
Abstract – Encryption in the RDS-TMC standard is
optional. Using a USRP mainboard, a BasicTX
daughterboard and the GNU Radio toolkit running on a
Linux platform, we demonstrate the possibility to spoof an
RDS-TMC transmission and thereby convince COTS
GPS-based navigators to change the calculated route.

Index terms – RDS-TMC Spoofing using GNU Radio

I. DISCLAIMER

This article presents a proof-of-concept
implementation based on open-source hardware and
software that demonstrates a security vulnerability
in a commercial, widely deployed type of ITS
(Intelligent Transportation System).

Any type of transmission in the FM broadcast
spectrum is regulated in most – if not all –
countries; transmission without a license is a
criminal offence in most countries and it is strongly
discouraged by the author.

It is by no means the intention of the author to
assist or encourage others to engage in criminal,
disruptive activities. Instead, the purpose and
aspiration of this article is to raise awareness on the
issue and motivate the people and the organisations
with the power to do so to migrate to a more
modern and secure protocol.

II. INTRODUCTION

The RDS (Radio Data System) protocol (IEC
standard 62106) is transmitted on the 3nd harmonic
of a stereophonic FM broadcast's pilot tone. Its
most common application is transmission of radio
station and current song names. However, an
additional protocol transmitted inside an RDS
stream is gaining popularity with the plummeting
price of GPS navigation solutions; this is the TMC
(Traffic Message Channel) protocol (ISO standard
14819).

TMC messages contain information about traffic
jams, detours etc., which is used by suitable GPS
receivers to re-calculate routes around these traffic
jams with the ultimate goal of minimising the time-
to-destination. Not all GPS receivers are capable of
receiving and decoding TMC signals, but their
number is rising.

TMC information is often transmitted by
government radio stations, but increasingly also by

private companies. Private companies then tend to
encrypt the data stream and charge a fee for the
ability to decrypt it, while governmental
transmissions are usually unencrypted and free of
charge.

In any case, no method exists today to
authenticate an RDS-TMC transmission. We
believe this to be a likely target for spoofing, be it
in the context of a prank, as well as for criminal or
even terrorist purposes.

In order to increase awareness on the topic, we
developed a tool with the capacity to transmit
arbitrary RDS-TMC information and demonstrated
that a COTS GPS navigation solution with an
integrated RDS-TMC receiver would actually
change its calculated route when tuned to our
transmission.

III. THE RDS AND TMC STANDARDS

A. History

The RDS protocol was initially released by the
EBU (European Broadcasting Union) in 1984, then
as CENELEC (European Committee for
Electrotechnical Standardization) standard EN
50067, initially released in 1990, then 1992, then
1998. In 1999 it became international standard IEC
62106 (International Electrotechnical Commission):
„Specification of the Radio Data System (RDS) for
VHF/FM sound broadcasting in the frequency
range from 87,5 To 108,0 MHz“.

The RDS logo is copyright of the RDS Forum

The RDS protocol was inspired by the German
ARI (Autofahrer-Rundfunk-Informationssystem),
which operated in West Germany since 1974 and
was superseded by RDS. ARI carried traffic
announcements (voice) on the 57 kHz subcarrier,
just like RDS. In fact, the ARI and RDS
transmissions co-existed peacefully until 2005,
when the German ARD network seized ARI
transmission on March 1st.

Dimitrios Symeonidis

RDS-TMC Spoofing using GNU Radio

Security Technology Assessment Unit (G06), Via Fermi 2749, 21027 Ispra (VA), Italy
dimitrios.symeonidis@jrc.ec.europa.eu

Contrary to RDS, which is a mature and well-
established protocol, the TMC protocol is rather
new, with the first adoptions in 1997-98 (Germany,
Italy) and most western countries starting TMC
transmissions in the mid-to-late '00s.

RDS-TMC was originally described in 1997-98
in CEN (Comité Européen de Normalisation, or
European Committee for Standardisation) Pre-
Standard ENV12313. It is superseded since 2003
by ISO standard 14819 „Traffic and Traveller
Information (TTI) – TTI messages via traffic
message coding“, composed of 3 parts:
1. ISO 14819-1: Coding protocol for Radio Data

System – Traffic Message Channel (RDS-TMC)
using ALERT-C

2. ISO 14819-2: Event and information codes for
Radio Data System – Traffic Message Channel
(RDS-TMC)

3. ISO 14819-3: Location referencing for ALERT-
C

The event codes in ISO 14819-2 (and the
preceding ENV12313-2) are compatible with those
in ENV 13106:2000 „Road transport and traffic
telematics - DATEX traffic and travel data
dictionary“.

B. Physical Layer

FM Radio is broadcast (in most countries)
between 87.5 and 108MHz with 200kHz of channel
spacing, while maximum frequency deviation of
the FM modulator is ±75kHz.

Figure 1: Spectrum of an FM broadcast, after FM
demodulation

The lower 15kHz of the demodulated FM signal
carries the monophonic audio signal (Left+Right),
which was designed like this for reasons of
backwards compatibility with mono FM receivers.
Then at 19kHz there's the "pilot tone", transmitted
at approx. 10% the overall modulation level.
Between 23 and 53kHz, modulated onto the pilot
tone's 2nd harmonic (38kHz) and phase-locked to
the pilot tone there's the stereophonic audio signal
(Left-Right). This type of transmission is called
double-sideband suppressed carrier (DSB-SC).

Finally, between 55 and 59kHz there's the RDS
signal modulated onto the pilot tone's 3rd harmonic
(57kHz), with the carrier yet again phase-locked to
the pilot tone.

The RDS signal is a BPSK-modulated,
differentially-encoded 1187.5 bits-per-second data
stream. The 1187.5bps rate is one-sixteenth of the
pilot tone's 19kHz.

C. Data-Link Layer

One RDS "group" (frame) is 104 bits long,
comprised of 4 "blocks" of 26 bits each. A block
includes the "infoword" (16 bits) and the
"checkword" (10 bits). There are 32 group types (0-
15, A or B) and the decoding of the infowords
depends on the group type. This structure is
illustrated in Figure 2:

Figure 2: Structure of an RDS group

The benefits of the checkword are:
1. group and block synchronisation (framing)
2. basic error protection; the code can detect all

single and double bit errors in a block, as well
as any single error burst spanning 10 bits or
less and 99.9% of longer error bursts.

3. forward error correction; it can correct any
single error burst spanning 5 bits or less.

On transmission, the checkword is calculated
using a modified shortened cyclic code as follows:
a) the infoword is shifted left 10 bits and then

divided modulo(2) by 0x5B9 (equivalent to the
generator polynomial: x10+x8+x7+x5+x4+x3+1)

b) the result of the above operation is XOR'ed
with a 10-bit long „offset word“, which
depends on the block number and whether the
group type is A or B.

The checkword is then appended to the
corresponding infoword and the block is
transmitted m.s.b.-first (most significant bit).

On reception (syndrome decoding), xxxxx

D. The RDS-TMC protocol

The TMC protocol digitally and silently carries
information about roadworks, weather and traffic
incidents. It is transmitted inside an RDS signal as
group type 8A. RDS-TMC messages can span a
single or multiple groups (up to five), with multi-
group messages carrying not only incident
information but also diversion advice. Each RDS-
TMC group is sent at least twice in succession
(“Immediate Repetition”).

A single-group RDS-TMC message will carry
information on the event's duration & persistence,
the event's direction and number of segments
affected, the event code (11bits) and the location
code (16bits). Event codes are then looked up in the
event table (universal, defined in ISO 14819-2),
while location codes are looked up in the
corresponding location table (country-specific,
defined in ISO 14819-3).

The above message format is called the
“ALERT-C” protocol and it's the most common,
but not the only format. In fact, ISO 14819-4
defines the more advanced “ALERT-PLUS”
protocol for additional information such as travel
times, and transmitters have the option to send (for
example) ALERT-C messages unencrypted (free-
of-charge) and ALERT-PLUS messages encrypted
(for a charge).

In addition to the 8A groups, which carry the
RDS-TMC messages, the protocol uses also 3A
groups to announce the availability of the service
and to send “System Information” messages, such
as LTN (Location Table Number) and SID (Service
Identifier).

IV. GNU RADIO & USRP

We used a laptop computer running Ubuntu
Linux 9.10, onto which GNU Radio version 3.2.2
was compiled and installed. Our code re-used many
existing GNU Radio blocks, while some others
were written by us in C++. The blocks were
connected into a flow-graph using Python. A
BasicTX daughterboard was installed on a USRP,
with an antenna connected to the Tx/Rx port
without any filter or amplifier.

Before describing the shape and details of our
transmitter, we will briefly introduce the GNU
Radio software toolkit and the USRP RF frontend.

A. The GNU Radio software toolkit

The GNU Radio toolkit is a FOSS (Free Open
Source Software) project for developing Software
Defined Radios. Started as a fork of the MIT
SpectrumWave Psectra code in 2001 and funded by
philanthropist John Gilmore, it is an official GNU
project.

GNU Radio includes a wide selection of DSP
blocks written in C++, such as:
a) filters, mixers, modulators, synchronisers, etc
b) several graphical sinks, such as scope, FFT,

constellation, waterfall, etc
c) sources and sinks for various types of

hardware, such as the USRP, USRP2, the
soundcard, wav files, etc

d) all the above have Python equivalents,
automatically generated through SWIG glue

A GNU Radio application consists of one or
more flowgraphs, with each flowgraph having one
or more sources, one or more sinks, and processing
blocks in between. Flowgraphs are written in
Python, either by hand or using the graphical GNU
Radio Companion (GRC).

Most GNU Radio DSP blocks don't have an
actual throughput rate. Instead, the flowgraph's rate
is derived from any USRP or Audio sources and
sinks included (the only blocks that have a „real“
sampling rate) and enforced by the GNU Radio
scheduler.

Finally, users are not constrained to the selection
of standard DSP blocks included in GNU Radio,
but can write their own signal processing blocks
and use them in a flowgraph alongside the standard
blocks. In fact, a selection of such user-contributed
blocks is available at the „Comprehensive GNU
Radio Archive Network“ (CGRAN) website.

B. The USRP RF frontend

The Universal Software Radio Peripheral

The USRP (Universal Software Radio
Peripheral) is a computer peripheral designed
within the auspices of the GNU Radio project and
produced by Ettus Research LLC. It is “Open
Source Hardware”, in the sense that all schematics,
BOM, etc. are freely available, so anyone can use
them to produce (and even sell) an exact copy of
the USRP.

The USRP connects to the host computer over a
USB 2.0 wire; a Cypress FX2 chip translates

between the USB bus and the FPGA, an Altera
Cyclone EP1C12; the GNU Radio project includes
some standard Verilog bitstreams for this FPGA,
but it's also possible to modify them using the free
Altera tool “Quartus II Web Edition”. The FPGA
acts as a DDC (Digital DownConverter) and/or
DUC (Digital UpConverter).

The FPGA is connected to two AD9862, each
containing two 12-bit ADCs and two 14-bit DACs
at 64 Msamples/sec. These in turn are connected to
daughterboards, which translate various RF ranges
to complex baseband signals (and vice-versa), from
DC up to 6 GHz. The available bandwidth at the
host is limited by the USB2.0 bus; while
theoretically it can reach 480Mbps, practically it
can sustain approx. 32MB/s, which corresponds to
8 MHz of complex (I/Q) 16-bit samples. If real-
sampling is used, the USRP provides access to
16MHz of spectrum.

In this experiment we used a BasicRX board for
reception and a BasicTX board for transmission.

V. EXPERIMENTAL SETUP

A. The RDS-TMC receiver

Figure 3: Structure of the RDS receiver

Before starting work on the transmitter, we
dedicated some time in studying and understanding
the RDS-TMC standard(s): extensive commenting
of the (existing) GNU Radio-based RDS receiver
code was done, as well as cross-referencing to the
relevant sections in the standards, much like in a
reference implementation (RI). Furthermore, the
missing RDS-TMC receiver capabilities were
added and correct operation was confirmed by
receiving a real RDS-TMC signal. The structure of
the RDS receiver is illustrated in Figure 3.

The RDS-TMC receiver came in handy also
during the conducted testing phase, described
further down.

B. The RDS-TMC Transmitter

The shape of transmitter flowgraph can be seen
in Figure 4 (the blocks in yellow colour were
written specifically for this proof-of-concept):

Figure 4: Structure of the RDS transmitter

The relevant RDS data is read from an XML file
and encoded into infowords; the checkwords are
then calculated and joined with the infowords into
blocks and groups, which are then streamed out of
the RDS Encoder block. This bitstream is then
differentially-encoded (to overcome the 0-180
phase ambiguity of the BPSK modulation),
Manchester-encoded (for self-clocking) and NRZ-
encoded (non-return-to-zero, i.e. in the range of [-1,
1]).

Please note that, while no block exists in GNU
Radio to do Manchester encoding, it’s quite trivial
to create one: map([1,2]) → unpack_k_bits(2).

The RDS data rate of 1187.5bps is enforced by a
separate block just before filter-shaping and BPSK-
modulation. The data rate of 1187.5bps is created
by dividing the 19 kHz frequency of the pilot tone
by 16 (by means of counting zero-crossings). The
same pilot tone is mixed with itself twice to create
the 3rd harmonic as the carrier of the RDS data
stream.

The audio source for the transmission is a
stereo .wav file. From the left and right channels
we create the L+R (mono) and L-R (stereo) signals.
The stereo signal is then upconverted to 38 kHz;
the 38 kHz carrier is created by mixing the pilot
tone with itself.

The L+R, L-R and RDS signals are filtered and,
along with the pilot tone, mixed to create the full
baseband signal. It is then FM modulated with a

maximum frequency deviation of ±75 kHz,
amplified and sent to the USRP for transmission.

C. Transmission power

As mentioned earlier, it is a criminal offense to
transmit in the 87.5-108MHz spectrum without a
license. To overcome this obstacle, most of the
testing during the development of this system was
done using conducted testing: on a single USRP
containing 1 BasicTx and 1 BasicRX daughter-
board, the output of RDS-TMC transmitter was
connected directly to the input RDS-TMC receiver.
A snapshot of the conducted testing can be seen in
Figure 5:

Figure 5: Conducted Testing

Once we achieved satisfactory results with
conducted testing, limited radiation testing was
done with a COTS satellite navigator. We made
sure throughout these tests that the transmission
power remained well within the 50nW e.r.p.
(effective radiated power) limit defined in Annex
13 of ERC Recommendation 70-03: “Relating to
the use of Short Range Devices (SRD)”.

Figure 6: Radiation testing

D. The frequency choice

While for the purpose of simplicity we
specifically tuned our TMC-enabled satellite
navigator to the frequency of our transmission,
there are other ways to “convince” such a device to
decode such a transmission:
a) transmitting at one of the Alternative

Frequencies of the transmission, to which the
device is currently tuned (see RDS group 0A)

b) many modern TMC-enabled satellite navigators
regularly scan the entire FM spectrum looking
for TMC transmissions

c) if none of the above methods work, one could
always jam (locally) the valid TMC
transmission, forcing the device (or the driver)
to manually retune to our transmission

VI. RESULTS

VII. CONCLUSION & FUTURE WORK

We successfully demonstrated that the lack of
compulsory encryption makes is easy for someone
to intentionally spoof an RDS-TMC signal using
COTS hardware and open-source software.

We strongly advise against the use of un-
encrypted RDS-TMC signals, both for the general
public and for structured Intelligent Transportation
Systems (ITS).

We intend to investigate similar vulnerabilities in
the DAB DLS (Digital Audio Broadcasting -
Dynamic Label Segment) protocol (ETSI EN 300
401), as well as in any other protocols that may
come out of the TPEG (Transport Protocol Experts
Group).

VIII. ACKNOWLEDGEMENTS

A similar demonstration was made in April 2007
at the CanSecWest security conference in
Vancouver, Canada by Andrea Barisani and
Daniele Bianco of Inverse Path Ltd. Contrary to the
work presented in this paper, they used custom-

built hardware in their experimental setup. Their
presentation was titled “Unusual Car Navigation
Tricks: Injecting RDS-TMC Traffic Information
Signals” and released under a Creative Commons
by-nc-nd license. The work of Barisani and Bianco
has been the inspiration for this one.

The receiver part of the source code is based on
previous work by Ronnie Gaensli, which was later
adopted by Ryan Shoff, and finally by Matteo
Campanella. The work presented here expands
upon those.

IX. REFERENCES

[1] The new RDS IEC 62106:1999 standard, The
RDS Forum, December 1999

[2] Traffic and Traveller Information (TTI) – TTI
messages via traffic message coding, ISO
Standard 14819, June 2003

[3] Unusual Car Navigation Tricks: Injecting
RDS-TMC Traffic Information Signals, Andrea
Barisani and Daniele Bianco of Inverse Path
Ltd, CanSecWest 2007

[4] The GNU Radio website, http://gnuradio.org/

[5] The Comprehensive GNU Radio Archive
Network website, https://www.cgran.org/

[6] The Ettus Research LLC website,
http://www.ettus.com/

[7] The USRP under 1.5X Magnifying Lens, Firas
Abbas Hamza, June 2008

[8] Relating to the use of Short Range Devices
(SRD), ERC Recommendation 70-03, October
2009

http://gnuradio.org/
http://www.ettus.com/
https://www.cgran.org/

	I. Disclaimer
	II. Introduction
	III. The RDS and TMC standards
	A. History
	B. Physical Layer
	C. Data-Link Layer
	D. The RDS-TMC protocol

	IV. GNU Radio & USRP
	A. The GNU Radio software toolkit
	B. The USRP RF frontend

	V. Experimental Setup
	A. The RDS-TMC receiver
	B. The RDS-TMC Transmitter
	C. Transmission power
	D. The frequency choice

	VI. Results
	VII. Conclusion & Future Work
	VIII. Acknowledgements
	IX. References

