [University of
Nebraska, Lincoln, U.S.A.] snow drill) made in April 2010 and 2014 was removed from the glacier
surface elevation of April in order to provide the glacier elevation at the end of the 2009 and 2013
summers. These GPS-derived elevation models exhibit a SD on the elevation of 0.5 m, including
both measurement uncertainty and experimental procedure-related uncertainties.

When subtracting two DEMs, the uncertainty of elevation is assumed to be equal to the sum of
elevation uncertainty of each image or map. It is therefore within ±4.5 m between the ‘1962–1965
map’ and 1995 photogrammetry-derived DEM, within ±2.0 m uncertainty between the 1995 DEM
and a GPS-derived DEM, within ±1.0 m uncertainty between two GPS-derived DEMs and within
±3.5 m uncertainty between the ‘1962–1965 map’ and a GPS-derived DEM. The uncertainty on
volume change is therefore the uncertainty of elevation times themean glacier areas between two years.

3.3. Mass balance

Field measurements of ablation and accumulation have been made yearly using a 36-stake network
that we set up in 2007 to cover the whole AL glacier surface (Figure 2(e)). Glacier-wide mass balance
is computed from measurements conducted twice a year: at the end of winter (late April/early May)
for winter mass balance (not used in this paper) and at the end of summer (late September/early
October) for annual mass balance (Ba; after Cogley et al. 2011). The Ba were computed for eight
years (from 2008 to 2015 meaning glaciological years 2007–2008 to 2014–2015). The AL Ba was
obtained by inverse distance weighting interpolation of 36-stake measurements (Bernard et al.
2010; Bernard 2011).

All height measurements at stakes are independent and the uncertainty on the height measure-
ment is estimated to be ±0.05 m. Thus, the uncertainty on Ba derived from subtracting indepen-
dently measured stake heights is ±0.10 or ±0.09 m w.e. (mean ice density of 0.9; e.g. Moholdt
et al. 2010). This uncertainty considered on Ba is consistent with that given by Fountain and Vecchia
(1999) for a glacier mass balance computed with about 30 stakes. The uncertainty of Ba averaged
over a time period (year i–year j) is therefore the sum of the Ba uncertainty of each year (year i
and year j) divided by the number of years separating the years i and j.

In addition, previous stake measurements for 1965–1975 were obtained once in 1975 by Brossard
and Joly (1986) at 7-stakes retrieved on the snout from the 17-stake network installed in 1965 (Geof-
fray 1968) (Figure 2(f)).
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The longest Ba time series in the Brøgger peninsula concern two other glaciers: (i) ML, the neigh-
bouring glacier of AL and (ii) AB, 6 km further West (Figure 1). In this paper, we use the Ba of ML
between 1968 and 2007 provided by WGMS (2016). The ML Ba were computed by averaging 10-
stake measurements within 100 m elevation bins along the central line (Barrand et al. 2010). For
1963–1967, we used the AB Ba data given by Lefauconnier and Hagen (1990). Before 1967, these
authors estimated AB Ba from positive AT of July–September recorded at Longyearbyen combined
to winter precipitation for which coefficient correlation is 0.90.

3.4. Air temperature

AT time series are recorded since 1969 at the Ny-Ålesund station at 8 m a.s.l. (eKlima 2013). The AT
over AL was deduced by applying an altitude, AT gradient to the Ny-Ålesund AT data. The gradient
was established from daily AT obtained from two temperature loggers (Hobo pro V2 U23-004 Onset
Hobo data loggers, Bourne, MA, U.S.A.; accuracy of ±0.2°C) installed on the AL: one downstream at
148 m a.s.l and the other upstream at 481 m a.s.l. The resulting average altitude, AT (−0.005°C m−1

for May–September) is consistent with the literature (e.g. Corbel 1966; Geoffray 1968; Corbel 1970;
Griselin 1982; Griselin & Marlin 1999 for AL; Joly 1994 for ML). Additionally, a third similar temp-
erature logger was set in the AL proglacial moraine at 25 m a.s.l.: the mean annual difference of
0.007°C lower than the accuracy on temperature measurement indicates that no significant longi-
tudinal gradient exists between Ny-Ålesund and the AL catchment, 6 km further East.

4. Results

4.1. AT data

In this paper, we consider hydro-glaciological years from October 1 to September 30 in order to com-
pare AT data with Ba that is measured at the end of September/beginning of October each year. Over
1970–2013 (meaning glaciological years from 1969–1970 to 2012–2013), the MAAT in Ny-Ålesund
was −5.22°C (SD of 1.27°C). Over the period, the MAAT displays a positive temporal trend of
+0.57°C/decade (Figure 4). This is in agreement with the data analysed by Førland et al. (2011)
for Svalbard. The segmented linear regression technique explained by Oosterbaan (1994) was applied
to find potential breakpoints in the MAAT time series. The result is the following: the MAAT time
series is statistically analysed as a period of constant temperature followed by a period of uniform
temperature increase with a breakpoint between 1994 and 1995 (98% confidence interval): this temp-
erature change occurring in the mid-1990s may be relevant to understand glacier volume evolution.
During the first 25 years (1970–1994), there is no clear temporal trend (+0.04°C per decade) as
opposed to the following 19 years (1995–2013) for which the MAAT significantly increases with
a trend of +1.38°C/decade. This 1995–2013 gradient is 2.4 times the average gradient calculated
over the whole period (1970–2013). The MAAT value is −4.45°C (SD of 1.12°C) over 1995–2013.

Mean summer air temperature (MSAT) was also calculated for May–September as an indicator of
the melting period at Ny-Ålesund: it was +1.88°C (SD of 0.71°C) for 1970–2013. Using the segmen-
ted linear regression technique (Oosterbaan 1994), the MSATmay be also separated into two periods
with a statistically significant breakpoint between 1996 and 1997: the trend over 1970–2013 was
+0.34°C/decade (trends of +0.10°C/decade for 1970–1996 and +0.90°C/decade for 1997–2013;
Figure 4). The mean MSAT value was +1.57°C (SD of 0.59°C) for 1970–1996 and increased to
+2.37°C (SD of 0.59°C) for 1997–2013 (Figure 4).

4.2. AL length change

Between 1948 and 2013, AL front showed clear changes (Figure 3). The recession was not however
equally distributed over the front (Figure 3). A maximum retreat distance may be estimated along the
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central flow line with a total recession of 1247 ± 20 m between 1948 and 2013, that is, a mean retreat
rate of −19.2 ± 0.3 m a−1 (Table 1). Seven fanned out profiles (Figure 3) were arbitrarily yet regularly
selected to assess the variability of the glacier retreat due to irregularities in the underlying bedrock.
The results indicate a mean retreat rate of −16.7 ± 0.3 m a−1 between 1948 and 2013 with rate ranges
from −12.8 ± 0.3 m a−1 on the western part to −19.2 ± 0.3 m a−1 in the central axis (Table 1;
Figure 3). Figure 5(a) shows a regular retreat, linear with time, for the average of the seven fanned
out profiles whereas an increase of the retreat rate from 2005 is noticeable for the central one. The
retreat rate range is consistent with that indicated for the central line of ML, that is, −15 m a−1 (Han-
sen 1999). Even if investigated over a short period (one-year interval), Mingxing et al. (2010) men-
tioned a similar value for the mean annual AL retreat rate (−21.8 m a−1 for 2005–2006).

In details, the annual retreat rate displayed a wide range of values (Table 1). Mingxing et al. (2010)
also mentioned great differences in the AL retreat rates along the central glacier flowline (from −2.8
to −77.3 m a−1 for 2005–2006).

The important spatio-temporal variability is mostly linked to differences in ice thickness and in
bedrock morphology. Moreover glacier length change is partly compensated for by glacier flow (Vin-
cent et al. 2000). Mingxing et al. (2010) measured the surface ice flow velocity of AL using differential
GPS, they obtained a mean velocity of 2.5 m a−1 along the central line of the AL snout, consistent
with a velocity of 4 m a−1 given by Rees and Arnold (2007) for 2003−2005 for the ML also along
the central line. The velocity is at least five times lower than the glacier margin retreat rate.

4.3. AL area change

In this paper, the change in area (Table 1 and Figure 5(b)) only shows the reduction of the snout area
since the same upper limit of the glacier (measured in 2009) was considered constant for all years.

Figure 4. MAAT and mean summer MSAT in Ny-Ålesund for 1970–2013. The data are given in hydrological years, that is, from
October 1 to September 30. Summer is considered from May 1 to September 30.
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Therefore, the glacier area is likely to be underestimated before 2009 and slightly overestimated after
2009. The results obtained for the area change of AL indicate that in 2013 the glacier covered 71% of
its 1948 area. In other words, in 2013, the glacier covered only 42% of the total basin area
(10.577 km2), whereas it occupied 60% of the catchment in the late 1940s.

The glacier area data plotted over time in Figure 5(b) indicate a progressive temporal decrease
(fit resulting from minimizing quadratic error) with an average reduction rate over 1948–2013,
similarly to 1962–2013 (Table 2). An uncertainty of ±0.002 km2 a−1 is obtained on the slope
by computing the uncertainty on the slope of the regression ‘glacier area upon time’, which is
the SD of the slope times a variable following Student’s distribution for a 95%
confidence interval (Oosterbaan 1994). The uncertainty is less than 10% of the observed tem-
poral trend.

Figure 5(b) shows that the area change with time has two periods of regular decrease separated by
a perceptible breakpoint between 1990 and 1995: the gradient decreased from −0.033 ±
0.003 km2 a−1 for 1948–1995 (similar to −0.032 ± 0.003 km2 for 1962−1995) to −0.018 ±
0.005 km2 a−1 for 1995–2013 (Table 2).

4.4. AL volume change determined by DEM differences

The AL change in volume was estimated by subtracting two by two 4 DEMs covering the 1962–2013
period that we can separate into three sub-periods: 1962–1995, 1995–2009 and 2009–2013 (Figure 6
and Table 2). For the whole 1962–2013 period, the total glacier ice volume loss was estimated at
129.1 ± 18.1 × 106 m3 (Table 2). This corresponds to an average reduction rate of −2.5 ± 0.4 ×
106 m3 a−1 (the ratio of the volume divided by 51 years) or an average elevation difference of

Figure 5. Austre Lovénbreen length and area changes over 1948–2013. (a) The length reduction versus time. The dashed line is
derived best-fit line of the average of seven profiles (slope of −16.4 m a−1) and the solid line is for the mean central flowline (slope
of −19.3 m a−1). (b) The area reduction versus time. The black, dashed is the derived best-fit line of all datapoints (−0.027 km2 a−1

for 1948–2013) segmented into two lines by a breakpoint between 1990 and 1995 (−0.032 km2 a−1 for 1948–1995 and
−0.018 km2 a−1 for 1995–2013).
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Table 2. Calculated Austre Lovénbreen area and volume changes for five periods: 1962–1995, 1995–2009, 2009–2013, 1995–2013 and 1962–2013.

Change in glacier
area DEM subtraction Annual mass balance

Net loss in ice Net loss in water equivalenta Water equivalenta

Period (km2 a−1) (106 m3) (106 m3 a−1) (m a−1)b (×106 m3) (×106 m3 a−1) (m a−1)b (m a−1)c (m a−1)b (m a−1)c

1962d–1995
33 years
(5.32 km2)

−0.032 ± 0.003 −74.9 ± 23.9 −2.3 ± 0.7 −0.427 ± 0.136 −67.4 ± 21.5 −2.0 ± 0.7 −0.384 ± 0.123 −0.193 ± 0.062 −0.422 ± 0.016 −0.212 ± 0.008

1995e–2009
14 years
(4.67 km2)

−0.018 ± 0.007 −47.1 ± 9.3 −3.4 ± 0.7 −0.720 ± 0.143 −42.4 ± 8.4 −3.0 ± 0.6 −0.648 ± 0.129 −0.286 ± 0.057 −0.466 ± 0.026 −0.206 ± 0.011

2009f–2013
4 years
(4.51 km2)

−0.015 ± 0.020 −7.1 ± 4.5 −1.8 ± 1.1 −0.394 ± 0.250 −6.4 ± 4.1 −1.6 ± 1.0 −0.354 ± 0.225 −0.151 ± 0.096 −0.643 ± 0.045 −0.274 ± 0.019

1995e–2013
18 years
(4.64 km2)

−0.018 ± 0.005 −54.2 ± 9.3 −3.0 ± 0.5 −0.649 ± 0.111 −48.8 ± 8.4 −2.7 ± 0.5 −0.584 ± 0.100 −0.256 ± 0.044 −0.505 ± 0.020 −0.222 ± 0.009

1962d–2013
51 years
(5.17 km2)

−0.026 ± 0.002 −129.1 ± 18.1 −2.5 ± 0.4 −0.490 ± 0.069 −116.2 ± 16.3 −2.3 ± 0.3 −0.441 ± 0.062 −0.215 ± 0.030 −0.451 ± 0.007 −0.221 ± 0.003

a Volume of water = volume of ice × ice density (0.9).
b Calculated in relation to a mean area of the glacier.
c Calculated in relation to the Austre Lovénbreen catchment area (10.577 km2).
d 1963 for Ba.
e 1996 for Ba.
f 2010 for Ba.
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−0.490 ± 0.069 m a−1 (ratio of −2.5 × 106 m3 a−1 by the average glacier area between 1962 and 2013,
i.e. 5.17 km2).

The annual volume change rate is not constant between the three investigated periods:

. −2.3 ± 0.7 × 106 m3 a−1 (1962−1995). The average elevation difference was −0.427 ± 0.136 m a−1

(based on the average 1962−1995 glacier area, 5.32 km2);
. −3.4 ± 0.7 × 106 m3 a−1 (1995−2009). In terms of elevation difference, the rate was −0.720 ±

0.143 m a−1 based on an average 1995−2009 glacier area (4.67 km2) and

Figure 6. Maps of DEM differences of Austre Lovénbreen for four periods: 1962–1995, 1995–2009, 2009–2013 and 1962–2013. For
2009–2013, the scale is different than that of the three other maps since the change of altitude for four years is very low.

GEOGRAFISKA ANNALER: SERIES A, PHYSICAL GEOGRAPHY 13



. −1.8 ± 1.1 × 106 m3 a−1 (2009−2013). Expressed as elevation difference, the rate was −0.394 ±
0.250 m a−1 based on an average 2009−2013 glacier area (4.51 km2).

For this last period, we see that the uncertainty accounts for two-third of the calculated net ice loss.
As already shown by Friedt et al. (2012), a four-year interval is clearly too short to accurately deter-
mine the glacier volume change but only the DEMs of 2009 and 2013 were surveyed with the same
instrument (GPS) and methods, in the frame of this study. To reduce the uncertainties, the two last
periods (1995−2009 and 2009−2013) were gathered and gave a net ice loss of−3.0 ± 0.5 × 106 m3 a−1

for the whole period. Expressed as elevation difference, the rate was −0.649 ± 0.111 m a−1 with
respect to an average 1995−2013 glacier area (4.64 km2).

Using a mean ice density of 0.9 (e.g. Moholdt et al. 2010), AL lost −2.3 ± 0.3 × 106 m3 a−1 w.e.
during 1962–2013. The loss was −2.0 ± 0.7 and −2.7 ± 0.5 × 106 m3 w.e. a−1 for 1962–1995 and
1995–2013, respectively (Table 2).

4.5. AL mass balance

The AL Ba was measured yearly for 2008–2015 (Figure 7; Table 3). The average Ba was −0.421 ±
0.030 m w.e. a−1 for 2008–2015. The high SD (0.439 m w.e. a−1) reflected a high interannual varia-
bility of Ba. With the exception of 2014, all Ba were negative with considerable contrasts between
years: from +0.010 ± 0.090 m w.e. (2014) to −1.111 ± 0.090 m w.e. (2013). The accumulation area
ratio (AAR after Dyurgerov et al. [2009]; AAR is calculated as the accumulation area/total glacier
area ratio) ranged from 0.00 to 0.66 over 2008–2015.

Earlier studies of the AL catchment (Geoffray 1968; Griselin 1982) did not provide data to establish
past Ba since the seven available data were located in the ablation area only. Between 1965 and 1975 the
pointmass balance (ba) of the partialGeoffray’s stake network spatially ranged from−1.05 m a−1 down-
stream to−0.24 m a−1 upstream (Table 4; Brossard & Joly 1986). They fall within the same range as the
1962−1995 DEM subtraction at these same seven points (from −0.17 to −1.09 m a−1; Table 4).

So, in order to estimate the past AL Ba for 1967−2007, we correlated AL versus ML Ba data, both
series having eight years in common (2008–2015). We obtained a strong correlation between the Ba
series for 2008−2015, with a linear fit yielding the following equation (Figure 8(a)):

Ba(AL) = 1.136× Ba(ML)− 0.014(n = 8; r = 0.992), (1)

where Ba were given in m w.e.

Figure 7. Time series of AL annual mass balances from AL measurements (dark) and reconstituted from mass balances from the ML
(solid light) and from AB (dashed light). The average values of both AL Ba and DEM subtraction are also indicated with error bars
(grey rectangles).
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By applying Equation (1) to the series of ML Ba, we obtained an AL Ba time series extrapolated for
1968−2007 (Figure 7). Since Ba were not available for ML prior to 1968, we used the estimated Ba
values computed by Lefauconnier and Hagen (1990) for AB. Subsequently, the strong correlation
between AB and ML (Equation (2); Figure 8(b)) enabled AL Ba series to be calculated for 1963
−1967 (Figure 7) using again Equation (1) between AL and ML.

Ba(ML) = 0.9959× Ba(AB)+ 0.069(n = 21; r = 0.994), (2)

where Ba are given in m w.e.
For extrapolated AL Ba, error bars are driven by the ML error bar (±0.25 m according to Kohler

et al. 2007) times the regression coefficient, with uncertainty on each regression coefficient bringing a
negligible contribution since r is close to 1 (see the equations in Oosterbaan 1994). Hence, we
assessed uncertainties of ±0.26 m w.e. for each AL extrapolated Ba between 1968 and 2007 and
±0.28 m w.e. between 1963 and 1967 (95% confidence interval).

The average 1963−2013 Ba was −0.451 ± 0.007 m w.e. a−1 with −0.422 ± 0.016 m w.e. a−1 for
1963−1995 and −0.505 ± 0.020 m w.e. a−1 for 1996−2013 (Table 2). The whole AL Ba time series
(1963−2013) showed a negligible increase in the temporal trend of −0.0026 m w.e. a−1. We observed
that very negative Ba of AL such as in 2011 or 2013 (more than twice the average Ba) were not excep-
tional since they occurred eight times during 1963–2015 (Figure 7).

Table 3. Austre Lovénbreen annual mass balances and AAR for 2008–2015. The uncertainty on Ba is ±0.10 m in ice, ±0.09 m w.e.
and ±0.04 m w.e. with respect to catchment area.

Annual mass balance, Ba (m)

Year Ice in relation to glacier areaa
Water equivalent in relation

to glacier areaa
Water equivalent in relation to

catchment areab AAR

2008 −0.115 −0.104 −0.045 0.66
2009 −0.164 −0.148 −0.063 0.33
2010 −0.183 −0.165 −0.071 0.45
2011 −1.170 −1.053 −0.451 0.00
2012 −0.267 −0.241 −0.103 0.39
2013 −1.233 −1.111 −0.475 0.00
2014 +0.011 +0.010 +0.004 0.62
2015 −0.613 −0.552 −0.236 0.05
Mean
2010−2013 −0.713 −0.643 −0.274 0.21
2008−2015 −0.468 −0.421 −0.180 0.31
a Glacier area of 4.53 km2 (mean 2008–2013).
b 10.577 km2.

Table 4. Net mass balance (1965–1975 and 2008–2013) and DEM subtraction (1995–1962 and 2013–1995) of Austre Lovénbreen at
the locations of the seven stakes of Geoffray (1968).

Net mass balance DEM subtraction

(m) (m a−1) (m) (m a−1)

Stake IDa 1965–1975b 1965–1975b 2008–2013c 1995–1962c 2013–1995c 1995–1962c 2013–1995c

1 −10.5 −1.05 −2.47 −36 −34 −1.09 −1.90
2 −7.75 −0.78 −1.65 −20 −18 −0.59 −1.02
3 −5.55 −0.56 −0.95 −12 −12 −0.35 −0.69
4 −4.95 −0.50 −0.70 −9 −10 −0.29 −0.55
5 −4.75 −0.48 −0.81 −11 −12 −0.34 −0.65
6 −4.70 −0.47 −0.60 −6 −10 −0.17 −0.55
7 −2.35 −0.24 −0.57 −12 −8 −0.35 −0.43
Mean −5.79 −0.58 −1.11 −15.1 −14.9 −0.45 −0.83
a Location in Figure 2.
b After Geoffray’s stake network (1968) and Brossard and Joly (1986).
c This study.
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5. Discussion

During the 1948−2013 period, AL underwent changes of geometry (length, area and volume). The
following discussion addresses (i) the change rates through time, (ii) the differences between the
methods to estimate the change in volume (Ba versus DEM) and (iii) the relationship between geo-
metry change and evolution of glacier areas exposed to melting.

5.1. Variations in rate of AL retreat (length, area) for 1948–2013

Whatever the resource type used to estimate the glacier retreat in length or in area through time
(Figure 5(a,b)), we observed a strong linear fit. However, it was not possible to assess the changes
in glacier higher in the catchment for reasons explained in Section 3.1.

The mean retreat calculated by averaging the length along seven profiles was relatively constant in
time (Figure 3). A straight line with a mean slope of−16.7 ± 0.3 m a−1 (n = 14 and r = 1.000) is repre-
sentative of the average retreat rate of the glacier terminus. It is notable that the average AL velocity
(2.5 m a−1 according to Mingxing et al. 2010) does not exceed the average front retreat rate along the
main flow line which is quite homogeneous over 1948−2013 (−19.2 ± 0.3 m a−1; n = 14 and r =
0.997).

On the retreat rate versus time relationship determined for the central line (Figure 5(a)), the
breakpoint in 2005 is not the consequence of a climatic change but illustrates the local predominance
of the surrounding terrain topography in the apparent acceleration of the axial retreat. Averaging
over seven profiles smooths out bedrock topographic features and yields a homogeneous retreat
rate rather constant in time.

Regarding the glacier area, the average change was −0.027 ± 0.002 km2 a−1 over 1948–2013 (n =
14 and r = 0.993). A slowdown in the area reduction was observed between 1990 and 1995 (Figure 5
(b)). This breakpoint may be surprising when considering the MAAT or MSAT series (Figure 4): the
AT gradient increased after 1994, whereas the reduction rate of the glacier area slowed down. This
apparent divergence may be partially explained by the reduction of the glacier terminus exposed to
melting. We can observe that, in 1948, the glacier terminus was widely spread out in the glacier fore-
field uphill the LIA terminal moraine (Figure 3). Compared to 2013, the glacier terminus was less
thick and the front itself was rather flat because it was not constrained by the surrounding terrain
(Figure 9). In the present-day configuration, the glacier snout clearly is constrained on its eastern
and western sides by the steep slopes of the glacier basin valley. The glacier snout gradually became

Figure 8. Correlation between annual mass balances between AL and two glaciers of the Brøgger peninsula: Austre Lovénbreen
(AL) versus ML for 2008–2015 (a) and ML versus AB for 1968–1988.
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thicker and its front steeper over time (Figure 9). If we compare the ice thicknesses at the glacier
snout at a same distance from the respective fronts of 1962, 1995, 2009 and 2013, we highlight
the increasing values of ice thickness: 35, 45, 72 and 76 m at 500 m and 70, 116, 123 and 124 m
at 1000 m from the front of 1962, 1995, 2009 and 2013, respectively. Further discussion about the
glacier areas exposed to melting is given below inSection 5.5.

Even if the changes of snout length as well as glacier area are two convenient, visible proxies to
study glacier dynamics, they may be delicate to interpret since they combine several processes that
are not only dependent on climate conditions. Glacier shrinkage is also related to parameters includ-
ing ice thickness, glacier velocity, basal thermal state of glacier, topography and roughness of under-
lying bedrock and geological structures (slope and fractures). Therefore, to assess glacier changes,
glaciological investigations have to focus on volume in addition area or length of glaciers.

5.2. Variation in volume (reduction rate and percentage of total AL volume) for 1962–2013

Regarding the methods for assessing the volume change of the glacier, it could be hazardous to com-
pare heterogeneous sources of dataset since investigating the long-term change of glacier often
requires the use of various documents (maps, aerial photos, satellite and airborne images) with
different accuracies and scales. In the case of AL, great care was applied to minimize data artefacts
but oldest sources showed some discrepancies from expected trends. For the 2009 and 2013 datasets,
the DEM difference produced by Rinex-post-processed GPS measurements is expected to lead to the
best accuracy of our datasets but such a short time interval actually yields unacceptable signal to
noise ratio (64%, i.e. an error of 0.25 m a−1 for a value of −0.39 m a−1). This short time interval
will hence not be considered, in favour of the longer time interval 1995−2013 over which uncertain-
ties are reduced to yield an acceptable signal to noise ratio of at least 10.

Like for the AL area change, the results undoubtedly indicate that AL reduced in volume over
1962−2013 with a rate of −2.5 ± 0.3 × 106 m3 a−1 of ice for an average elevation difference of
−0.490 ± 0.069 m a−1 (Table 2).

Using the 2009 glacier volume (349 ± 41 × 106 m3) obtained by Saintenoy et al. (2013), we can
estimate the glacier volume in 1962 by adding ice loss between 1962 and 2009 (122 ± 33 ×
106 m3): the glacier volume was 471 ± 74 × 106 m3 in 1962. Regarding the 1962–2013 ice loss
(129.1 ± 18.1 × 106 m3), it therefore represents a high proportion (27.4 ± 3.8%) of the 1962 glacier
volume. AL lost −0.54 ± 0.07% per year of its volume over 1962−2013.

Figure 9. Cross-sections of the glacier along the central flowline (Austre Lovénbreen) in 1962, 1995, 2009 and 2013. The upper
insert gives the ice thickness at a distance of 500 m from the AL front of 1962, 1995, 2009 and 2013 respectively.
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However, the loss rate was not constant through time and displayed a noticeable acceleration of
30% between 1962−1995 and 1995−2013 (−0.384 ± 0.123 m w.e. a−1 for 1962−1995 versus −0.584
± 0.100 m w.e. a−1 for 1995−2013; Figures 7 and 10; Table 2). However, the acceleration is better
demonstrated with Ba data because the error bars are lower than the ones on DEM differences.
This acceleration is much lower than that given by Kohler et al. (2007) for ML (+245% between
1962−1969 and 2003−2005), which was computed on short time-spans instead of continuous,
long time series to characterize the changes (1936−2005).

Expressed as change with respect to the whole glacier volume, the glacier lost 16 ± 5% of its 1962
volume at an average loss rate of −0.48 ± 0.15% a−1 during the first 33-year period while the glacier
lost 14 ± 2% of its 1995 volume at a rate of −0.76 ± 0.13% a−1 during the following 18-year period.

However, the acceleration of the melt rate, perceptible in 1995 since we have a DEM at this date,
has to be compared with Ba that is measured each year: this issue will be tackled in the next section.

5.3. AL volume change: DEM subtraction versus Ba (1962–2013)

Firstly, regarding the only available past dataset of stake measurements on AL, we can deduce that
the ablation rate, obtained by Brossard and Joly (1986) on the partial Geoffray’s stake network for
1965–1975, is of the same order of magnitude (−1.05 to −0.24 m a−1; Table 4) as the loss deduced
by DEM differences for the 1962–1995 period (−1.09 to −0.17 m a−1; Table 4). The mean annual
2008–2013 ablation rate (obtained at the position of Geoffray’s stakes) is 1.8 times more negative
than the mean rate calculated with the data given by Brossard and Joly (1986) for the 1965–1975
period.

Since stake values of 1965−1975 are not usable for computing an AL Ba, (the retrieved stakes
being only located in the ablation area), we used Ba reconstructed from long time series of ML Ba
for 1968−2007 and AB Ba for 1963−1967 in addition to the eight years of in-situ measurements
(2008−2015), in order to compare them to DEM differences (see the Sections 3.3 and 4.5).

Results showed that for the overall period (1962−2013), the average altitude difference between
DEMs (−0.441 ± 0.062 m w.e. a−1) was similar to the average Ba (−0.451 ± 0.007 m w.e. a−1), indi-
cating a good consistency between both methods to survey the glacier geometry change (Table 2). At
shorter time scale, both methods also display similar rates except for the shortest period, 2009−2013
(Figure 10 and Table 2): over 1962−1995, the average Ba (−0.422 ± 0.016 m w.e. a−1) is statistically

Figure 10. Comparison of methods for estimating AL volume change (Ba and DEM subtraction) for four periods (1962–2013, 1962–
1995, 1995–2013 and 2009–2013).
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similar to DEM subtraction values (−0.384 ± 0.123 m w.e. a−1) and for 1995−2013, the average Ba
(−0.505 ± 0.020 m w.e. a−1) is also consistent with DEM subtraction values (−0.584 ± 0.100 m
w.e. a−1). As already mentioned for DEM differencing (Section 5.2), the increase in the loss rate
in time is more highlighted by Ba data due to low error bars (Figure 10).

As no breakpoint was found in the whole time series of AL Ba (computed from our stake
measurements or reconstructed from ML or AB Ba), the increase of loss rate is likely progressive
through time.

All of this confirms that long-term data give accurate and similar results using Ba and DEM at the
exception of short-term data that yield high error bars. The data presented in this paper reinforce the
results obtained for AL by Friedt et al. (2012) by using a more homogenous dataset (Ba compared to
DEM difference over similar time intervals) and longer observed Ba time series on AL. Indeed, Friedt
et al. (2012) used a different dataset for AL: (i) a 2006 DEM that we discarded in this current inves-
tigation due to some poorly covered areas, (ii) they compared Ba and DEMs for different years (2008
−2010 for Ba versus 2006−2009 for the DEMs) and (iii) over a shorter period than considered here.
Similarly, on ML, Rees and Arnold (2007) also accounted for a discrepancy between 2-DEM differ-
encing and Ba computed from stake measurements but they could not relate the 2003–2005 LIDAR
data to the Ba of the same period as the latter were not available. Therefore, they compared the 2003
−2005 DEM with mean 1977−1995 Ba values.

5.4. AL volume change (1962–2013) with respect to catchment area

To compare the ice volume loss between different periods during which the glacier area reduced, the
glacier geometry change has to be given with respect to an area common and invariant over time. We
expressed the volume change in water depth (w.e. in m) with respect to the catchment area which is
considered unchanging in a glacier basin: in the case of AL, the outer edge was chosen where it
crosses a stable, massive calcareous outcrop a few hundred metres upstream from the coastline
(Figure 1) and which is not affected by changes in coastline position.

The AL ice loss obtained for the whole period by DEM subtraction (Table 2) was −0.215 ±
0.030 m w.e. a−1 with respect to the catchment area (10.577 km2). For the same period
(1962−2013), the average Ba is −0.221 ± 0.003 m w.e. a−1 with respect to the catchment area,
again emphasizing the consistency between the two methods.

Regarding the two periods mentioned above (1962−1995 and 1995−2013), the loss rates, normal-
ized to the catchment area, are still consistent within each period (Table 2; Figures 7 and 10):

. −0.212 ± 0.008 m w.e. a−1 (mean Ba for 1963–1995) versus −0.193 ± 0.062 m w.e. a−1 (mean
annual 1962–1995 DEM subtraction),

. −0.222 ± 0.009 m w.e. a−1 (mean Ba for 1996–2013) versus −0.256 ± 0.044 m w.e. a−1 (mean
annual 1995–2013 DEM differences).

Regarding the evolution of loss rates through time, both methods confirm an increase in the loss
for the second period (Figure 7). Both proxies indicate increase of the melt rate in the second time
interval even if the normalization to catchment area smooths the differences between the two con-
sidered periods.

5.5. AL change with respect to glacier surface exposed to melting (1948–2013)

From 1962 to 2013, the AL regularly lost ice (−26% in volume and −23% in area). Under similar
climatic conditions, we would expect that decreasing the glacier area would lead to a progressive
decrease of melt rate, which is not the case for AL for which even though the area decreased, the
rate of ice melt (in volume) increased. It is well known that the relationship between glacier size
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and change in ice volume is not straightforward, since a glacier response time must be considered:
immediate for volume and delayed for length and area (Cuffey & Paterson 2010).

To discuss the apparent discrepancy between the overall area change and volume change, we may
assess the glacier surface exposed to melting for 1948–2013 using AT data. For this purpose, we
chose to compute the area of glacier surface exposed to melting by considering an average elevation
of the 0°C isotherm based on the MSAT, that is, from May 1 to September 30. This particular time
interval was selected as it covers most of the melting period. However, the choice of a constant period
allows for the computing of an average 0°C isotherm elevation for each date, which has to be con-
sidered as relative values rather than absolute values.

For the estimate of the 0°C isotherm position, two climatic stations were used: Ny-Ålesund station
(1969–2013) and Longyearbyen (1948–1968). As no longitudinal gradient of AT exists between the
lower part of the AL catchment and Ny-Ålesund station, the Ny-Ålesund MSAT time series cor-
rected for altitude−AT gradient of −0.005°C m−1 was directly used to estimate yearly the elevation
of the 0°C isotherm over the glacier from 1969 to 2013. To extend the time period before 1969, the
Longyearbyen MSAT series was used since (i) this station started earlier than that of Ny-Ålesund and
(ii) both monthly AT series (limited to May–September) are very well correlated. We established the
relationship at T(Ny-Ålesund) = 0.82 × T(Longyearbyen) − 0.13 where T is the MSAT in °C (r = 0.95
and n = 175 months). These MSAT values was translated into values at AL and corrected for an alti-
tude–AT gradient, then the yearly average elevation of the 0°C isotherm for May–September over AL
was assessed for 1948−2013. Then, for seven dates for which the AL front position data are available,
the area below the 0°C isotherm elevation, that is, the area with average positive MSAT was deduced
to define a so-called ‘glacier area exposed to melting’ and reported in Figure 11.

From 1948 to 2013, we observe an upward shift in elevation of the 0°C isotherm, regularly from
1948 (209 m a.s.l.) to 2013 (454 m a.s.l.), except for 1962−1977 (0°C isotherm slightly decreased
from 276 to 267 m a.s.l.). At the same time, the glacier area decreased (Figure 11). The AL area
exposed to melting substantially increased from 1.9 km2 in 1948 to 3.5 km2 in 2013, that is, respect-
ively, 30% and 78% of the whole area. In 65 years, the glacier area exposed to melting was multiplied
by 1.8 while the total AL area reduced by almost a third (29%). This could be the main explanation of
the fact that the change of AL volume increased while its area change decreased.

The evolution of AL areas, over and under the 0°C isotherm elevation, through time is shown in
Figure 12. The total glacier area reduced while the area over the 0°C isotherm elevation decreased
and the area below the 0°C isotherm line displayed a noticeable decreasing trend for 1948−1995
and then a strong increase between 1995 and 2013. The breakpoint in 1995 occurs due to the increase
in MSAT observed at Ny-Ålesund at this time (cf. Section 4.1).

With such a change in the 0°C isotherm position towards higher elevation over the catchment,
the average position of the 0°C isotherm will soon exceed the upper part of the glacier (550 m
a.s.l.) during the May−September period and AAR will tend to zero at the end of the summer.

Figure 11. Elevation of the average 0°C isotherm over AL for seven years (1948, 1962, 1977, 1995, 2005, 2009 and 2013). The pos-
ition of the 0°C isotherm elevation was estimated from the Ny-Ålesund temperature data of summer months (May–September)
corrected from an elevation gradient of −0.005°C m−1. The values in km2 refer to the glacier area under (light) or over (dark)
the 0°C isotherm. The values in m are the elevation of the 0°C isotherm. Glacier elevation for 1948 and 1977 is that of 1962
and for 2005 it is that of 2009.
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Under such conditions, the glacier area will shrink and the output meltwater volume is then
expected to decrease. This geometrical statement might be compensated for by climatic consider-
ations. The melting period could extend in time, before May and/or after September, and MSAT
may increase, countering once again the expected decreasing trend that should be seen in the melt
rate. The whole glacier surface could be subject to only positive temperatures in the summer by
∼2020 (see regression line of area over 0°C extended to 0 km2 in Figure 12). Such conditions
might already be met: AAR data between 2008 and 2015 often showed values at or closed to
0%, in 2011, 2013 and 2015 (Table 3).

6. Conclusion

The changes in Austre Lovénbreen geometry were investigated using a set of data and documents
whose source was heterogeneous in nature and scale (topographic map, aerial photos, satellite
and airborne images). Recent annual mass balance measurements were also used based on a 36-
stake network established on the Austre Lovénbreen in 2007.

1. Austre Lovénbreen, like neighbouring glaciers of the Brøgger peninsula (e.g. ML), is shrinking. Its
total retreat is 1064 ± 20 m in length (over seven profiles) over 1948−2013, 1.82 ± 0.28 km2 in
area over the same period. The loss in volume is −129.1 ± 18.1 × 106 m3 over 1962−2013. In
half a century, the glacier lost almost a third of its volume, from 471 ± 74 × 106 in 1962 to 342
± 46 × 106 m3 in 2013.

2. Austre Lovénbreen average annual rates were the following: −16.7 ± 0.3 m a−1 in length for
1948−2013, −0.027 ± 0.002 km2 a−1 in area for 1948−2013 and −2.3 ± 0.3 × 106 m3 w.e. a−1 for
1962−2013, that is, −0.54 ± 0.07% a−1 of the 1962 glacier volume.

3. The mean annual mass balance over 1962−2013 (−0.221 ± 0.003 m w.e. with respect to the Austre
Lovénbreen catchment area) is comparable to the DEM subtraction values (−0.215 ± 0.030 m w.e.
with respect to the catchment area). The good agreement between the two methods used to survey
the annual glacier volume change demonstrates that the DEM difference is an efficient method if
applied at dates separated by a time interval long enough for the altitude uncertainty to become neg-
ligible with respect to mass balance: in our case, such a condition is met for durations reaching a
decade.

Figure 12. Areas (total, over and under 0°C isotherm) as a function of time (1948–2013).
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4. The perceptible breakpoint between 1990 and 1995 (decrease of area change rate from −0.032 ±
0.003 km2 a−1 for 1948–1995 to −0.018 ± 0.005 km2 a−1 for 1995–2013) is explained by the
increased local influence of the topography of the surrounding terrain, inducing a thicker and
less wide glacier terminus.

5. Regarding two periods (1962−1995 and 1995−2013), the increase in the loss rate in time is more
highlighted by Ba data than DEM subtraction, due to low error bars: over 1962−1995, the average
Ba was −0.422 ± 0.016 m w.e. a−1 whereas it was −0.505 ± 0.020 m w.e. a−1 or 1995−2013).
Assuming the relative volume loss remains similar to that estimated from DEM difference for
1995–2013 (−0.76 ± 0.13% a−1), the glacier would have completely melted in 132 ± 27 years.

6. Between the periods used to study the glacier volume change (1962–1995 and 1995–2013), Austre
Lovénbreen reduced its volume by 26% while its area dropped by 23%. AL area exposed to melt-
ing was modelled by assessing the 0°C isotherm elevation over the glacier by averaging May–Sep-
tember AT (from Ny-Ålesund station and extended to 1948 using the Longyearbyen AT) from
1948 to 2013 and applying an AT − altitude gradient of −0.005°C m−1. The 0°C isotherm
elevation rose over the glacier by 250 m on average in 65 years. The glacier area exposed to melt-
ing during the May–September period almost increased by 1.8-fold while the total Austre Lové-
nbreen area reduced by almost a third since 1948 (29%).

Austre Lovénbreen already experienced negative mass balance over the entire glacier surface (for
instance in 2011 and 2013 when AAR was at or closed to 0%). In 2013, only 1.0 km2 of the total
glacier area (4.48 km2) was over the 0°C isotherm. If this continues, within a few years, the glacier
area exposed to melting will reduce as the entire present-day accumulation area will be under the 0°C
isotherm while the snout will keep on retreating. This would then eventually imply a reduction of ice
melt if ATs remain at least similar.
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