
Developing embedded devices using opensource tools:
application to handheld game consoles

G. Goavec-Merou, S. Guinot, J.-M Friedt

Association Projet Aurore, Besançon, France

manuscript, slides and associated documents at http://jmfriedt.free.fr

August 7, 2009

The purpose of this presentation is not so much to provide more examples of “yet another
platform on which to run uClinux” but rather provide general methods for identifying the right
operating system for the right hardware. Understanding methods for porting an operating system
to a new platform is the arguably the best solution not to be limited by the available tools but only
by knowledge and hardware limitations. With these purposes in mind, we will illustrate the use of
two operating systems – the version of Linux for MMU-less architectures, uClinux, and RTEMS –
to game consoles. The former example focuses on the ARM-based Nintendo Dual Screen (NDS)
running DSLinux and, because of hardware limitations on the available memory – RTEMS. The
latter example will focus on the development of a coherent buildroot environment for compiling
uClinux and the associated tools (mainly busybox) to the MIPS-based Sony Playstation Portable
(PSP).

1 Nintendo Dual Screen (NDS)

The NDS provides the hardware representative of typical embedded applications: an ARM based
architecture with multiple CPUs – an ARM9 main processor and an ARM7 coprocessor for man-
aging peripherals – 4 MB RAM and most important, access to the bus of the processors. Indeed, in
order to provide compatibility with previous handheld consoles (Gameboy Advance), the so-called
slot2 cartridge uses the data and address busses common to both processors. Hence, we obtain
the basic requirements on a widely available platform to develop embedded applications including
dedicated acquisition and control hardware controlled by software running on operating systems.

The objective we set for the work on the NDS is as follows:

• we wish to develop dedicated hardware to monitor the state of the environment (data ac-
quisition) and possibly control this environment (command)

• we wish to use efficiently all resources provided by the hardware, and especially the wifi
interface for wireless monitoring and control of the environment

• using wifi means using a TCP/IP stack, so we will focus on operating systems running on
the NDS and providing such features.

Developing software on the NDS requires the acquisition of a cartridge for transfering our
programs – stored for example on a microSD memory card – to the console. Since part of the data
transfer is performed through an encrypted channel, dedicated cartridges were developed for that
purpose: all the examples described here were tested on a DS Lite using a M3DS Real 1 bought
for about 25 euros including a rumbling pack which will be used as hardware prototyping board.

1.1 DSLinux

Our first objective is to get familiar with an NDS environment before developing dedicated hard-
ware. GNU/Linux is arguably the most popular opensource development environment at the

1www.m3adapter.com

1

http://jmfriedt.free.fr
www.m3adapter.com

moment so we start using first a binary distribution of DSLinux (http://dslinux.org), the NDS
port of uClinux 2, before installing during a second step the development environment needed
when we wish to write our own application and kernel modules for accessing the hardware.

Figure 1: Left : DSLinux running on the desmume NDS emulator. Right: the same result is
obtained on the console, here shown with the modified rumble pack cartridge for controling LEDs
(section 1.2).

Beyond the kernel and some tools provided by busybox, DSLinux is provided with a virtual
keyboard on the touchscreen. The easiest way of testing DSLinux is at first to download the binary
image at http://kineox.free.fr/DS/dslinux-dldi.tgz: storing the file dslinux.nds in the
nds directory will add a new game to the list which links to the DSLinux bootloader. Any attempt
to run more than basic commands will quickly lead to errors associated with memory overflow:
although 4 MB is definitely insufficient to run efficiently uClinux, this environment will provide
a convenient tool to become familiar with hardware control on the NDS. As long as no hardware
access is needed, the NDS emulator desmume (http://www.desmume.com/) provides a convenient
environment to test programs without the need to copy the binary file (a.k.a game) to the microSD
cartridge and boot the NDS, a process quickly boring during trial and error processes.

The point of using an operating system (Fig. 1), providing features such as support for filesys-
tems, a scheduler and an abstraction layer between the application and the hardware, becomes ob-
vious on the example displayed Fig. 2. The framebuffer accessed through /dev/fb0 allows the use
of programs classically executed on GNU/Linux with no other modification than to consider that
the 16-bit display is memory-mapped and each pixel is made of 5 bits red, 5 bits green and 5 bits
blue. In order to compile this example, the crosscompilation toolchain for generating ARM binaries
on an Intel x86 platform must be downloaded at http://stsp.spline.de/dslinux/toolchain,
an easier process than manually compiling gcc as a crosscompiler after applying the necessary NDS
patches (this procedure will be demonstrated within the buildroot environment for the PSP in the
next section 2). Once the toolchain is installed, the latest archive of the source codes for compiling
DSLinux are fetched at http://stsp.spline.de/dslinux/dslinux-snapshot.tar.gz: getting
the crosscompilation environment started is achieved by typing make xsh after having at least
once configured the environment with make menuconfig. Within this environment, compiling a
C program named hello.c is achieved by $CC $CFLAGS $LDFLAGS hello.c -o hello.

Most of the DSLinux directories are symbolic links towards the microSD card:

jmfriedt@ns39351:~/dslinux/romfs$ ls -l | cut -c 53-100

bin

boot

dev

etc -> media/linux/etc

home -> media/linux/home

2uClinux is the port of the Linux kernel to environments which lack memory management units – MMU –
associated with tools dedicated to low power and small memory footprint such as busybox and uClibc.

2

http://dslinux.org
http://kineox.free.fr/DS/dslinux-dldi.tgz
http://www.desmume.com/
http://stsp.spline.de/dslinux/toolchain
http://stsp.spline.de/dslinux/dslinux-snapshot.tar.gz

s t r u c t f b v a r s c r e e n i n f o s i n f o ;
unsigned shor t ∗ s p t r ;

i n l i n e void draw pixe l (i n t x , i n t y , i n t c o l o r)
{unsigned shor t ∗ l o c = s p t r + \

((y+s i n f o . y o f f s e t) ∗ s i n f o . x re s)+x+s i n f o . x o f f s e t ;
∗ l o c = co l o r ; // 5R, 5G, 5B
∗ l o c |= 1 << 15 ; // t ransparence ?
}

i n t main (i n t argc , char ∗argv [])
{ char c ;

s c r e e n f d = open (”/ dev/ fb0 ” , ORDWR) ;
i o c t l (s c r e en fd , FBIOGET VSCREENINFO, &s i n f o) ;

s p t r = mmap(0 , s c r e en h e i gh t ∗ s c r een width /8 ,PROT READ→
↪→|PROT WRITE,MAP SHARED, s c r e en fd , 0) ;

[. . .]
}

Figure 2: Exemple of accessing the framebuffer device /dev/fb0 to display a bitmap image on the
top screen.

lib -> media/linux/lib

media

opt

proc

sbin

tmp

usr -> media/linux/usr

var -> media/linux/var

so that adding our programs is simply a matter of adding the binary files in the right exe-
cutable format (Binary Flat) in a dedicated directory of the memory card, accessible at /media.
This familiar posix-compatible environment can already provide most functionalities commonly
available on a PC running GNU/Linux, so that porting new text-mode or graphic applications
using the framebuffer is painless within the restrictions of the remaining memory available. How-
ever, porting GNU/Linux applications to the NDS is hardly an exciting activity, and our purpose
is to control dedicated embedded hardware thanks to the game console.

1.2 Hardware for data acquisition and control

The NDS and NDS Lite (but not DSi) provide a so-called Slot2 port for inserting catridges com-
patible with Nintendo’s previous handheld game console, Gameboy Advance. This port, well
documented 3, provides an access to all necessary signals of the bus common to the two ARM
processors. We will focus on the 16-bit data bus (what information is transmitted), the 24-bit ad-
dress bus (where in the address space is the peripheral located) and the 4-bit contol bus including
read (RD#), write (WR#), Chip Select (CS#) and one hardware interrupt line. All signals are
3.3 V high. A preliminary chip select is applied since the signals appear on this bus only within
the right address space starting at 0x8000000: peripherals are memory mapped 4. In order to
optimize the few available signals, the data bus is also used as the upper part of the address bus
during the first cycle of all transactions: the timing defining whether the data bus holds part
of the address or the data is defined by the level of the CS# signal. The data written to the
peripheral are available on the data bus when both CS# and WR# are low (as opposed to CS#
low and WR# high which indicates the data bus holds the least significant part of the address):
the data must be latched on the rising edge of WR#. From a software point of view, we access the

3www.ziegler.desaign.de/GBA
4Alternatively, is seems the RAM extension is memory mapped to addresses starting at 0xE000000, with separate

address and data busses. We have not tested this way of accessing Slot2.

3

www.ziegler.desaign.de/GBA

16-bit memory address located at 0x8000000 and put the value v on the data bus with *(unsigned
short*)0x8000000=v. This syntax can be used either in kernel space or in user space since the
ARM9 of the NDS lacks an MMU (running this command on a processor with MMU will generate
a Segmentation Fault since the user space program is not allowed to access address regions it had
not been granted access to).

This example hence provides the necessary interface between the software and the signals
generated on the busses: writing to the address 0x8000000 puts the value v on the data bus, and
triggers the control signal sequence displayed in Fig. 3. By connecting a latch 5 to the data bus,
the value of v is mirrored and memorized upon the rising edge of WR#: if LEDs are connected to
the latch output, the value of v appears on the LEDs. This strategy is typically used to control
digital outputs (stepper motor, switches, ...).

ADDR. DATA DATA

RD#, WR#

CS#

AD0−7

G

LE

OE#

D0−7

Vcc

74HC574

IRQ

GND

8 8

GND

output and the interrupt in order to

temporary link beetween one GPIO

validate the kernel module

Q0−7

Figure 3: Evolution of the signals available on the Slot2 during a transaction: the Chip Select
signal activates the peripheral, the RD# and WR# control signals define the direction of the data
transfer to the address defined by the address bus whose lowest significant byte is multiplexed
with the data bus. A circuit using the whole address space must latch the lowest significant byte
of the address bus on the decaying edge of CS# before using the data provided on these same pins
on the rising edge of RD# or WR#.

1.3 Data acquistition: adding an ADC

Acting on its environment is only half the fun of embedded designs: more important is the ca-
pability to learn the state of the environment we are acting on, i.e. acquire informations. Since
most physical values of interest are continuous rather than discrete, we shall get immediately to
the most interesting aspect of analog to digital conversion, since the acquisition of a digital signal
is only a specific case of the strategy described here.

In the previous example, the value was put on the databus to control a peripheral, so the
processor was always the master of the bus in control of the timing and the voltages on the data
bus. Reading a value is a more complex matter since for a short time the peripheral is the one to
define the voltage on the data bus: allowing the peripheral to talk to the processor at the wrong
time (i.e. when the processor is not listening) yields a conflict (two masters are talking on the
data bus at the same time) and hence short circuits, potentially damaging the hardware. Hence,
reading values from the peripherals requires that the peripheral strictly meets timing constraints
stating that the signals connected to the data bus are always in a high impedance state (the
peripheral does not define the voltage on the data bus) unless the processor is in the listen state
as defined by a low value on the read RD# control signal. In the case of an analog to digital
converter (ADC), the control sequence is sightly more complex (Code 1) since

5a latch is an integrated digital circuit used to memorize the input value either on the level or the edge of a
clock signal, and keep this output whatever happens on its input as long as the clock signal does not trigger a new
intput to output transfer.

4

AD7492

74HC574

2
D Q

LEWR#

D4−D11
8

IRQ

D0−D7

Vin

D
S

 S
lo

t
2

100 nF

PS/FS#BUSY

Vref

CONV#
CS#
RD#

RD#

1/6 74HC04

OE#

9
8
10

12 11

5

6
Q0,1

Vin

Vcc

D0

D7

Figure 4: Data acquisition using an analog-to-digital converter (AD7492) connected to the bus.
Since here the peripheral communicates to the processor, care must be taken to keep the data bus
in a high impendance state most of the time and only bring it to a low impedance state – providing
the result of each measurement on the data bus – when requested by the control bus. The circuit
is connected through the modified Rumble Pack cartridge inserted in the Slot2. Soldering SMD
components is not difficult but requires an appropriate microscope.

• the conversion must be triggered by the processor by writing a value on the data bus to
trigger the conversion (high to low pulse on the CONVST# pin of the ADC)

• wait for the conversion to complete: either using a fixed delay (empty loop) or reading the
end of conversion signal from the ADC

• request the result of the conversion by reading a value in the address space of the peripheral.
At this time, the RD# control signal goes low and the ADC is allowed during this time to
define the voltage on the data bus with the pattern associated with the binary value of the
measurement

• once the read cycle is completed, the RD# goes high and hence the ADC releases the data
bus by putting its output pins back to a high impedance state.

The result of such a procedure is displayed in Fig. 5, with the sequential analog to digital
conversion of signals at a rate up to 300 kHz and a display of the results of the measurement on
the top display. In the case of DSLinux with little load on the system, running such a conversion
either in user space (allowed thanks to the lack of MMU which allows the user to write in memory
locations that would otherwise be forbidden and yield to a Segmentation Fault) or kernel space
(from a kernel module) provides the same performances. The case of detecting the end of conver-
sion from an interrupt will not be developed here, but let us mention that the interrupt service
routine (ISR) management from kernel space strongly reduces the sampling rate due to the high
software complexity between the start of conversion and interrupt management when compared
to the empty loop shown in Code 1.

Being able to acquire data from the modified cartridge, we wish to go on with wireless data
transfer using the wifi interface ... but the available 4 MB are simply insufficient to run even basic
network configuration commands. Two strategies can thus be adopted:

1. add more resources to compensate for the lack of efficiency of the software. This is the usual
personnal computing approach, allowing most users to require multi-gigahertz CPU cores
to move windows on a graphical interface and type text in a word processing application.
On the NDS, this strategy means using a memory extension pack, which unfortunately uses
slot2 and means all the hardware developments used so far are no longer usable with this
approach,

5

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <un i s td . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude < f c n t l . h>
#inc lude <sys / i o c t l . h>

#de f i n e TAILLE 255

i n t main (i n t argc , char ∗∗ argv)
{ i n t f , t a i l l e=TAILLE ;

v o l a t i l e i n t k ;
char ∗c ;

c=(char ∗) mal loc (TAILLE) ; // demontre mal loc en l ’ absence de MMU
fo r (f =0; f<TAILLE ; f++)
{∗(unsigned shor t ∗) (0 x8000000)=(unsigned shor t) 0 ;
f o r (k=0;k<10;k++) {} // NE PAS compi le r en −O2
// us l e ep (7) ; // l ’ appel a us l e ep e s t trop long !
c [f]=∗(unsigned shor t ∗) (0 x8000000)&0x f f ;
}

f o r (f =0; f<TAILLE ; f++) p r i n t f (”%x ” , c [f]) ; p r i n t f (”\n”) ;
r e turn (0) ;
}

Table 1: Sample program for reading a value from a peripheral connected to the bus of Slot 2.
In this case of the analog to digital conversion, the conversion is triggered by a write and after a
pre-defined delay tuned to reach the maximum sampling rate, the result is read.

2. change operating system or developing environment to adapt to the available resources,
attempting to reach the goal we set of wireless data transfer and control without reducing
functionalities but by selecting a more efficient environment.

The second strategy is the one adopted here and leads us to leave DSLinux for a more com-
pact and memory efficient environment: the Real Time Executive for Multiprocessor Systems
(RTEMS).

1.4 RTEMS

As an alternative to the resource hungry DSLinux, we will explore the use of a real time execu-
tive environment – RTEMS (http://www.rtems.com/). An executive environment provides the
developer with the feeling of working on an operating system with abstraction layers between
software and hardware, a scheduler for executing multiple tasks simultaneously, and libraries such
as filesystem access or network stacks (most significantly TCP/IP as we shall see later). However
in order to run with minimal memory footprint, RTEMS generates a single monolithic applica-
tion and will not dynamically link libraries or programs. An interactive shell might be run on
RTEMS but most embedded applications will not need such a tool. Nevertheless, tools dedicated
to embedded application developments are provided such as CPU consumption, stack size and
availability and, upon request, network or filesystem associated commands.

A POSIX compatibility layer means that the developer under GNU/Linux will quickly feel in
a familiar environment when working under RTEMS. However, beyond the usual header followed
by functions and a main program, RTEMS requires a precise definition of the needed resources
as a set of #define macros at the end of the program, with constraints developed later in this
document.

1.4.1 Programming examples: basic structure, framebuffer and shell

A Board Support Package (BSP) for the NDS has been developed by M. Bucchianeri, B. Ratier, R.
Voltz and C. Gestes, as described at http://www.rtems.com/ftp/pub/rtems/current_contrib/

6

http://www.rtems.com/
http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html
http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html

78

80

82

84

86

88

90

0 50 100 150 200 250

m
ea

su
re

m
en

t (
bi

ts
)

time (u.a.)

5 kHz, offset=0,4V, 0,5Vpp, 8bits
5 kHz, offset=0,4V, 0,5Vpp, 12 bits

inverter

IRQ

GND

AD0−AD11

WR#
RD#

Vcc=3,3 V

74HC574

Vin

AD7492
ADC

74HC04

Figure 5: Top: a frequency synthesizer generates a sine wave signal with 1 V amplitude, offset
0.5 V and frequency 1 Hz (left, representative of a slowly varying signal such as a temperature) and
15 kHz (right, in order to estimate the maximum sampling rate). These data are obtained using
the circuit shown in Fig. 4. The software controling this peripheral is presented in Tab. 1 while
the display is performed using the framebuffer functionality of DSLinux as illustrated previously.
Bottom: comparison of 8 and 12-bit wide conversions (reading a char or a short on the data
bus) and the actual implementation of the data acquisition circuit in a volume compatible with
the insertion of the cartridge in Slot2.

nds-bsp/manual.html. In order to compile RTEMS, we must install a new crosscompilation
toolchain including the appropriate patches, as described at http://www.rtems.com/onlinedocs/
/doc-current/share/rtems/pdf/started.pdf 6. As a quick summry of this documentation,
the latest versions of the usual toolset gcc, binutils and newlib must be downloaded at ftp:
//ftp.rtems.com/pub/rtems/SOURCES/4.9/ and configured for the ARM target with the option
--target=arm-rtems4.9. Be aware that compiling the toolchain within the source archive induces
many problems: a solution is provided at http://www.mail-archive.com/gcc-bugs@gcc.gnu.
org/msg191702.html, but it is safer to avoid problems by compiling in a different target directory
than the one including the source codes. Once a functional toolchain is compiled and installed in
a directory included in the PATH (about 100 MB of disk space are required), RTEMS itself must
be compiled.

Once again we take care to compile in another directory than the one containing the source
code: starting from a clean directory rtems-4.9.1, the BSP is configured using
../rtems-4.9.1/configure -target=arm-rtems4.9 -enable-rtemsbsp=nds followed by the com-
pilation with make (Fig. 6).

In order to compile our own programs or some of the usual examples provided with RTEMS
6more precisely 4.1.4.2 page 22

7

http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html
http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html
http://www.rtems.com/onlinedocs//doc-current/share/rtems/pdf/started.pdf
http://www.rtems.com/onlinedocs//doc-current/share/rtems/pdf/started.pdf
ftp://ftp.rtems.com/pub/rtems/SOURCES/4.9/
ftp://ftp.rtems.com/pub/rtems/SOURCES/4.9/
http://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg191702.html
http://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg191702.html

Figure 6: Left: RTEMS is executed in the desmume emulator. Right: one of the simplest examples,
executed from the console.

7, we defined some variables

export PATH=/home/jmfriedt/rtems/bin/:$PATH
export RTEMS_ROOT=/opt/rtems-4.9
export RTEMS_MAKEFILE_PATH=/opt/rtems-4.9/arm-rtems4.9/nds

(obviously adapted to the reader’s environment) and compile with make (Fig. 7).
Although all basic RTEMS examples are functional and provide plenty of inspiring source

codes, a description of the general program structure might ease the first contact with this new
environment:

• RTEMS provides an environment that makes the developer feel like working on an operating
system, even though the result of the compilation is a single monolithic application which
lacks such aspects as dynamic loading a program or a library. The execution of the program
is scheduled with the call to as many tasks as defined by the developer depending on events.

• within the context of embedded device development with low memory footprint, a resource
hungry interactive shell is a luxury useless to most applications and not activated in the
default configuration.

• although written in C, an RTEMS application requires a different program structure than
the usual C program describing an application for GNU/Linux. A POSIX compatibility
layer reduces the adaptation time for the new RTEMS developer used to developing under
unix. As usual, some #include in the header declare which configuration files to load,
but most important are the multiple #define which define which options of the BSP to
activate. Since each additional functionality brings its own need for additional resources,
reducing to the minimum the requirements is a good practice for embeded designs. However,
missing one necessary option will make the application crash in ways that are not always
obvious to debug: as an example described at http://www.rtems.com/wiki/index.php/
DebuggingHints, calling the sleep without activating the timer function will make the
program wait indefinitely since the timer never tells the requested time has elapsed. The

7available at http://rtems.org/wiki/index.php/RTEMS_CVS_Repository

8

http://www.rtems.com/wiki/index.php/DebuggingHints
http://www.rtems.com/wiki/index.php/DebuggingHints
http://rtems.org/wiki/index.php/RTEMS_CVS_Repository

Figure 7: Example of using the framebuffer interface of the NDS following principles used in
uClinux, but this time with RTEMS. This example is based on a sample program provided by M.
Bucchianeri. Since we are unable to access the microSD storage support, the image is stored in
the program.

order in which these #define are declared is important since variables declared in the first
configurations might induce different behaviours for the next definitions.

We wish to go beyond the simple software programming to focus, as was done with DSLinux,
on controling dedicated hardware peripherals. In order to make some LEDs connected to a latch
blink (Code 3), one must give control of the Slot2 bus (to which the Rumble Pack is connected) to
the ARM9 CPU rather than to the ARM7 coprocessor. This result is achieved using the command
sysSetCartOwner(BUS OWNER ARM9);: without this function, the CPU running RTEMS does not
have access to the cartridge bus and the LEDs will not change state. This command is defined in
rtems-4.9.1/c/src/lib/libbsp/arm/nds/libnds/source/arm9/rumble.c and the macro was
interpreted manually to ease the compilation step: we find this command in the line controling
the content of memory location 0x04000204 in our sample program. Notice that this step was not
necessary with DSLinux since the ARM9 CPU had already been granted access to the bus.

1.5 Interactive shell and “typing” commands

As opposed to an operating system designed to interact with a user, RTEMS only provides a shell
as one of many options for developing embedded systems.

The RTEMS shell is started using the command
rtems_shell_init("SHLL",RTEMS_MINIMUM_STACK_SIZE * 4,100,"/dev/console",0,1); either
as the main task, or as one of the threads running in parallel with the other tasks performed
by the program. The most common means of comunicating with a shell is to type commands:
the lack of keyboard has been compensated for by the authors of the NDS BSP by porting the
PALib graffiti application. In order to activate this character recognition software so that

9

#include <bsp.h>

#include <rtems/fb.h>

#include <rtems/console.h>

#include <rtems/clockdrv.h>

#include "fb.h"

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <rtems/mw_fb.h>

static struct fb_screeninfo fb_info;

inline void draw_pixel(int x, int y, int color)

{

uint16_t* loc = fb_info.smem_start;

loc += y * fb_info.xres + x;

*loc = color; // 5R, 5G, 5B

*loc |= 1 << 15; // transparence ?

}

void draw_ppm()

{int x,y,bpp;char r,g,b;

int l=0;

for (y=0;y<161;y++)

for (x=0;x<296;x++) {

r=image[l++];g=image[l++];b=image[l++];

bpp=(((int)(r&0xf8))>>3)+(((int)(g&0xf8))<<2)+(((int)(b&0xf8))<<8);

if (x<256) draw_pixel(x, y, bpp);

}

}

rtems_task Init(

rtems_task_argument ignored

)

{

struct fb_exec_function exec;

int fd = open("/dev/fb0", O_RDWR);

if (fd < 0)

{ printk("failed\n");

exit(0);

}

exec.func_no = FB_FUNC_ENTER_GRAPHICS;

ioctl(fd, FB_EXEC_FUNCTION, (void*)&exec);

ioctl(fd, FB_SCREENINFO, (void*)&fb_info);

draw_ppm();

while (1) ;

exec.func_no = FB_FUNC_EXIT_GRAPHICS;

ioctl(fd, FB_EXEC_FUNCTION, (void*)&exec);

close(fd);printk("done.\n");exit(0);

}

/* configuration information */

#define CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

rtems_driver_address_table Device_drivers[] =

{

CONSOLE_DRIVER_TABLE_ENTRY,

CLOCK_DRIVER_TABLE_ENTRY,

FB_DRIVER_TABLE_ENTRY,

{ NULL,NULL, NULL,NULL,NULL, NULL }

};

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 10

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 1

#define CONFIGURE_INIT

#include <rtems/confdefs.h>

Table 2: Program for displaying a PPM image on the framebuffer, based on a sample program
provided by M. Bucchianeri.

the user can enter characters by writing on the touchscreen, the left key (L) must be held down
while writing. The set of characters and the order in which to draw the lines is described at
http://www.palib.info/wiki/doku.php?id=day3#keyboard. An alternative to typing com-
mands this way will be described later (section 1.5.1) once the TCP/IP stack is running and
a server associated with a shell is linked to a socket connexion.

Beyond the classical basic unix commands available from the shell, some functions dedicated
to embedded device development have been added, most significantly informations concerning the
time spent by the CPU on each tasks (cpuuse) and the address space associated with the stack
of each process (stackuse) for diagnostics purposes (Fig. 8). The content of the memory is
dumped using mdump. Additional functions associated with filesystem access and network access
are available when the appropriate #define flags have been activated.

In addition to the default shell commands, the user can define new custom commands. In
this example, we wish to convert an autonomous program accessing the framebuffer to a shell
command called newt which draws Newton’s fractal (the attraction basins of the three roots of
the complex polynom z3−1, z ∈ C). This application also demonstrates the software emulation of
floating point calculations, access to the framebuffer and parameter handling by the application.

The prototype of the function thus added to the shell is similar to the usual main(int,

10

http://www.palib.info/wiki/doku.php?id=day3#keyboard

#inc lude <bsp . h>
#inc lude <s t d l i b . h>
#inc lude <s t d i o . h>
#inc lude <nds/memory . h>

r t ems id t ime r i d ;
u i n t 16 t l =0;

void ca l l ba ck ()
{ pr in tk (” Cal lback %x\n” , l) ;

(∗ (v o l a t i l e u i n t 16 t ∗) 0x08000000)=l ;
l=0x f f f f −l ;
r t e m s t i m e r f i r e a f t e r (t imer id , 100 , ca l lback , NULL) ;

}

r t ems task I n i t (rtems task argument ignored)
{ r t ems s ta tu s code s t a tu s ;

rtems name timer name = rtems bui ld name (’C’ , ’P’ , ’U’ , ’T’) ;

p r in tk (”\n\n∗∗∗ HELLO WORLD TEST ∗∗∗\n”) ;
(∗ (vuint16 ∗) 0x04000204) = ((∗ (vuint16 ∗) 0x04000204) & ˜ARM7OWNSROM) ; // bus →

↪→ac c e s s to ARM9

s ta tu s = r t ems t ime r c r e a t e (timer name ,& t ime r i d) ;
r t e m s t i m e r f i r e a f t e r (t imer id , 1 , ca l lback , NULL) ;
r t ems s t a ck che ck e r r epo r t u s ag e () ; // r e qu i r e s #de f i n e CONFIGURE INIT

pr in tk (”∗∗∗ END OF HELLO WORLD TEST ∗∗∗\n”) ;
whi l e (1) ;
e x i t (0) ;

}

/∗ c on f i gu r a t i on in fo rmat ion ∗/
#de f i n e CONFIGURE APPLICATION NEEDS CONSOLE DRIVER
#de f i n e CONFIGURE APPLICATION NEEDS CLOCK DRIVER
#de f i n e CONFIGURE RTEMS INIT TASKS TABLE

/∗ c on f i gu r a t i on in fo rmat ion ∗/
#de f i n e CONFIGURE MAXIMUM DEVICES 40
#de f i n e CONFIGURE MAXIMUM TASKS 100
#de f i n e CONFIGURE MAXIMUM TIMERS 32
#de f i n e CONFIGURE MAXIMUM SEMAPHORES 100
#de f i n e CONFIGURE MAXIMUM MESSAGE QUEUES 20
#de f i n e CONFIGURE MAXIMUM PARTITIONS 100
#de f i n e CONFIGURE MAXIMUM REGIONS 100

/∗ This s e e t i n g s ove rwr i t e the ones de f ined in c on fd e f s . h ∗/
#de f i n e CONFIGURE MAXIMUM POSIX MUTEXES 32
#de f i n e CONFIGURE MAXIMUM POSIX CONDITION VARIABLES 32
#de f i n e CONFIGURE MAXIMUM POSIX KEYS 32
#de f i n e CONFIGURE MAXIMUM POSIX QUEUED SIGNALS 10
#de f i n e CONFIGURE MAXIMUM POSIX THREADS 128
#de f i n e CONFIGURE MAXIMUM POSIX TIMERS 10
#de f i n e CONFIGURE LIBIO MAXIMUM FILE DESCRIPTORS 200

#de f i n e STACK CHECKER ON
#de f i n e CONFIGURE INIT

#inc lude <rtems/ con fd e f s . h>

/∗ end o f f i l e ∗/

Table 3: Sample program for making LEDs connected at the output of a 74HC574 latch located
instead of the motor of the Rumble Pack blink. Notice the 21st line granting access of the slot2
bus to the ARM9 CPU.

11

Figure 8: One of the original and most useful RTEMS commands dedicated to the development
of embedded systems: the size of the stack associated with each thread.

char**): the newtn commands executes the my main function and argument passing is performed
in the same way than one would with the classical C main:

rtems_shell_cmd_t Shell_USERCMD_Command = {

"newtn", /* name */

"newt [mag.]", /* usage */

"user", /* topic */

my_main, /* command */

NULL, /* alias */

NULL /* next */

};

Since graffiti is rather difficult to use and typing a 5-letter command is virtually impossible,
we define a shorter alias (n) to this command:

rtems_shell_alias_t Shell_USERECHO_Alias={

"newtn", /* command*/

"n" /* alias */

};

This command and its alias are added to the shell 8 with

#define CONFIGURE_SHELL_USER_COMMANDS &Shell_USERCMD_Command

#define CONFIGURE_SHELL_USER_ALIASES &Shell_USERECHO_Alias

#define CONFIGURE_SHELL_COMMANDS_INIT

#define CONFIGURE_SHELL_COMMANDS_ALL

#include <rtems/shellconfig.h> // must be AFTER #define

In this example, the command newtn (or its alias n) draws Newton’s fractal with a magnification
factor given as argument in the command line (Fig. 9).

1.5.1 Application example: wireless data acquisition system

As a final note to the development on the NDS, we shall conclude with the realization of the
original goal of this work, the wireless transfer of data acquired from the NDS. The TCP/IP stack
originally provided with RTEMS proved to be incompatible with the NDS wifi library and some
data ordering error had to be corrected: the patch we provide is available at http://jmfriedt.
free.fr/rtems_nds_wireless.patch.

Once a functional TCP/IP stack running on top of the wifi interface is available, running a
shell or a dedicated application on a socket requires

8http://www.rtems.com/onlinedocs//doc-current/share/rtems/html/shell/shell00008.html

12

http://jmfriedt.free.fr/rtems_nds_wireless.patch
http://jmfriedt.free.fr/rtems_nds_wireless.patch
http://www.rtems.com/onlinedocs//doc-current/share/rtems/html/shell/shell00008.html

Figure 9: A new RTEMS command (newtn): calculation and drawing of Newton’s fractal, used
as an opportunity to illustrate the software emulation of floating point calculation and accessing
the framebuffer display.

1. the configuration of the wireless interface of the NDS using a wifi-compatible commercial
game. Indeed, the NDS uses a uniform storage format of up to three access points including
their MAC address for automatic network configuration. RTEMS and the NDS wifi library
follow this scheme and hence require a preliminary configuration. One possible solution for
point to point communication avoiding the need for an accesspoint is to configure an Asus
eeePC 701 laptop as an access point as described at http://jmfriedt.free.fr/fred/fred.
html

2. once a commercial game has been used to configure the MAC address of the access point we
wish to connect to (to be stored in the first configuration slot), a RTEMS program follows
the usual network configuration procedure, namely the interface configuration for defining
the IP address, the routing table, the creation of a socket to listen to incoming connections
and finally a link between the incoming data and a server. This server might be either a shell
for an interactive session with the user (much more convenient to use than the character
recognition application grafiti) or a dedicated server as will be demonstrated here,

3. all printf() calls within this server are redirected to this socket rather than to the terminal
associated with the console displayed on the screen, so that by printing in ASCII format
the measurement results, a telnet session from a PC to the NDS is enough to gather
measurements without the need for the development of a dedicated client.

The structure of a RTEMS program using the TCP/IP stack follows the same scheme as
familiar to the network configuration on a unix system: first the interface is configured and given
an IP address, here by defining the following structure:
/∗ Defau l t network i n t e r f a c e ∗/
s t a t i c s t r u c t r t ems b sdn e t i f c o n f i g n e t d r i v e r c o n f i g = {

RTEMS BSP NETWORK DRIVER NAME,
RTEMS BSP NETWORK DRIVER ATTACH,
NULL, /∗ No more i n t e r f a c e s ∗/
”10 . 0 . 1 . 2 0 ” , /∗ IP address ∗/
”255 . 255 . 255 . 0” , /∗ IP net mask ∗/
NULL, /∗ Driver s upp l i e s hardware address ∗/

} ;

13

http://jmfriedt.free.fr/fred/fred.html
http://jmfriedt.free.fr/fred/fred.html

which is equivalent to the ifconfig command under unix. RTEMS BSP NETWORK DRIVER NAME
provides the name of the interface and RTEMS BSP NETWORK DRIVER ATTACH the initial-
ization method.

The second structure
/∗ Network c on f i gu r a t i on ∗/
s t r u c t r t ems bsdne t con f i g r t ems bsdne t con f i g = {

&ne td r i v e r c on f i g ,
NULL, /∗ do not use bootp ∗/
0 , /∗ Defau l t network task p r i o r i t y ∗/
0 , /∗ Defau l t mbuf capac i ty ∗/
0 , /∗ Defau l t mbuf c l u s t e r capac i ty ∗/
” rtems ” , /∗ Host name ∗/
” trabucayre . com” , /∗ Domain name ∗/
” 1 0 . 0 . 1 . 1 ” , /∗ Gateway ∗/
”10 . 0 . 1 . 1 3 ” , /∗ Log host ∗/
{”10 . 0 . 1 . 1 3” } , /∗ Name s e r v e r (s) ∗/
{”10 . 0 . 1 . 1 3” } , /∗ NTP se rv e r (s) ∗/

} ;
is equivalent to the familiar route command associated with the DNS configuration in re-

solv.conf, providing network configuration informations.
r t e m s t e l n e t d i n i t i a l i z e (

r temsShe l l , /∗ ” s h e l l ” func t i on ∗/
NULL, /∗ no context nece s sa ry f o r e choShe l l ∗/
f a l s e , /∗ l i s t e n on socke t s ∗/
RTEMS MINIMUM STACK SIZE ∗ 20 , /∗ s h e l l needs a l a r g e s tack ∗/
1 , /∗ p r i o r i t y ∗/
f a l s e /∗ t e l n e td does NOT ask f o r password ∗/

) ;

The first parameter of the previous command is a handler to the function called upon network
connexion (i.e. the equivalent of the name of the server called during a TCP/IP connexion): in
this example, we wish to call a RTEMS shell:
void r t emsShe l l (char ∗pty name , void ∗cmd arg) {

pr in tk(”========= Sta r t i ng Sh e l l =========\n”) ;
r t ems she l l ma in l o op (NULL) ;
pr in tk(”========= Exit ing Sh e l l =========\n”) ;

}
Using the TCP/IP stack requires the inclusion of the header file rtems/telnetd.h in the

source code as well as the link with the library LD LIBS += −ltelnetd to be included in the Makefile
of the appliaction.

These steps are adapted in the program 10 in which the call to a RTEMS shell is replaced by a
server providing results of analog to digital conversions, hence converting the NDS into a wireless
controled data acquisition system (Fig. 11).

2 Sony PlayStation Portable (PSP)

The newer Sony handheld console provides less opportunities for hardware developments: although
an asynchronous serial port (RS232) is available, most peripherals such as the USB port are
not (yet) supported, and no parallel bus is available. Hence, dedicated hardware needs to be
developed around an external microcontroller in charge of low level signal generation or acquisition
with higher level communication through the serial port. Nevertheless, providing a coherent
development environment including an opensource operating system is a prerequisite if we hope
to ever see these peripherals supported without accessing the proprietary Sony operating system
whose functions are for example used by the homebrew community. The MIPS-based architecture
includes 32 MB RAM suitable to run uClinux and embedded applications, hence our objective of
providing a coherent BSP for the PSP.

As opposed to development on the NDS which required acquiring a dedicated cartridge for
runnin games stored on a microSD card, the PSP is designed with a MemoryStick (Sony’s pro-
prietary non-volatile mass storage format): after updating the PSP’s firmware, custom software
including an uClinux bootloader can be run from this medium.

14

/∗ ADC to network ∗/

#inc lude <s t d l i b . h>
#inc lude <s t d i o . h>
#inc lude <bsp . h>
#inc lude <rtems/ t e l n e td . h>
#inc lude <nds/memory . h>
#inc lude <rtems/ rtems bsdnet . h>

// [. . .] NETWORK CONFIGURATION

#de f i n e TAILLE 1024
/∗ ca l l b a ck f o r t e l n e t ∗/
void telnetADC (char ∗pty name , void ∗cmd arg) {

char ∗c ;
i n t f ;

p r in tk (”Connected to %s with argument %p \n” ,
pty name , cmd arg) ;

c=(char ∗) mal loc (TAILLE) ;
whi l e (1) {

f o r (f =0; f<TAILLE ; f++) {
∗(unsigned shor t ∗) (0 x8000000)=(unsigned shor t) 0 ;
c [f]=∗(unsigned shor t ∗) (0 x8000000)&0x f f ;

}
f o r (f =0; f<TAILLE ; f++) p r i n t f (”%x ” , c [f]) ;
p r i n t f (”\n”) ;

}
}

/∗ I n i t task ∗/
r tems task I n i t (rtems task argument argument) {

f p r i n t f (s tde r r , ”\n\n∗∗∗ Telnetd Server Test ∗∗∗\n\ r ”) ;
f p r i n t f (s tde r r , ”========= I n i t i a l i z i n g Network =========\n”) ;
r t em s b s dn e t i n i t i a l i z e n e two r k () ;
f p r i n t f (s tde r r , ”========= Star t Telnetd =========\n”) ;
(∗ (v o l a t i l e u i n t 16 t ∗) 0x04000204) = ((∗ (v o l a t i l e u i n t 16 t ∗) 0x04000204) & →

↪→˜ARM7OWNSROM) ;
r t e m s t e l n e t d i n i t i a l i z e (

telnetADC , /∗ ca l l b a ck func t i on ∗/
NULL, /∗ no context nece s sa ry f o r e choShe l l ∗/
f a l s e , /∗ f a l s e == l i s t e n on socke t s ∗/
RTEMS MINIMUM STACK SIZE ∗ 20 , /∗ s h e l l needs a l a r g e s tack ∗/
1 , /∗ p r i o r i t y . . we f e e l important today ∗/
f a l s e /∗ t e l n e td does NOT ask f o r password ∗/

) ;
whi l e (1) ;

}

#inc lude ” . . / rtems common . h”

Figure 10: Sample code for transfering through a wireless network the results of analog to digital
conversions, using the NDS as a remote controled acquisition system.

2.1 Buildroot for MIPS architectures

The MIPS R4000 compatible processor is supported by gcc with the -mips3 option. Beyond the
compiler, a consistent toolchain for compiling the kernel and the applications is needed to provide
a development environment. Amongst the Board Support Package (BSP) tools, buildroot is
arguably the most widely used, and some additional software needs to be adapted to provide an
environment for developing for the PSP.

As opposed to the commonly used executable binary format ELF most familiar to developers
on personnal computer whose CPU include a MMU, uClinux uses a simpler format called binary

15

0

50

100

150

200

0 1000 2000 3000 4000 5000

va
lu

e
(b

its
)

time (2.6 us/point)

Figure 11: Left: setup for acquiring analog signals using RTEMS, and data transfer as 1024 word
packets using a Wifi link through a router. Right: signal acquired and transfered through a
wireless link, at first a sine wave at 500 Hz whose frequency has been increased to 1 kHz. These
signals provide an estimate of the sampling rate of about 300 kHz. This simple demonstration
does not claim continuity of the acquired data set: the discontinuities every 1024 points is due to
the time associated with data transfer since a double-buffer scheme has not been used here.

flat (BFLT). This format, based on the older a.out format, provides a subset of the functionalities
provided by ELF: smaller and easier to load, executable files in this format are better suited to
embedded applications with fewer resources.

The MIPS cross-compilation toolchain is known to work well since many routers are developed
around processors based on this architecture. It must however be modified for our purpose in order
to generate BFLT outputs instead of the usual ELF. In order to reach this purpose, a dedicated
linker must be provided: elf2flt, originally unavailable for this arhitecture [1].

The elf2flt package is composed of the following programs:

• the shell script ld-elf2flt

• the program elf2flt able to convert ELF binaries to th Binary Flat (BFLT) format

• the program flthdr for editing the header of BFLT files.

• ld-eld2flt replaces the usual ld linker when the -elf2flt compiler option is used

The ld-elf2flt script replaces the original ld linker. ld is now called ld.real. If the ld
script is called with the -elf2flt option, then ld.real followed by ld-elf2flt are successively
called to generate an ELF formatted and then BFLT binaries. Otherwise, ld.real alone is called.
Hence, the toolchain behaviour is only modified when the -elf2flt option is provided to the
linker. As an example of the compilation commands:

mipsel-psp-gcc -Wl,-elf2flt -o test test.c
ls
test.gdb test

Notice that elf2flt generates two files. The binary file with the .gdb extension includes
debugging informations and can be used with gdbserver. The FLAT format only includes the
few mandatory sections for executing the content of the binary file: .text, .data and .bss. It
does not include the debugging information sections classically found in ELF formatted files.

16

As a summary of this contribution, the main difficulty in building the MIPS-PSP toolchain is to
include the elf2flt after binutils. Good documentations describing the BFLT formats are the
uClinux kernel source code of the executable file loader available in fs/binfmt flat.c, and a less
exaustive set of informations is available at http://www.beyondlogic.org/uClinux/bflt.htm.

2.2 uClinux as a PSP game

uClinux must be loaded in the PSP’s volatile memory in order to run. As with all operating
systems, a bootloader must be used to load the operating system in memory and initialize the
hardware accordingly: here the bootloader will appear as a game, and as such has access to all of
Sony’s operating system functionalities to access the hardware, as would a real mode bootloader
running on a PC and accessing the BIOS and associated software interrupts. Since most of the
PSP hardware is proprietary and most of Sony’s functions have be understood but not reverse
engineered, the bootloader is our last chance to initialize the needed hardware before filling the
RAM with uClinux. We will see later that another project (the IPL SDK) aims at reverse engi-
neering some of these functions for understanding hardware access and providing native C systems
calls for operating systems such as uClinux.

Figure 12: The most convenient communication interface with the PSP: the asynchronous serial
port next to the audio connector is compatible with RS232. uClinux will be loaded as a game
over Sony’s operating system, so the native functions for accessing hardware peripherals are only
available to the bootloader but no longer once uCinux is loaded.

The PSP’s firmware must be updated to allow the execution of programs from the Memory-
Stick slot: the procedure varies upon the original firmware version. While this procedure seemed
originally risky since the flash memory of the game console could be definitely corrupted, it seems
that the latest upgrade procedures are more reliable and less risky when upgrade softwares are
taken from reliable web sites. The author is using a firware v.1.50 for a PSP Light bought in
December 2006.

Once the PSP software is updated, our own native PSP applications are compiled using the
right toolchain 9 and the toolset called the PSP SDK 10. These tools are needed if the reader
wishes to compile, develop or modify the uClinux bootloader: reading the source code of J. Mo’s
working version [2] – which differs from the original work of C. Mulhearn [3] in its ability to read
compressed (gziped, hence the need for the zlib library 11) images – is a good starting point
to learn how to read a file from the MemoryStick, uncompress it if needed (case of a compressed
kernel image), initialize the needed peripherals of the PSP and load the new operating system in
memory before calling it.

9http://ps2dev.org/psp/Tools/Toolchain/psptoolchain-20070626.tar.bz2
10http://ps2dev.org/psp/Projects/PSPSDK
11described at http://www.psp-programming.com/tutorials/c/lesson04.htm.

17

http://www.beyondlogic.org/uClinux/bflt.htm
http://ps2dev.org/psp/Tools/Toolchain/psptoolchain-20070626.tar.bz2
http://ps2dev.org/psp/Projects/PSPSDK
http://www.psp-programming.com/tutorials/c/lesson04.htm

The program in charge of loading uClinux image file, uncompressing it and copying the resulting
data in RAM in the address space starting at 0x88000000 [4], activate peripherals (serial port,
CPU cache) and finally jump to the starting address of the the kernel is presented here:

#define KERNEL_ENTRY 0x88000000

#define KERNEL_PARAM_OFFSET 0x00000008

#define KERNEL_MAX_SIZE (size_t)(4 * 1024 * 1024) /* 4M */

#define printf pspDebugScreenPrintf

BOOL loadKernel(void ** buf_, int * size_)

{

gzFile zf;

void * buf;

int size;

zf = gzopen(s_paramKernel, "r");

buf = (void *)malloc(KERNEL_MAX_SIZE);

size = gzread(zf, buf, KERNEL_MAX_SIZE);

gzclose(zf);

*buf_ = buf;

*size_ = size;

}

/*---*/

void transferControl(void * buf_, int size_)

{

KernelEntryFunc kernelEntry = (KernelEntryFunc)(KERNEL_ENTRY);

/* prepare kernel image */

memCopy((void *)(KERNEL_ENTRY), buf_, size_);

uart3_setbaud(s_paramBaud);

uart3_puts("Booting Linux kernel...\n");

kernelEntry(0, 0, kernelParam);

}

A copy of this bootloader, compiled as a PSP game using make kxploit for generating the
usual two directories pspboot et pspboot% ready for use on the MemoryStick, is available on the
author’s website at http://jmfriedt.free.fr/.

$ make kxploit

psp-gcc -I. -I/usr/local/pspdev/psp/sdk/include -O2 -G0 -Wall -D_PSP_FW_VERSION=150 -c -o main.o main.c

psp-gcc -I. -I/usr/local/pspdev/psp/sdk/include -O2 -G0 -Wall -I. -I/usr/local/pspdev/psp/sdk/include -O2 -G0 -Wall -c -o kmodlib.o kmodlib.S

psp-gcc -I. -I/usr/local/pspdev/psp/sdk/include -O2 -G0 -Wall -D_PSP_FW_VERSION=150 -L. -L/usr/local/pspdev/psp/sdk/lib main.o kmodlib.o -lz -lpspdebug -lpspdisplay -lpspge -lpspctrl -lpspsdk -lc -lpspnet -lpspnet_inet -lpspnet_apctl -lpspnet_resolver -lpsputility -lpspuser -lpspkernel -o pspboot.elf

...

We can now load an operating system in the volatile memory of the PSP: we wish to be able
to compile this software in order to adapt it to our needs. However, an operating system, and the
associated tools for exploiting the facilities provided by this environment, is a rather large piece
of software, for which some dedicated compilation tools have been developed: buildroot is the
one we have chosen to use here.

2.3 Description and usage of the buildroot environment

buildroot is a set of Makefiles for generating a toolchain (set of tools for compiling programs
for a given target architecture), a Linux kernel and a rootfs (image of the files needed to con-
figure and run the operating system). buildroot automates the download of source codes and
the needed patches, configures and installs the programs in the rootfs. Various rootfs image for-
mats are supported: squashfs, cramfs, ext3, cpio archive, initramfs, etc... In the case of the
PSP, the file loaded in memory is obtained by compressing with gzip the raw binary image
buildroot-psp/project build mipsel/linuxonpsp/linux-2.6.22/arch/mips/boot/vmlinux.bin).

18

http://jmfriedt.free.fr/

This image includes the kernels and the embedded rootfs as an initramfs. The option BR2 TARGET ROOTFS INITRAMFS=y
must hence be activated during the buildroot configuration.

Considering the buildroot directory structure might seem at first sight complex, we will
present here some of the most common directories and describe their content:

• the toolchain directory includes all necessary Makefiles to compile the toolchain. For exam-
ple, toolchain/gcc holds the files needed for generating a functional gcc for the requested
target, and so for all the supported versions:

$ tree -L 1 toolchain/gcc/
toolchain/gcc/
|-- 3.3.5
|-- 3.3.6

...
|-- 4.2.1
|-- Config.in

...
|-- gcc-uclibc-3.x.mk
|-- gcc-uclibc-4.x.mk

The files gcc-uclibc-3.x.mk and gcc-uclibc-4.x.mk are elements of the Makefile needed
to compile gcc depending on the selected configuration.

• during the toolchain compilation step, the various components are located in the directory
toolchain_build_xxxx: for the PSP, xxxx is mipsel.

• package includes the Makefiles for the applications. As an example, wget (non busybox) is
located in:

$~/buildroot$ tree package/wget/
package/wget/
|-- Config.in
‘-- wget.mk

wget.mk is the fragment of the Makefile for compiling wget. A quick glance at this file shows
some interesting targets:

$~buildroot/package/wget$ cat wget.mk
...
wget: uclibc $(TARGET_DIR)/$(WGET_TARGET_BINARY)

wget-clean:
rm -f $(TARGET_DIR)/$(WGET_TARGET_BINARY)
-$(MAKE) -C $(WGET_DIR) clean

wget-dirclean:
rm -rf $(WGET_DIR)

...

From the buildroot top directory, the command make wget will add the command wget
to the rootfs. make wget-clean cleans the directory in which the compilation of wget
takes place (i.e. build mipsel/wget). make wget-dirclean is the method to remove even
this directory. In general, the methods $(app), $(app)-clean and $(app)-dirclean are
available for all applications.

The same analysis of the busybox directory shows the same directory structure including all
the versions and associated patches available.

19

• most applications (also called packages) are compiled in build_mipsel (variable BUILD DIR
in the various Makefiles of the packages). This directory is dynamically created during the
compilation step. Each package is uncompressed there, configured and compiled:

$~/buildroot$ ls build_mipsel/
fakeroot-1.8.10 makedevs psposk2 staging_dir

Notice the presence of the build_mipsel/staging_dir directory. It is used in the various
Makefiles under the STAGING DIR variable and is basically the root directory of the cross-
compilation environment. The CFLAGS and LDFLAGS variabes are defined in buildroot
to direct towards $(STAGING_DIR)/usr/include and $(STAGING_DIR)/usr/lib. When a
new library is compiled, it is not immediately moved to the rootfs but is first added in
the STAGING DIR directory. This is an important step, especially if another application
compiled later needs this library. The configure script of this application will need to
detect the availablity of the library and the associated header files in order to generate the
right Makefile with the appropriate functionalities. In the case a critical dependency is not
met, the compilation will simply not occur. A good habit when packaging an application is
to always use the STAGING DIR directory when installing this application (make install).
The needed files will later be copied from the STAGING DIR to the rootfs. This step acts as
a filter and removes all the documentation files or the programs not needed on the target
system. Access permission on some files are also updated at this stage.

• the main applications such as busybox or the Linux kernel are not compiled within the
BUILD DIR directory but in

project_build_mipsel/linuxonpsp (variable PROJECT BUILD DIR):

$~/buildroot$ ls project_build_mipsel/linuxonpsp/
buildroot-config busybox-1.9.0 linux-2.6.22 linux-2.6.22-bk root

Notice the root directory, defined in the Makefiles under the TARGET DIR variable. As hinted
by the name, this is the target directory for the rootfs used to generate the final image in
the desired format (ext3, cpio, squashfs, cramfs, etc...). Exploring this directory provides
some insight of the organization of the directory structure and the space used on the target
system:

$~/buildroot$ tree project_build_mipsel/linuxonpsp/root/
|-- bin
| |-- busybox
| |-- cat -> busybox
| |-- cp -> busybox
[...]
|-- etc
| |-- TZ
| |-- fstab
| |-- group
| |-- hostname
| |-- hosts
| |-- init.d
| | |-- S20urandom
[...]
| |-- services
| ‘-- shadow
|-- home
| ‘-- default

20

|-- init -> sbin/init
|-- lib
| |-- libgcc_s.so -> libgcc_s.so.1
| ‘-- libgcc_s.so.1
|-- linuxrc -> bin/busybox
|-- proc
|-- root
|-- sbin
| |-- getty -> ../bin/busybox
| |-- init -> ../bin/busybox
| ‘-- mdev -> ../bin/busybox
[...]

• the target diretory includes all the Makefiles needed for the compilation of the final rootfs
final. For example, when generating a squashfs formatted image, the part of the Makefile
located in target/squashfs/squashfsroot.mk will be used. We also find there the skeleton
of the TARGET DIR directory (target skeleton) :

$~/buildroot$ ls target/generic/target_skeleton/
bin dev etc home lib mnt opt proc root sbin tmp usr var

The user can include in these directories a script that is not specifically associated with one
specific application.

As a summary, buildroot is divided in two main classes of directories: those containing the
Makefiles, packages and the toolchain on one hand, and on the other hand the directories in which
work is performed during the compilation, created when needed.

As a conclusion, let us emphasize one of the downsides of buildroot: its strong dependency
on the coherence on the cross-compilation host environment. When configuring applications,
tools such as pkg-config for example have the poor habit in case of failure to look in the
host directory /usr/lib/pkgconfig/. One can imagine, when generating a rootfs on a host
on which dbus is installed, that some problems will be met during the execution step on the
targt system when such misconfigurations occur. In order to avoid such annoyances, a good habit
is to perform all cross-compilation steps in a minimalistic and well understood chroot environ-
ment. A debootstrap installation of a stable debian distribution provides a good starting point
for fine cross-compilation environment, as described at http://wiki.easyneuf.org/index.php/
Buildroot_HOWTO [in French].

2.4 The serial port interface

The PSP provides several asynchronous serial ports: the wired connection next to the headset,
and the wireless infrared link. Although an interrupt is associated to the events occuring on these
ports (the UART is defined with interrupt number 0 [5]), the uClinux use of the asynchronous
ports is based on a periodic polling of the port status, probably for historic reasons. This polling
is performed at the same time than the management of other periodic events controlled by the
timer interrupt (CPUTIMER interruption number 66 in [5]).

The communication through the serial port UART3 has been implemented in linux/drivers/serial/serial psp.c

void psp_uart3_txrx_tick()
{
if (!s_psp_uart3_port_data.shutdown &&

(s_psp_uart3_port_data.txStarted ||
(!s_psp_uart3_port_data.rxStopped &&
!(PSP_UART3_STATUS & PSP_UART3_MASK_RXEMPTY))))

{

21

http://wiki.easyneuf.org/index.php/Buildroot_HOWTO
http://wiki.easyneuf.org/index.php/Buildroot_HOWTO

up(&s_psp_uart3_port_data.sem); // wakes up character reception
}

}

This interrupt service routine wakes up a kernel thread in charge of testing whether a char-
acter is available in the queue of the UART (Fig. 13): psp_port_txrx_thread(). Waking up
this function is hence controled by a timer interrupt, initiliazed in psp.c under arch/mips/psp
(function psp cputimer handler()). While reading data, access to the serial port is locked by
the mutex init_MUTEX_LOCKED(&portData->sem); which was initialized in the kernel thread
psp_port_txrx_thread().

We find here an initialization sequence similar to that used for the joypad:

static int __init psp_serial_modinit()
{
[...]
portData->txThreadId = kernel_thread(psp_port_txrx_thread,

port,
CLONE_FS | CLONE_SIGHAND);

[...]}

calls

psp_uart3_txrx_tick

periodic interrupt

service routine
psp_cputimer_handler

timer interrupt

file

arch/mips/psp/psp.c

s_psp_uart3_data

wakes up the semaphore
psp_port_txrx_thread

unlocks thread

calls

...tx_chars

..._rx_chars

PSP_UART_RXBUFreads

PSP_UART_TXBUFfills

drivers/serial/serial_psp.c

file

tty management

tty_intert_flip_char

Figure 13: The periodic timer interrupt is also used for periodically probing the status of the serial
port and interacting with the console.

The management of the serial port of the PSP, named /dev/ttySRCi, is described in the file
serial psp.c in the director drivers/serial of the kernel. We find there on the one hand
a management of the communication following the description found in the IPL SDK and in
homebrew PSP software, and on the other hand the interface between the serial port and a
terminal – the console being one particular case.

From a user perspective, creating a console on a serial port is obtained in the usual Linux way
(Fig. 14) by adding in /etc/fstab the line

Put a getty on the serial port
ttyS2::respawn:/sbin/getty -L ttyS2 115200 vt100

So far, we have been able to get a working uClinux environment on PSP and communicate
through a serial terminal. Our interest however is to add dedicated hardware to the game console:

22

Figure 14: A working uClinux environment: left, the boot sequence and right, some commands
typed from a PC running minicom as serial terminal software.

since there is no parallel bus and communication port other than the asynchronous serial port, the
only possibility to add functionalities is through an external microcontroller. We will illustrate
this aspect by adding an external keyboard and transfer data to the PSP through the RS232 port.

2.5 Application example: adding a PS2 compatible keyboard

Injecting characters received from the serial port in the tty layer [6, chap. 18 “TTY Drivers”]
(tty flip char() function of psp uart3 rx chars() is exploited in two ways: either by running a
terminal program on a PC transmitting characters through the serial port (for example screen or
minicom), or by connecting a keyboard after converting its protocol to a RS232 stream. The first
solution is the easiest but the least convenient since it requires a PC to communicate, removing
the point of a handheld game console running GNU/Linux. The second one is the one discussed
here.

Figure 15: Left: OnScreen Keyboard (visible as the icon on the top-right of the PSP screen),
probably convenient to SMS writers. Right: a dedicated microcontroller (here an MSP430) takes
care of converting the PS2 signals to RS232. uClinux must be adapted so that this new source of
input signal is connected with the default tty.

We have added a PS2 keyboard using the simplest solution: the PS2 protocol (synchronous two-
way protocol) is converted to an RS232-compatible stream (asynchronous protocol with separated
signals for the emission and reception) using an MSP430 microcontroler. Only minor changes
were brought to one of the examples provided with msp-gcc (the gcc cross-compiler targetting

23

the MSP430) in examples/mspgcc/pc keyboard. Without getting into the details of the PS2
protocol which is well managed by the microcontoler, we only modify this example program to
communicate the result of a keystroke through the serial port rather than the default display on
an LCD screen. We also must remove once every two character code since a keycode is generated
each time a key is hit and released.

3 Conclusion

We have demonstrated the use of operating systems on two handheld game consoles, the Nintendo
Dual Screen (NDS) and the Sony Playstation Portable (PSP). Understanding general principles
of cross compilation toolchains and using opensource tools free to adapt to our purposes allowed
us to work either on ARM or MIPS based architectures with uClinux or RTEMS ports.

We have seen that the Slot2 parallel bus of the NDS provides the required signal to inter-
face dedicated hardware for control and data acquisition. Although providing a more powerfull
processor and more memory, the PSP provides fewer opportunities for instrumentation and em-
bedded hardware development since neither wifi nor USB are yet reverse engineered and the only
communication port with external devices is an asynchronous seria port.

As is often the case in embedded hardware design, the right tools rather than the most powerful
ones are ofter the ones providing the best performances: using opensource tools is one way of only
being limited by one’s knowledge and imagination rather than by hardware compliant with the
few commercial tools the developer might have secured funding for. Futhermore, the uniformity
of the opensource tools whatever the target architecture (gcc, binutils and newlib within the
buildroot framework) means that adapting to a new architecture is possible within minimum
time and cost once these environments are understood.

4 Acknowledgement

We are greateful to the GNU/Linux Magazine France team – and more specifically Denis Bodor
– for allowing us to translate samples of the text used in articles [7, 8] published in this journal
as well as using some of the pictures illustrating these documents. P.Kestener (CEA/IRFU,
Saclay, France) mentioned the availability of the NDS BSP of RTEMSC. M. Bucchianeri patiently
answered our questions as we were discovering RTEMS and the NDS BSP.

References

[1] Xiptech is a company providing some tools and a cross compilation toolchain targeted towards
the MIPS architecture: Porting uClinux to MIPS available at http://www.xiptech.com/
download/porting.zip

[2] the web site of Jackson Mo “Linux On PSP” includes the tools we used for generating a usable
buildroot environment: jacksonm88.googlepages.com/linuxonpsp.htm

[3] the original web site df38.dot5hosting.com/~remember/chris/ is unfortunately no longer
active. A similar web site providing similar informations is available at http://www.bitvis.
se/articles/psplinux.php

[4] TyRaNiD, The Naked PSP, presentation available at http://ps2dev.org/psp/Tutorials/
PSP_Seminar_from_Assembly.download

[5] groepaz/hitmen, Yet another PlayStationPortable Documentation, available at http://
hitmen.c02.at/files/yapspd/psp_doc/, and more specifically a list of the interrupts of the
PSP detailed at http://hitmen.c02.at/files/yapspd/psp_doc/chap9.html

24

http://www.xiptech.com/download/porting.zip
http://www.xiptech.com/download/porting.zip
jacksonm88.googlepages.com/linuxonpsp.htm
df38.dot5hosting.com/~remember/chris/
http://www.bitvis.se/articles/psplinux.php
http://www.bitvis.se/articles/psplinux.php
http://ps2dev.org/psp/Tutorials/PSP_Seminar_from_Assembly.download
http://ps2dev.org/psp/Tutorials/PSP_Seminar_from_Assembly.download
http://hitmen.c02.at/files/yapspd/psp_doc/
http://hitmen.c02.at/files/yapspd/psp_doc/
http://hitmen.c02.at/files/yapspd/psp_doc/chap9.html

[6] J. Corbet, A. Rubini & G. Kroah-Hartman, Linux device drivers, O’Reilly (2005) available at
http://lwn.net/Kernel/LDD3

[7] S. Guinot & J.-M. Friedt, GNU/Linux sur Playstation Portable, GNU/Linux Magazine France
114, March 2009, pp.30-40

[8] J.-M Friedt & G. Goavec-Merou, Interfaces matérielles et OS libres pour Nintendo DS :
DSLinux et RTEMS, GNU/Linux Magazine France Hors Série 43, August 2009

25

http://lwn.net/Kernel/LDD3

	Nintendo Dual Screen (NDS)
	DSLinux
	Hardware for data acquisition and control
	Data acquistition: adding an ADC
	RTEMS
	Programming examples: basic structure, framebuffer and shell

	Interactive shell and ``typing'' commands
	Application example: wireless data acquisition system

	Sony PlayStation Portable (PSP)
	Buildroot for MIPS architectures
	uClinux as a PSP game
	Description and usage of the buildroot environment
	The serial port interface
	Application example: adding a PS2 compatible keyboard

	Conclusion
	Acknowledgement

