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Abstract: A novel direct path interference (DPI) suppression method is proposed in this paper for passive bistatic synthetic
aperture radar (SAR) imaging applications. Conventional time-domain processing methods cannot mitigate the DPI completely
and will introduce errors into the target position estimation. By exploiting the sparsity of the DPI signal and the properties of its
covariance matrix, the proposed method solves these problems by accurately estimating the time delay of DPI based on the
atomic minimization algorithm and Vandermonde decomposition in the frequency domain. The amplitude of DPI is then calculated
by the least squares method. Simulations and experimental results of Wireless Fidelity (WiFi) based passive bistatic SAR imaging
of short-range targets show that the proposed method can suppress DPI more effectively and estimate the position of the target
more accurately than the classical method.

1 Introduction

Passive bistatic radar (PBR), which exploits existing illuminators
of opportunity (IOs) instead of a dedicated radar transmitter, has
received renewed interest for its large coverage capacity, low vul-
nerability, low cost, and reduced electromagnetic pollution to the
environment [1, 2]. Various ground based and space based IOs,
such as frequency-modulated broadcasting emitters, digital audio
broadcasting (DAB) emitters, digital terrestrial television broadcast-
ing (DTTB) emitters, global navigation satellite system (GNSS),
and existing satellite synthetic aperture radar (SAR) systems, were
employed for different applications [3–7]. Techniques of moving tar-
get detection and localization, high resolution SAR and inverse SAR
imaging, and direction of arrival (DOA) estimation based on the PBR
system have been proposed during the last decades [8–12].

For short range applications [13–16], such as tracking indoor
human beings or man-made objects, through the wall target move-
ment detection, and subsurface target mapping by ground pene-
trating radar (GPR) technique, a suitable IO should be exploited
to satisfy the system requirement. Among different IOs, wireless
local area network (LAN) may be a good choice for its wide band-
width (40 / 80 MHz) and thus high range resolution (7.5 / 3.75 m
in the air), its reasonable ambiguity function, its wide accessibility
and coverage, and its wall/ground penetration capacity. As indicated
in [17], IEEE 802.11 standards-based Wireless Fidelity (WiFi) sig-
nal is one of the most popular systems in wireless LAN that can
be used for PBR applications. For WiFi based PBR, the ambiguity
function analysis, range and Doppler frequency sidelobe reduction,
high resolution SAR imaging by fusion of different IEEE 802.11ac
WiFi signal bands, and cross-range resolution improvement by ISAR
technique have been conducted in the last decade [18–20].

Since the transmitted signal from an existing IO is not within the
control, a PBR system normally consists of two channels, the ref-
erence channel and the surveillance channel. The reference channel
provides the time-delayed copies of the transmitted signal obtained
by a directional reference antenna facing to the IO transmitter, while
the surveillance channel records the echoes of the targets, which is

obtained by a second antenna with broader radiation pattern, called
as surveillance antenna, facing to the targets. Then, for moving tar-
get detection, a range-Doppler (RD) map is generated by calculating
the 2D cross-ambiguity function between the reference channel and
the surveillance channel based on the matched filtering approach.
For stationary target imaging, the 1D cross-correlation is conducted
at each antenna position for range compression, and then the back
projection (BP) algorithm is used for the azimuth focusing [5, 10].
However, it is well known that the surveillance channel also contains
the direct path interference (DPI) from the IO transmitter, which
may be significantly stronger than the reflections of targets. Without
suppressing the DPI, the targets are normally not detectable. There-
fore, various methods have been proposed to confront this problem
[21–25], including the CLEAN algorithm, least mean square (LMS)
algorithm, fast and block LMS algorithm (FBLMS), extensive can-
cellation algorithm (ECA) and its variants, such as the batch based
ECA (ECB) algorithm and the sequential cancellation batch (SCB)
algorithm.

In the research of DPI suppression for PBR applications, it is
found that the conventional time-domain based algorithms men-
tioned above may cause some problems when used in the short
range applications. When the DPI is much stronger than the tar-
get reflections, the DPI cannot be completely mitigated since the
time delay of DPI is not exactly integral times of the data sampling
interval which forms the basis of these time-domain based algo-
rithms. Therefore, the targets may still not be distinguished from the
remaining components of DPI. When the targets become stronger,
although these algorithms can suppress the DPI and make the targets
clearer, the inaccurately estimated DPI components will introduce
estimation errors of the target time delay, resulting in inaccurate
target position estimation. To overcome this problem, we turn our
attention to frequency-domain processing and propose a novel DPI
suppression method based on the atomic norm minimization (ANM),
Vandermonde decomposition, and LS method [26–29]. In the pro-
posed method, we first estimate the time delay of the DPI and then
estimate its amplitude in order to cancel it from the surveillance
channel. The DPI time delay estimation problem is modelled as a
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simple one-dimensional frequency estimation problem. By exploit-
ing the sparsity of the DPI signal and the positive semidefinite (PSD),
Toeplitz and low rank properties of its covariance matrix, the sig-
nal subspace of DPI is estimated by the ANM algorithm. Then, the
Vandermonde decomposition is conducted and the DPI time delay
is calculated by extracting the most significant frequency compo-
nent from the surveillance signal. At last, the amplitude of the DPI
component is estimated by the LS method. We have carried out sev-
eral semi-experimental simulations and experiments of WiFi based
passive bistatic SAR imaging to validate the proposed method. It
is shown that the proposed method has better performance than the
classical ECA method. The PDI can be effectively suppressed and
the target position can be accurately estimated.

The rest of the paper is organized as follows. In Section 2, the sig-
nal model for PBR is established, and the classical DPI suppression
methods are briefly introduced and their problems are discussed. In
Section 3, the proposed DPI suppression method is presented and
analysed, and the signal processing flowchart for WiFi based passive
bistatic SAR imaging is also described. Simulation and experiment
results are given in Section 4 to validate the performance of the pro-
posed method. Finally, Section 5 concludes this paper and presents
some considerations of the future work.

2 Passive radar signal model

As mentioned previously, a PBR system normally consists of a ref-
erence channel and a surveillance channel. The reference signal
received by an antenna directly oriented to IOs (e.g., TV or WiFi
transmitter) can be expressed as

sref (t) =Arefs0(t− tref ) + nref (t) (1)

where s0(t) is the transmitted signal, t denotes time, Aref is the
complex amplitude, tref denotes the time delay from the IO emitter
to the reference antenna, and nref (t) denotes the thermal noise.

Without considering the multipath echoes and moving targets, the
received signal from a surveillance antenna, which includes the DPI,
stationary target echoes, and thermal noise, can be expressed as (2),
where Asurv is the amplitude of the DPI signal with time delay
tsurv; P is the number of targets, ap and tp are the amplitude and
time delay of the p-th target; and nsurv(t) denotes the thermal noise
in the surveillance channel.

In practice, the DPI is always much stronger than the target reflec-
tions, therefore needs to be suppressed to make the target detectable.
Normally, time-domain processing methods, such as above men-
tioned ECA and LMS methods, are applied to this purpose. For these
methods, the DPI signal is firstly estimated by the following equation
with calculated coefficients h(m) in the discrete form.

sdpi(nTs) =
∑M−1

m=0
h(m)sref [(n−m)Ts] (3)

where Ts is the data sampling interval, n = 0, 1, ..., N − 1 is the
sample index, N is the number of samples, and M is the number
of discrete time delays to properly model the maximum range of the
DPI [21]. The differences among different time-domain DPI sup-
pression algorithms are the methods used to estimate the coefficients
h. For example, in the ECA method, we have

h̃ = (PHP )−1PHssurv (4)

where P ∈ CN×M is a matrix formed by the delayed copies of the
reference signal vector sref (without considering the Doppler shifts
of moving targets), (·)H denotes the conjugate transpose operation,
(·)−1 denotes the matrix inverse operation, and ssurv denotes the
surveillance signal vector.

Then, the DPI suppressed surveillance signal can be obtained by

s̃surv = ssurv − s̃dpi = ssurv − P h̃ (5)

At last, the time delay of the target can be estimated by calculating
the cross-correlation function between the received reference signal
and the DPI suppressed surveillance signal as

χ(τ) =
∑N−1

n=0
s̃surv(nTs)s

∗
ref (nTs − τ) (6)

where τ is the expected time delay of the reflected signal from the
target and (·)∗ denotes complex conjugate.

However, since the time-domain DPI suppression algorithms are
based on the data sampling interval Ts, as shown in (3), the DPI
cannot be accurately estimated and completely suppressed because
the delay of DPI, i.e. τdpi = tref − tsurv , is not exactly integral
times of Ts. Besides, by substituting (2) and (5) to (6), we can obtain

χ(τ) =
∑N−1

n=0

(
ssurv(nTs)− s̃dpi(nTs)

)
s∗ref (nTs − τ)

=
∑N−1

n=0

(
star(nTs) + serrordpi (nTs)

)
s∗ref (nTs − τ)

(7)
where serrordpi (nTs) = sdpi(nTs)− s̃dpi(nTs) is the error pro-
duced by the inaccurate estimation of the DPI component, which
will cause the inaccurate estimation of the time delay (i.e. range)
of targets. Therefore, advanced algorithms are desired to accurately
estimate the DPI component in the surveillance channel.

3 ANM based DPI suppression

In order to accurately estimate the DPI and then cancel it, we turn our
attention to frequency domain signal processing. By Fourier trans-
form, the frequency-domain reference signal and surveillance signal
are given by (8) and (9).

sref (f) =Arefs0(f)e−j2πftref + nref (f) (8)

where f denotes frequency .
Since the DPI is normally much stronger than the reflections of

the targets, we can rewrite (9) as

ssurv(f) = Asurvs0(f)e−j2πftsurv + sñ(f)

= sdpi(f) + sñ(f)
(10)

where sñ(f) = star(f) + sn(f) is assumed to be the additive noise
to the main signal component sdpi(f).

Based on (8) and (10) and expressed in the discrete form, by using
an inverse filter [30, 31], it can be derived that

s(fn) =

{
A0e

j2πfnτdpi + snoise(fn), |sref (fn)| ≥ δ
0, |sref (fn)| <δ

(11)
where fn = fc + n∆f is the (n+ 1)-th frequency, fc is the car-
rier frequency, ∆f is the frequency step, A0 = Asurv/Aref , and
δ is a user-defined threshold to avoid the numerical instability. We
note that, (11) is obtained by s(fn) = ssurv(fn)/sref (fn). Com-
pared to s(fn) = ssurv(fn)s∗ref (fn), the division process can help
to reduce the negative influences of the IO signal structures (i.e.
the influence of s0(f)) for range compression [30, 31]. However,
in some cases, direct division is numerically unstable. Therefore,
according to the amplitude of sref (fn), a user-defined threshold
δ should be used to make s(fn) = 0 if |sref (fn)| <δ [31]. In
this paper, we set δ =

∑N−1
n=0 |sref (fn)|/4N . Besides, in order to

fairly show the advantages of the proposed method over conventional
method, (6) is changed to

ssurv(t) = Asurvs0(t− tsurv) +
∑P

p=1
aps0(t− tp) + nsurv(t) = sdpi(t) + star(t) + sn(t) (2)
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ssurv(f) = Asurvs0(f)e−j2πftsurv +
∑P

p=1
aps0(f)e−j2πftp + nsurv(f) = sdpi(f) + star(f) + sn(f) (9)

χ(τ) =
∑N−1

n=0
s̃(fn)ej2πfnτ (12)

where s̃(fn) = s̃surv(fn)/sref (fn) if |sref (fn)| ≥ δ and s̃(fn) =
0 otherwise, and s̃surv(fn) is the (n+ 1)-th frequency component
of the DPI suppressed surveillance signal.

By simple reformulations of (11), in case of |sref (fn)| ≥ δ, we
can obtain

s(fn) = A0e
j2πfcτ ej2π(n−1)∆fτdpi + snoise(fn)

= Ã0e
j2π(n−1)∆fτdpi + snoise(fn)

= s0(fn) + snoise(fn)

(13)

and, in the vector form, we have the following N1 × 1 signal vector

s = Φs0 + snoise (14)

where Φ is the measurement matrix with size N1 ×N that used to
sample s0 according to the criterion |sref (fn)| ≥ δ,N1 ≤ N is the
number of frequencies that satisfy this criterion, s0 = Ã0ssteer is a
N × 1 vector,

ssteer = [1, ej2πfdpi , ..., ej2π(N−1)fdpi ]T (15)

is the steering vector corresponding to fdpi, [·]T denotes the trans-
pose operation, and fdpi = ∆fτdpi.

It can be learned from (14) that the DPI time delay estima-
tion problem is a one-dimensional frequency estimation problem
of the sinusoidal signal s0 with time samples (0, 1, ..., N − 1) and
frequency fdpi. Recently, based on the intrinsic sparsity of DPI,
sparse representation (SR) and compressive sensing (CS) based
methods have been proposed to estimate the frequency of s0 from
its noise polluted under-sampled signal s by solving the following
minimization problem.

α̃ = min |α|0 s.t.||s−ΦΘα||22 ≤ εn (16)

where

Θ = [ej2π∆fτ1 , ej2π∆fτ2 , ..., ej2π∆fτL ] ∈ CN×L (17)

∆f = [0, 1, ..., N − 1]T∆f , α is the coefficient vector corre-
sponding to the time delay [τ1, τ2, ..., τL], and εn denotes the noise
level (containing weak targets and thermal noise).

Although (16) is a non-deterministic polynomial-time hard (NP-
hard) problem, a number of computationally efficient algorithms
can be used, such as the smooth L0 (SL0) algorithm and orthog-
onal matching pursuit (OMP) algorithm [32, 33]. However, for
these conventional SR/CS based algorithms, as formulated by (16),
the expected frequencies are assumed to be located at fix discre-
tised grids [∆fτ1,∆fτ2, ...,∆fτL]. The off-grid problem, i.e the
mismatch between the pre-defined frequency grid and the actual fre-
quency of signal, may cause the performance degradation [34, 35].

It is known that the covariance matrix of s0, i.e.

R0 = E[s0s
H
0 ] = E

(
|Ã0|2

)
ssteers

H
steer (18)

is a rank-1 PSD block-Toeplitz matrix with size N ×N , where E[·]
denotes the expectation. Therefore, by exploiting these structures,
the frequencies of s0 can be exactly retrieved from its covariance
matrixR0 by the classical Vandermonde decomposition, with which
as the basis some subspace based methods, such as MUSIC and
ESPRIT, have been proposed to estimate the frequency of s0. How-
ever, for these methods, a sufficient number of training samples is

required to estimate the signal subspace. In this paper, the ANM
algorithm, which directly deals with the continuous frequencies and
completely resolves the off-grid problem of SR/CS based methods
without the requirement of training samples as other subspace based
methods, is applied to estimate s0 and its subspace.

We know that, rather than in the discretised frequency domain, s0
is sparse in the continuous frequency domain. We can further learn
from (14) that s0 can be formed by an atom in the atomic set

A
∆
= {ssteer(f)|f ∈ [0, 1)} (19)

that collects all the potential steering vectors ssteer . Thus, with the
atomic L0 norm of s0 defined as

||s0||A ,0
∆
= inf
αo∈C,fo∈[0,1)

{
O|s0 =

O∑
o=1

αos
o
steer(fo)

}
(20)

to exploit the sparsity of s0, where O is the number of atoms in A
that represent s0, the DPI component can be extracted from s by the
following ANM problem.

s̃0= min ||s0||A ,0, s.t.||s−Φs0||22 ≤ εn (21)

Furthermore, because ||s0||A ,0 = rank(R0) = 1, it can also be
derived that (21) equals the following problem [27].

[s̃0, R̃0] = min
R0,s0

rank(R0)

s.t.

[
1 sH0
s0 R0

]
≥ 0, ||s−Φs0||22 ≤ εn

(22)

where rank( · ) denotes the rank of a matrix.
The rank minimization problem in (22) is also NP-hard as (16),

therefore more computationally efficient methods should be adopted.
Besides, although it is expected that R̃0 in (22) is the estimation of
the covariance matrix of s0, it is shown that R̃0 is only the estima-
tion of the subspace of s0. Therefore, the following nuclear norm
relaxation of (22) [28] is used to estimate s0 and its subspace T (u),
i.e. a Toeplitz matrix formed by a vector u.

[s̃0, ũ] = min
s0,u

trace[T (u)]

s.t.

[
1 sH0
s0 T (u)

]
≥ 0, ||s−Φs0||22 ≤ εn

(23)

where trace[ · ] denotes the trace of a matrix.
In this paper, (23) is solved by the SDP solver in CVX. Then,

since DPI is the strongest component in s, instead of star + sn =
s−Φs̃0 after obtaining the estimation of s0, which may also sup-
press the target components, we propose to use the following method
to achieve the DPI suppressed pure signal.

spure = star + sn = s− βΦs̃1
steer (24)

where

s̃1
steer = [1, ej2πf

1
τ , ..., ej2π(N−1)f1

τ ]T (25)

is the estimation of the steering vector of DPI,

β = [(Φs̃1
steer)

HΦs̃1
steer]

−1(Φs̃1
steer)

Hs (26)

is the amplitude of the DPI estimated by least square method,
f1
τ = ∆fτ1 is the most significant frequency of s0 estimated by

the Vandermonde decomposition of T (u), i.e.
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T (u) =
∑K

k=1
pks̃

k
steer(s̃

k
steer)

H
= APAH (27)

and τ1 is the time delay estimation of the DPI.
At last, the inverse Fourier transform can be carried out to

estimate the time delays of targets, giving

χanm(τ ) =
∑N1−1

n1=0
spure(fn1)ej2πfn1

τ (28)

where fn1 is the (n1 + 1)-th frequency that satisfy the criterion
|sref (fn1)| ≥ δ.

We should note that, for moving target detection by PBR, beyond
the DPI suppression, the strong echoes of the ground stationary tar-
gets should also be mitigated from the surveillance channel. Since
we are focusing on the passive bistatic SAR imaging applications,
all the stationary targets should be imaged. Therefore, in the estab-
lished signal model and the derivation of the proposed method, sdpi
is assumed to only contain one strong signal, thus s0 only has one
significant frequency and the rank of the signal covariance matrix
equals to 1, i.e. rank(R0) = 1. However, the proposed method can
be easily extended to the multiple components suppression problem,
such as the moving target range-Doppler mapping, or the reduction
of strong multiple echoes, or the specific SAR imaging case where
the strong stationary targets make the weak stationary targets unde-
tectable and thus a CLEAN-like approach is desired to apply. In such
a case, the DPI component should be changed to

sdpi(t) =
∑I

i=1
Aisurvs0(t− tisurv) (29)

and

s0 =
∑I

i=1
Ãi0s

i
steer (30)

where I is the number of unwanted components in the surveillance
channel. As the consequence, (23) and (24) should be modified to

[s̃0, ũ] = min
s0,u

trace[T (u)]

s.t.

[
I sH0
s0 T (u)

]
≥ 0, ||s−Φs0||22 ≤ εn

(31)

and

spure = star + sn = s−ΦΨβ (32)

where
Ψ = [s̃1

steer, s̃
2
steer, ..., s̃

I
steer] (33)

and
β = [(ΦΨ)H(ΦΨ)]−1(ΦΨ)Hs (34)

Since we are focusing on the short range passive bistatic SAR
imaging with WiFi signals, the signal processing procedure based on
the proposed DPI suppression method for target imaging is also pre-
sented. In a passive SAR system, in order to achieve a high azimuth
resolution, the surveillance antenna is moved linearly to form a syn-
thetic aperture. When the surveillance antenna is at the l-th position
(xl, 0), the proposed DPI suppression method can be used and the
l-th range-compressed profile can be obtained by (28) as

χlanm(τ ) =
∑N1−1

n1=0
slpure(fn1)ej2πfn1τ (35)

where l = 1, 2, ..., L and slpure is the l-th DPI suppressed frequency
signal. Then, by using the BP algorithm, the reflection coefficient of
the target at (x, y) can be estimated by

σ̃(x, y) =
∑L

l=1
χlanm[tref − τl(x, y)] (36)

where τl(x, y) = [rl(x, y) + r0(x, y)]/c, c is the velocity of light

, r0(x, y) =

√
(x0 − x)2 + (y0 − y)2 is the distance between the

target and the IO emitter, i.e. the WiFi access point (AP) in our

case, at (x0, y0), rl(x, y) =

√
(xl − x)2 + y2, and σ̃(x, y) is the

estimated amplitude of the target at (x, y). During the coherent
summation of the range-compressed signal from all the antenna posi-
tions, many high-level artifacts will be produced by BP algorithm. It
has been shown in [36] that the cross-correlation based BP (called as
CC-BP in this paper) algorithm can effectively suppress the artifacts.
Therefore, in this paper, the CC-BP algorithm is applied to estimate
the reflection coefficients of targets, which can be expressed as

σ̃(x, y) =
∑L−1

l1=1

∑L

l2=l1+1
{χl1anm[tref − τl1(x, y)]

×χl2anm[tref − τl2(x, y)]}
(37)

In summary, the signal processing chain for passive bistatic SAR
imaging is presented in Fig. 1.

4 Simulation and experiment results

In this section, we present some simulation and experiment results
to demonstrate the effectiveness of the proposed DPI suppression
method and the performance of the presented short range passive
bistatic SAR imaging scheme. The classical ECA algorithm with
different number of discrete time delays (range cells) that models
the maximum range of the DPI, i.e. different value of M , is used for
the comparison.

4.1 Semi-experimental simulation results

In the first study step, we did some semi-experimental simulations,
where the reference signal is obtained by directly sampling the IEEE
802.11n 2.422 GHz signal with 40 MHz bandwidth from a WiFi AP
using a horn antenna, while the surveillance signal at each antenna
position is simulated with time delays corresponding to the assumed
target position. The synthetic aperture length is set to 3 m with a step
of 5 cm from (-1.5, 0) to (1.5, 0), the reference antenna and the AP
are assumed to be located at (0, 0), and the data sampling frequency
is 10 GSamples/s (0.1 ns data sampling interval and thus 0.03 m long
for each range cell) to avoid the signal aliasing. We simulate the DPI
with random time delay for each antenna position, and the amplitude
of DPI is 100 times (40 dB) stronger than the target. The minimal
DPI delay corresponds to about 50 range cells and the maximal one
is about 100 range cells.

For the first simulation, only one target at (0, 5) is simulated.
Before DPI suppression, the range compressed profiles for differ-
ent surveillance antenna positions and the imaging result by CC-BP
algorithm are shown in Fig. 2. It can be observed that, since the
DPI is much stronger than the target echo, the target cannot be
distinguished.

Fig. 1: Signal processing chain for passive bistatic SAR imaging
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a

b

Fig. 2: Results for one target before strong DPI suppression
a Range profiles
b Focused SAR image

Fig. 3: DPI time delay estimation via the proposed method

a

b

Fig. 4: Results for one target after strong DPI suppression via the
proposed method
a Range profiles
b Focused SAR image

a

b

Fig. 5: Focused images of one target after strong DPI suppression
via the ECA method with different range cells
a 51 range cell
b 101 range cells

As to the proposed DPI suppression based method, the time delay
of DPI for each antenna position is estimated accurately, as shown in
Fig. 3. Therefore, with further processing by Vandermonde decom-
position and LS method, the DPI can be effectively suppressed, the
target can be clearly seen and its estimated position is also accurate,
as shown in Fig. 4. For the ECA method, different range cells are
considered (i.e. 51 and 101 range cells, which are decided by the
minimal and maximal DPI delays). Since the delays of DPI are ran-
domly simulated and are not integral times of the sampling interval
(0.1 ns), the strong DPI cannot be effectively suppressed by the ECA
technique, and the target is still undistinguished, as shown in Fig. 5.

Then, three targets at (0, 5), (-2.5, 5), and (2.5, 5) are simultane-
ously simulated. The imaging results obtained after DPI suppression
by the ECA method with 101 range cells and the proposed method

a

b

Fig. 6: Focused images of three targets after strong DPI suppression
via different methods
a ECA method with 101 range cell
b The proposed method
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are shown in Fig. 6. The advantage of the proposed method over the
ECA method is unchanged for the multiple targets case.

In the second study step, we change the strength of the DPI.
Although we still consider random DPI time delay at each surveil-
lance antenna position, the amplitude of the simulated DPI is
changed to 5 times (14 dB) stronger than the target. In such a case,
for the proposed ANM based signal subspace estimation approach,
the signal to noise ratio (SNR) is decreased, which is used to mimic
a much more noisy condition than the previous simulations.

The imaging result obtained by CC-BP algorithm before DPI sup-
pression, DPI time delay estimation result, range compressed pro-
files, and focused image obtained after the DPI suppression by the
proposed method are shown in Fig. 7. It can be learned from Fig. 7
(a) that, before DPI suppression, the target is already detectable but
not clear enough, therefore DPI suppression is still necessary. Com-
pared with Fig. 3, Fig. 7 (b) demonstrates that, in the more noisy
condition (26 dB), the performance of the proposed method will be
degraded. However, the time delay of DPI can still be estimated for
each surveillance antenna position. Therefore, as shown in Fig. 7 (c)

a

b

c

d

Fig. 7: Proposed method applied to one target case with weaker DPI
a Focused image before DPI suppression
b DPI time delay estimation
c Range profiles after DPI suppression
d Focused image after DPI suppression

and Fig. 7 (d), the DPI can be mitigated effectively and the target is
much clearer than Fig. 7 (a).

The range profiles and focused images obtained after DPI sup-
pression via ECA method with 51 range cells (minimal DPI delay)
and 101 range cells (maximal DPI delay) are shown in Fig. 8 (a)
and (b), respectively. Different from the strong DPI case as shown
in Fig. 5, for weaker DPI, the ECA method with 51 range cells and
101 range cells can work well. Since most energy of the DPI can be
suppressed, a smaller DPI energy than the target can be obtained,
making the target clearer. However, compared with the proposed
method, there are some random artifacts in the focused SAR images.
Furthermore, the inaccurate estimation of the DPI component will
cause the inaccurate estimation of the target position, i.e. the tar-
get will be shifted in the focused SAR images, as shown in Fig. 9.
It can be observed that, because of DPI estimation error, the ECA
method will give incorrect target position estimation, especially in
the y direction, which is actually 5 m. Compared with 51 range cells,
the ECA method with 101 range cells shows a even worse result.

a

b

Fig. 8: ECA method applied to one target case with weaker DPI
b Focused image after DPI suppression with 51 range cell
d Focused image after DPI suppression with 101 range cells

a

b

Fig. 9: Simulated target position estimation accuracy comparison
a x-direction
b y-direction
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4.2 Experiment results

Experiments are also conducted to validate the proposed DPI sup-
pression method. The experiment setup is shown in Fig. 10, where a
metallic plate located at about (-0.5, 6) is set to be the imaging target.
The WiFi AP is at (-1.5, 1), the reference antenna is at (-1.5, 2), and

Fig. 10: Experiment setup for WiFi based passive bistatic SAR
imaging for short-range target

a

b

c

d

Fig. 11: Focused images of the metallic plate at about (-0.5, 6)
a Before DPI suppression
b After DPI suppression via ECA method with 21 range cell
c After DPI suppression via ECA method with 121 range cells
d After DPI suppression via the proposed method

a

b

Fig. 12: Real target position estimation accuracy comparison
a x-direction
b y-direction

the surveillance antenna is sledded on a rail from (-1.5, 0) to (1.5, 0)
with a step of 5 cm.

The imaging result without DPI suppression is shown in Fig. 11
(a). Since the DPI is stronger than the reflection of the metallic
plate in this experiment, the target cannot be well observed from
the focused image. Besides, because the position of WiFi AP is
unchanged for each surveillance antenna position, the DPI time
delay is not randomly distributed as in the simulation case, but fol-
lows a hyperbolic function of the antenna position. Therefore, the
WiFi AP can be focused by the CC-BP algorithm with accurate
position (-1.5, 1), as indicated by the white rectangle in Fig. 11 (a).
Moreover, based on the experiment setup, the minimal DPI delay
corresponds to 33.3 range cells and the maximal one is about 105.4
rang cells, which can be the reference value for range cell number
selections for ECA method.

Firstly, with 21 range cell, the DPI can be suppressed by the ECA
method to some extents, as shown in Fig. 11 (b). However, due to
the residual of the DPI component, there are many artifacts in the
focused image. Because of some errors introduced by the inaccu-
rately estimated DPI component, with 121 range cells, ECA method
can further suppress the DPI but with the cost of the degraded accu-
racy of target position, as shown in Fig. 11 (c) and indicated by
the white circle. For the proposed method, even though the DPI is
not significantly dominant in the received surveillance channel, its
influence can still be effectively suppressed, as shown in Fig. 11 (d),
where the target is clearly distinguished from the background and
the position of the target is not influenced by the suppression of DPI.

Then, we present the target position estimation accuracy com-
parison between the proposed method and the ECA method with
different number of rang cells. Two cross-sections along the x-
direction and y-direction of the focused images obtained by different
methods are shown in Fig. 12. It can be learned that, with the
increase of the processing range cells, the target will be further
shifted by the ECA method. The proposed method can provide more
accurate estimation of the target position. Moreover, although the
ECA method with 21 range cells can obtain the similar target posi-
tion estimation accuracy with the proposed method, its artifact level
is higher than the proposed method.

At last, the computational complexity of the proposed method
is discussed. For the proposed method, solving (23) is the most
time consuming step, compared to which the computing time of
other steps can be ignored. In our study, (23) is solved by the SDP
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solver SDPT3 implemented in CVX, where the semi-definite con-
straint is of size N ×N . As indicated in [37], the SDP step has
the computational complexity of O(N4.5). For the ECA method,
the computational complexity is about O(NM2 +M3) [22]. In the
simulation and experiment, the data sampling frequency is 10 GSam-
ples/s and the number of samples is N=4096, which implies the
proposed method is much more time consuming. However, we note
that, since not all the sampled signal that within 10 GHz bandwidth
is useful for the passive bistatic SAR imaging, but only the WiFi
signal is needed to extract for processing. Therefore, in the imple-
mentation of the proposed method, only the frequencies within the
40 MHz WiFi bandwidth around the 2.422 GHz central frequency
were processed. In other words, in the proposed method, the value
of N can be much reduced.

Therefore, measured by the TIC and TOC instruction in MAT-
LAB, averaged by 100 Monte-Carlo trials, and implemented in
MATLAB 2015b on a Core i5, 2.5GHz, 8GB RAM PC, the com-
puting time of the proposed method and the ECA method with 100
rang cell, 200 range cells and 400 range cells (corresponding to the
maximal DPI distance of 3 m, 6 m and 12 m) for passive SAR imag-
ing are 40.17 seconds, 6.95 seconds, 15.73 seconds, 45.48 seconds,
respectively. This indicates that the proposed method is more time
consuming than the ECA method with a small number of process-
ing range cells, but is comparable with the ECA method with a large
number of processing range cells.

5 Conclusion

In this paper, we have proposed and validated an effective direct
path interference (DPI) suppression method for passive bistatic radar
applications. By employing the advanced atomic norm minimization
algorithm and the classical Vandermonde decomposition algorithm,
we can estimate the time delay of DPI accurately, and thus the influ-
ence of DPI on the short range target imaging can be reduced by
the least squares method. Compared to the classical time-domain
DPI suppression method, the proposed method demonstrates the
advantages in terms of DPI suppression capacity and target position
estimation accuracy. We have carried out several semi-experiment
simulations and experiments of WiFi based passive SAR imaging to
demonstrate the effectiveness of the proposed method. When the DPI
component is not significantly stronger than the echoes of targets
in the surveillance channel, i.e. with the noisy conditions, the pro-
posed method can still work well. Furthermore, we also presented
the potential implementations of the proposed method for moving
target range-Doppler mapping and strong stationary target removal
in some specific passive SAR applications. The computational com-
plexity of the proposed method is comparable with the conventional
ECA method with large number of range cells, but needs to be fur-
ther reduced. In practice, the sparsity of the DPI and the low rank
property of its covariance matrix may be destroyed by some practi-
cal factors. Therefore, our next study step is to further improve the
performance of the proposed method in practical environments, and
to reduce its computing time to realize real-time processing.
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