
We have extensively discussed cross correlation as a core part of modern digital communication for
detecting the preamble of resource sharing communication protocols, whether CDMA or FDMA. The
GNU/Octave cross correlation implementation is provided at https://sourceforge.net/p/octave/

signal/ci/default/tree/inst/xcorr.m Analyzing this code should allow for answering:

1. What is the definition of the cross-correlations between time dependent signals x(t) and y(t) ?

2. How is the cross-correlation implemented in GNU/Octave, according to the link provided in the
introduction ? What fundamental theorem does this implementation rely on ?

3. What is the reason for the difference between answers to questions 1 and 2 ? Justify quantitatively
on a 16384-sample long cross-correlation.

4. Based on 2, provide a flowchart returning the time delay τ between a random source and the time
delayed copy of this same source using the processing blocks available in GNU Radio Companion.
Ideally, provide the GNU Radio Companion flowchart and a screenshot demonstrating the result
with a delay of 100 samples (see provided sample for source and sink ... fill the blocks hidden under
the output image). How is the output image provided below analyzed in this context ?

5. We have introduced two variables in these questions: the time delay τ between datasets and the
dataset length t. How does each quantity impact on the cross-correlation ? Analyze the xcorr

function in case τ � t. How can computation time be improved under such an assumption ?

1

https://sourceforge.net/p/octave/signal/ci/default/tree/inst/xcorr.m
https://sourceforge.net/p/octave/signal/ci/default/tree/inst/xcorr.m

Answers

1. xcorr(x(t), y(t))(τ) =
∫ +∞
−∞ x(t)× y(t+ τ)dt in continuous time, discretized as

xcorr(x, y)(m) =

N∑
k=1

xn × yn+m

with N the length of datasets x and y, for m ∈ [−N : N] ∈ Z.

2. Thanks to the convolution theorem relating the convolution conv(x(t), y(t))(τ) =
∫ +∞
−∞ x(t)×y(τ−

t)dt to its Fourier transform FT relation FT (conv(x, y)) = FT (x) · FT (y), and since time of the
second argument is reversed as achieved with the complex conjugate of the complex argument,
then FT (xcorr(x, y)) = FT (x) · FT ∗(y) with ∗ the complex conjugate. As the Fourier transform
is efficiently implemented as a fast Fourier transform with N log2(N) complexity for datasets of
length N , the gain becomes significant over the complexity N2 (N values of τ each requiring N
multiplications in the discretized integral) for large N .

On the provided url including Octave’s implementation of xcorr, the core function is
f unc t i on [R, l a g s] = xcorr (X, Y, maxlag , s c a l e)

N = max(l ength (X) , l ength (Y)) ;
maxlag=N−1;
M = 2ˆnextpow2 (N + maxlag) ;
pre = f f t (postpad (prepad (X(:) , l ength (X)+maxlag) , M)) ;
post = f f t (postpad (Y(:) , M)) ;
cor = i f f t (pre .∗ conj (post)) ;
R = cor (1 : 2∗ maxlag+1) ;

so indeed the cross-correlation is computed as the inverse Fourier transform of the product of the
Fourier transform of one dataset, times the complex conjugate of the Fourier transform of the
second dataset.

3. computing in the time domain the N values of τ , each requiring N multiplications, requires a total
of 268 million multiplications if N = 16384, while the Fast Fourier transform with its N × log2(N)
complexity, only requires 230 thousand multiplications. The gain of 230000 will have a significant
impact on the computation time needed on a digital computer processing discretized samples.

4. Based on 2, provide a flowchart returning the time delay τ between a random source and the time
delayed copy of this same source using the processing blocks available in GNU Radio Companion.
Ideally, provide the GNU Radio Companion flowchart and a screenshot demonstrating the result
with a delay of 100 samples (see provided sample for source and sink ... fill the blocks hidden under
the output image). How is the output image provided below analyzed in this context ?

Options

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

Variable

Id: N

Value: 1k

Variable

Id: samp_rate

Value: 1k

Fast Noise Source

Noise Type: Gaussian

Amplitude: 1

Seed: 0

Variate Pool Size: 8.192k

Complex to Mag

Vec Length: 1k

Delay

Delay: 100

Multiply Conjugate

Vec Length: 1k

Stream to Vector

Stream to Vector

Vector to Stream

FFT

FFT Size: 1k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Num. Threads: 1

FFT

FFT Size: 1k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Num. Threads: 1

FFT

FFT Size: 1k

Forward/Reverse: Forward

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

QT GUI Time Sink

Number of Points: 1k

Sample Rate: 1k

Autoscale: No

5. the prototype of the xcorr function introduces the maxlag variable which is the expected range of
τ .
f unc t i on [R, l a g s] = xcorr (X, Y, maxlag , s c a l e)

N = max(l ength (X) , l ength (Y)) ;
maxlag=N−1;
M = 2ˆnextpow2 (N + maxlag) ;

2

Indeed the sample length N and delay maxlag have different meanings:

• the sample length can be considered as the averaging duration over which noise will be re-
duced or energy accumulate coherently when the signal is detected. In the pulse compression
definition of the processing gain time×bandwidth, the sample length is the time parameter
and the processing gain will be increased by increasing the sample length

• the time delay maxlag is related to the physical process delaying the reference signal in the
measurement signal, and might be much smaller than the integration time.

Let us consider the case of RADAR signals: the time delay is given by the furthest target the
receiver can detect, and might only be a few discretized samples in the future. On the other
hand, the sample length will provide noise rejection capability and long samples are required for
far target detection. As a numerical example, sampling at 100 MHz for 1.5 m range resolution,
a target located at 300 m will appear as a correlation peak at sample 2 µs or index 200 (since
the sampling period is 10 ns). Hence, maxlag can be limited to a few hundred samples. On the
other hand, typical integration duration involved several tens of thousand samples for efficient pulse
compression, or a ratio of about 100 between N and maxlag. We see in the listing sample above
that the datasets are pre- and post- padded with a number of empty samples to adapt the vector
length to the output: the input datasets with length N must be 0-padded to reach a length of 2N+1
ranging from -N to +N the length of the output correlation vector. If an assumption is given on
maxlag � N, then the pre- and post-padding can be much shorter than N , saving computation
time in the FFT computation.

3

