for i in *.JPG; do echo $i ; done > noms for i in *.JPG; do echo -n $i ; exiftool $i | grep atitu | grep -v R; done > latitude for i in *.JPG; do echo -n $i ; exiftool $i | grep ngitu | grep -v R; done > longitude for i in *.JPG; do echo -n $i ; exiftool $i | grep Altit | grep -v R; done > altitude cat latitude | cut -c 56-100 | cut -d\ -f1,3,4 | sed "s/'//g" | sed 's/"//g' > latitude.txt cat longitude | cut -c 56-100 | cut -d\ -f1,3,4 | sed "s/'//g" | sed 's/"//g' > longitude.txt cat altitude | cut -c 56- | cut -d\ -f1 > altitude.txt paste noms latitude.txt longitude.txt altitude.txtI sometimes have to tune the
56-100argument of cut depending on filename length and exiftool organization. The value (56) must be the index of the number value of interest (latitude, longitude or altitude).
load latitude.txt l=latitude(:,1)+latitude(:,2)/60+latitude(:,3)/3600; save -text latitude.dec l load longitude.txt l=longitude(:,1)+longitude(:,2)/60+longitude(:,3)/3600; save -text longitude.dec land finally the resulting dataset needed for QGis is generated, after removing the GNU/Octave header from the .dec files, by combining all these columns in a single file
paste latitude.dec longitude.dec altitude.txt noms > for_qgis.txtIn QGis, I load the files using the comma-shaped icon, with latitude and longitude assigned respectively to the Y and X columns. Right click on the item in the item-list, Save As and select CRS WGS84-UTM33N (EPSG:32633). Save as positions_31N.csv and clean the resulting file from unwanted columns and comma separator with
cat positions_33N.csv | cut -d, -f1-2,5,6 | sed 's/,/ /g' | sed 's/^43//g' | sed 's/ 875/ /g' > positions_33N.finalFields 1-2,5,6 are longitude, latitude, altitude, filename, so I manually (vi) add the header
#F=X Y Z NIn my particular case, WGS84-UTM33N latitudes are around 8750000 and longitudes are around 430000 so I remove the leading 875 and 43 to match the region I work in and help Micmac's computation by preventing excessively large coordinates from being used. THIS MUST BE ADAPTED TO EACH REGION. I my case, some remaining coordinates might be left with 876xxxx so I also replace (sed) all
\ 876with
1.
mm3d OriConvert OriTxtInFile positions_33N.final jmfgps MTD1=1 NameCple=FileImagesNeighbour.xml CalcV=1 ImC=DJI_0115.JPG NbImC=25generates a FileImagesNeighbour.xml image pairs, and a PATC list which must be adapted to shell scripting (remove spaces around = and surround the list with double quotes).
cat FileImagesNeighbour.xml | sed 's/I generate a script to be executed later by executing an awk script (named script.awk) containing//g' | sed 's/<\/Cple>//g' | grep -v S | grep -v x | sed 's/ //g' > imgpairs
{ print "sed 's/"$4"/43"$1" "875$2"/g' | \\" }where p*final includes the coordinates we created earlier (it was called positions_33N.final):
cat p*final | awk -f script.awk > positions_31N.shIn the script positions_31N.sh, I replace the first line with cat imgpairs | \ and I remove in the last line the trailing | \. I finally execute this script to generate the wkt file to be loaded in QGis (using the coma-shaped icon):
sh ./positions_31N.sh | sed 's/^/LINESTRING(/g' | sed 's/$/)/g' | sed 's/\ /,/2' > aida.wktThe result is for example the following image (for a couple of datasets):
PATC="DJI_0515.JPG|DJI_0514.JPG|DJI_0516.JPG|DJI_0172.JPG|DJI_0173.JPG|DJI_0517.JPG|DJI_0513.JPG|DJI_0171.JPG|DJI_0174.JPG|DJI_0170.JPG|DJI_0175.JPG|DJI_0518.JPG|DJI_0512.JPG|DJI_0169.JPG|DJI_0176.JPG|DJI_0428.JPG|DJI_0429.JPG|DJI_0168.JPG|DJI_0177.JPG|DJI_0511.JPG|DJI_0427.JPG|DJI_0430.JPG|DJI_0496.JPG|DJI_0495.JPG|DJI_0167.JPG" P=".*JPG"PATC might or might not be relevant, depending on the convergence of the camera model. Sometimes the camera lens model (Tapas) will not converge (residue = NaN) and I have to manually select a subset of the pictures better suited for lens characteristics characterization. I iterate on 20-image sequences until the RadiaStd model converges, usually with some success after the 3rd attempt at most ?!
mm3d Tapioca File "FileImagesNeighbour.xml" -1 mm3d Tapas RadialStd "$PATC" Out=Cal mm3d Tapas AutoCal "$P" InCal=Cal Out=Init CenterBascule "$P" Init jmfgps tmp mm3d AperiCloud "$P" tmpHere we check on the coarse point cloud that all camera positions are correct and that the coordinate system is coherent. If elevations are much more than 90 m or camera spacing much more than 10 m, then something was wrong in the coordinate extraction. If one camera is not in the UAV path, I throw away the associated picture.
mm3d Malt Ortho "$P" tmp "DirMEC=Resultats" UseTA=1 ZoomF=2 ZoomI=32 Purge=true AffineLast=false mm3d Tawny Ortho-Resultats/ RadiomEgal=0 Nuage2Ply Resultats/NuageImProf_STD-MALT_Etape_7.xml Attr="Ortho-Resultats/Ortho-Eg-Test-Redr.tif"results in the orthorectified images in Ortho-Resultats and the DEMs in Resultats.
Ortho-Resultats/*edr*: the TIF format is surely nice but huge, so I first convert all useful images to PNG
for i in Orth*/*Redr*.tif; do nom=`echo $i|sed 's/tif/png/g'`;convert $i $nom;doneand combine the resulting image in a single huge PNG orthorectified image since I do not know how to trivially compute the corner coordinates of the sub-frames (should be easy to compute ... homework).
export MAGICK_TMPDIR=/home/jmfriedt/t montage -tile 1x2 -geometry +0+0 Ortho-Eg-Test-Redr_Tile_0_0.png Ortho-Eg-Test-Redr_Tile_0_1.png out.pngThe TMPDIR is due to the fact that my 512 MB tmpfs /tmp directory is not large enough for the imagemagick processing. The tile order seems rationale from the imagemagick web page, but I still need a few trial and errors every time I combine the images to get them in the right position. This is a lengthy computation: in my case, the 210 JPG images acquired from the UAV generate a 14300x40500 pixel large, 251 MB PNG image.
0.045 0 0 -0.045 8839.62 10127.52is appended with the offset coordinate of the corner we initially removed to help micmac's computation, resulting in
0.045 0 0 -0.045 438839.62 8760127.52
"Z_Num7_DeZoom2_STD-MALT@1"*0.09-9.36(since in my example the ResolutionAlti is 9 cm and OrigineAlti is -9.36 m).
Campari "$P" tmp tmp-Campari EmGPS=[jmfgps,2] FocFree=1 PPFree=1 mm3d AperiCloud "$P" tmp-Campari mm3d Malt Ortho "$P" tmp-Campari "DirMEC=Resultats-Campari" UseTA=1 ZoomF=2 ZoomI=32 Purge=true AffineLast=false mm3d Tawny Ortho-Resultats-Campari/ RadiomEgal=0 Nuage2Ply Resultats-Campari/NuageImProf_STD-MALT_Etape_7.xml Attr="Ortho-Resultats-Campari/Ortho-Eg-Test-Redr.tif"(ie executing Campari to generate a new Orientation directory called tmp-Campari, and from there running all the last processing sequences on this new orientation) yields the following chart, with differences in the +/- 30 cm elevation range.