
Optimization of Signal Processing Chains:
Application to Cascaded Filters

A. Hugeat,∗ J. Bernard,∗ J.-M. Friedt,∗ P.-Y. Bourgeois,∗ G. Goavec-Merou∗
∗FEMTO-ST Institute

Univ. de Bourgogne Franche-Comté, CNRS
Besançon, France

Abstract—The design of digital signal processing chains must
meet competing requirements by maximizing performance (e.g.
rejection in the case of a filter) while reducing resource consump-
tion. In this paper, we explore a new methodology for designing
chains assembled by cascading basic processing blocks. We apply
this optimization strategy to the example of a cascade of Finite
Impulse Response (FIR) filters. While the design of cascaded FIR
filters generally focuses on low-level details, we provide a high-
level model. This development strategy can be generalized for
any signal processing chain made by assembling blocks whose
resource consumption is qualified: a solver aims at meeting
multiple objectives including minimizing resource consumption
or optimizing performance. This result is then transformed
into a synthesizable solution targeting a reconfigurable Field
Programmable Gate Array (FPGA). The experiments show that
this approach gives efficient results, both on the quality of the
signal filtering and the processing resource used for the design.

Index Terms—Field Programmable Gate Array, Finite Impulse
Response filter, Optimization

I. INTRODUCTION

Optimizing a software defined radio digital signal process-
ing chain can be a complex problem. Each functional block
in a chain can be optimized separately in order to aim for
a global benefit. But this approach can show some limits.
As a practical demonstration of this concept, we address
Finite Impulse Response (FIR) filters as essential part of every
digitial signal processing frontend responsible for low-pass
filtering the signal before a decimation. Using multiple FIR
filters may be more efficient than a single FIR filter [1].

The aim of this paper is to model resource usage of filter
cascades and attempt to optimize parameters such as coeffi-
cient resolution (bits in an integer representation), number of
coefficients and number of filters to maximize cutoff rejection
in a given processing resource environment. We select FIR fil-
ters for their unconditional stability, despite the larger number
of coefficients with respect to the Infinite Impulse Response
(IIR) filters, introducing a longer lag which does not affect
the processing bandwidth but allows for systematic analysis
of cascaded filter chain. The result of our optimization is then
implemented on a FPGA in order to test and verify that the
identified solution is valid.

Section II describes background works related to FIR filters
design and optimization. Section III defines our model of a
cascaded filter thanks to a mixed integer quadratic program.
Finally, section IV shows the results of our experiments.

II. HARDWARE RESOURCES DESIGN AND OPTIMIZATION

Despite increasing general purpose central processing unit
computational power, real time radiofrequency signal process-
ing remains the realm of FPGA aiming at pipelined processing
data streams generated by current high grade analog to dig-
ital converters running at several hundreds of Msamples per
second. While FPGA size and speed keep on increasing, so
do the requirements of the user, with increasing rejection of
filters or processing bandwith ambitions. Hence, optimizing
available resources for a pipelined processing is needed and
has been readily investigated by some authors.

A very interesting approach aimed at improving the re-
liability and development time consists in using the skele-
ton methodology, as described by Benkrid et al. [2]. This
methodology aims at creating small elementary blocks that are
generic and easily configurable. These blocks can be used by
different projects, improving their quality and reliability over
time. Then Benkrid et al. [3], [4] created a formal language
(HIDE) to describe the placement of blocks inside the FPGA
to optimize the occupied area. This language is derived from
the Prolog language and describes how the skeleton blocks
can be connected. Once the whole processing chain has been
described, HIDE uses native built-in features of Prolog to seek
an optimized placement. The placement optimization improves
the resource consumption. Compared to our approach, this
work only focuses on placement optimization, which is rather
low-level and forgets about quality of the resulting chain.

Radiofrequency datastream digital processing is best im-
proved by focusing on the FIR filters used in the frontend.
Cen et al. [5] and Dey et al. [6] both use a genetic algorithm
to design the FIR coefficients. They take the wanted shape of
the frequency response and, generation after generation, have
a coefficient set which better fits the ideal response. With our
approach, we do not design the filters but consider sets of
coefficients generated from a least square fitting approach or
similar filter design tool. The free parameters are the cutoff
frequency, rejection and quantization resolution in the context
of computations restricted to integers: a collection of FIR filter
with varying parameter is hence assembled and each element
qualified in terms of cutoff band rejection. The aim is to
globally optimize the problem rather than addressing each FIR
individually.

Some works propose to improve the FIR algorithm. For



example, Samueli et al. [7] explain that taking only power-of-
two coefficients in the FIR allows to replace the Digital Signal
Processing (DSP) multiplier by a computationnaly efficient
bit shift. The speed is greatly improved but there is a hard
constraint on the coefficients. Another example is given by
Tsao et al. [8]. This time, the authors take advantage of
the mathematical symmetry of convolution to substitute some
multipliers by some adders. Both of these solutions are again
focused on low-level hardware optimization.

Lim et al. [1] worked on the efficiency of multiple filters
instead of one filter. Their research is focused on the impact of
ripples on passband when they use a cascaded filter. To limit
this impact they developed a Mixed Intger Linear Program
(MILP) to search the best filter coefficients. Although their
method aims at designing filter coefficients, it proves that we
can use a cascade of filters to save some computation time or
resources. Later Lim et al. improved their work on cascaded
filters [9]. They developped another linear program to design
two filters to reduce the ripples compared to a unique filter
solution.

Young and Jones [10] proposed another MILP to design
a cascaded filter. They considered the problem of resource
consumption for ASIC design. Moreover, they also considered
the rejection on the stopband. The limitation of their work is
the time to solve the MILP et the scalability of the approach.
Indeed, they were not able to create a solution for more than
two sub-filters. Despite this limit, the approach confirms the
relevance of multiple filters to improve the stopband rejection.

All these papers exhibit interesting optimizations to design
FIR filters. In contrast, our work aims at providing a generic
methodology to optimize any signal processing chain. We aim
at a more abstract model of the blocks, and in the case of a
cascasded FIR filter, of a simple FIR. The next section shows
how to design a cascaded FIR filter with our methodology.

III. MODEL FOR CASCADED FILTERS

In order to get an efficient global design, our methodology
is based on two steps. First, we create a model for each block,
with high-level parameters, abstracting totally the implementa-
tion details. Second, we define the constraints and the objective
as an optimization problem. Finally we use a solver to obtain
an optimal theoretical result.

In this section, we apply this methodology to the problem
of the cascade of FIR filters.

A. Model of a Filter

The cascade is composed of n stages. In stage i (1 ≤ i ≤ n),
the filter is composed of a FIR and a shifter. The FIR has Ci
coefficients of size πCi bits. Equation 1 defines the computation
of output data (y) as a weighted average of input data (x). This
equation is a discrete convolution. The shifter does a right shift
of size πSi bits. The filter takes input data of size π−

i bits and
produces output data of size π+

i . Figure 1 shows one stage of
the cascade.

Ci, π
C
i πSi

π−
i π+

i

Fig. 1. A single filter is composed of a FIR (on the left) and a Shifter (on
the right)

yn =

Ci−1∑
i=0

bi︸︷︷︸
πC
i bits

× xn−i︸︷︷︸
π−
i bits

(1)

FIR i can reject F (Ci, π
C
i ) dB. F is determined numeri-

cally. To measure this rejection, we use GNU Octave software
to design FIR filter coefficients thanks to two algorithms
(firls and fir1). For each configuration (Ci, π

C
i ), we first

create a FIR with floating point coefficients and a given Ci
number of coefficients. Then, the floating point coefficients
are discretized into integers. In order to ensure that the
coefficients are coded on πCi bits effectively, the coefficients
are normalized by their absolute maximum before being scaled
to integer coefficients. At least one coefficient is coded on
πCi bits, and in practice only bCi/2 is coded on πCi bits while
the other are coded on very fewer bits.

With these coefficients, the freqz function is used to
estimate the magnitude of the transfer function of the filter. We
consider the maximum rejection within the stopband minus the
mean of the absolute value of passband rejection as efficiency
criterion. This criterion gives us the value of F (Ci, π

C
i ) for

each configuration.

B. Problem Description

The problem we address is to maximize the rejection under
bounded silicon area and feasability constraints. Variable ai is
the area taken by filter i (in arbitrary unit). Variable ri is the
rejection of filter i (in dB). Constant A is the total available
area. We model our problem as follows:

Maximize
n∑
i=1

ri

n∑
i=1

ai ≤ A (2)

ai = Ci × (πCi + π−
i ), ∀i ∈ [1, n] (3)

ri = F (Ci, π
C
i ), ∀i ∈ [1, n] (4)

π+
i = π−

i + πCi − πSi , ∀i ∈ [1, n] (5)

π+
i−1 = π−

i , ∀i ∈ [2, n] (6)

π+
i ≥ 1 +

i∑
k=1

(
1 +

rj
6

)
, ∀i ∈ [1, n] (7)

π−
1 = ΠI (8)

Equation 2 states that the total area taken by the filters must
be less than the available area. Equation 3 gives the definition



of the area for a filter. More precisely, it is the area of the
FIR as the Shifter does not need any circuitry. We consider
that the FIR needs Ci registers of size πCi + π−

i bits to store
the results of the multiplications of the input data and the
coefficients. Equation 4 gives the definition of the rejection
of the filter thanks to function F that we defined previously.
The Shifter does not introduce negative rejection as we explain
later, so the rejection only comes from the FIR. Equation 5
states the relation between π+

i and π−
i . The multiplications in

the FIR add πCi bits as most coefficients are close to zero, and
the Shifter removes πSi bits. Equation 6 states that the output
number of bits of a filter is the same as the input number
of bits of the next filter. Equation 7 ensures that the Shifter
does not introduce negative rejection. Indeed, the results of
the FIR can be right shifted without compromising the quality
of the rejection until a threshold. Each bit of the output data
increases the maximum rejection level of 6 dB. We add one to
take the sign bit into account. If equation 7 was not present,
the Shifter could shift too much and introduce some noise
in the output data. Each supplementary shift bit would cause
6 dB of noise. A totally equivalent equation is: πSi ≤ π−

i +
πCi − 1−

∑i
k=1

(
1 +

rj
6

)
. Finally, equation 8 gives the global

input’s number of bits.
This model is non-linear and even non-quadratic, as F does

not have a known linear or quadratic expression. We introduce
p FIR configurations (Cij , π

C
ij), 1 ≤ j ≤ p that are constants.

We define binary variable δij that has value 1 if stage i is
in configuration j and 0 otherwise. The new equations are as
follows:

ai =

p∑
j=1

δij × Cij × (πCij + π−
i ), ∀i ∈ [1, n] (9)

ri =

p∑
j=1

δij × F (Cij , π
C
ij), ∀i ∈ [1, n] (10)

π+
i = π−

i +

 p∑
j=1

δijπ
C
ij

− πSi , ∀i ∈ [1, n] (11)

p∑
j=1

δij ≤ 1, ∀i ∈ [1, n] (12)

Equations 9, 10 and 11 replace respectively equations 3,
4 and 5. Equation 12 states that for each stage, a single
configuration is chosen at most.

This modified model is quadratic, and it can be linearised if
necessary. The Gurobi optimization software is used to solve
this quadratic model, and since Gurobi is able to linearize, the
model is left as is. This model has O(np) variables and O(n)
constraints.

Note that we could also define a complementary problem:
minimize the silicon area under a bounded rejection and
feasability constraints. In this case, the objective function
would be to minimize

∑n
i=1 ai. Equation 2 would be replaced

by equation 13 where R would be the guaranteed rejection.

TABLE I
CONFIGURATIONS (Ci, π

C
i , π

S
i ), REJECTIONS AND AREAS (IN ARBITRARY

UNITS) FOR PRN/500

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (21, 7, 0) - - - - 32 dB 483

2 (3, 3, 15) (33, 9, 0) - - - 58 dB 486

3 (3, 3, 15) (31, 8, 0) (3, 3, 0) - - 67 dB 477

4 (3, 3, 15) (19, 7, 2) (11, 5, 2) (3, 3, 0) - 74 dB 496

5 (3, 3, 15) (23, 8, 3) (3, 3, 0) (3, 3, 0) (3, 3, 0) 78 dB 486

n∑
i=1

ri ≥ R (13)

IV. EXPERIMENTAL RESULTS

To produce the following results, we have developed a
workflow as described in this section. From a host PC, we
solve the quadratic program and we generate a FPGA design
with Xilinx Vivado software (version 2018.2). The synthesized
bitstream is used to configure the Programmable Logic (PL)
of the Xilinx Zynq 7010 SOC (xc7z010clg400-1) provided by
a Redpitaya board under supervision of GNU/Linux running
on the Processing System (PS). The response of the filter is
addressed both on synthetic signals by feeding the FIR with
the output of a pseudo-random (20-bit long linear feedback
shift register) number generator. Finally, on the host PC fetches
filtered datasets, the resulting transfer functions are normalized
to obtain the Power Spectrum Density (PSD) aligned to zero
and the performances of the various filters are compared by
assessing the rejection following the criteria detailed earlier.

This section describes the experimental results obtained
with the previous workflow. The goal is to check whether
the results given by the filter solver are accurate enough in
an experimental context i.e. the model of the filter is good
enough to give solid results in terms of rejection as well as in
terms of silicon area usage.

The experimental setup is composed of three cases. The
raw input is generated by a Pseudo Random Number (PRN)
generator, which fixes the input data size ΠI . Then the total
silicon area A has been fixed to either 500, 1000 or 1500 arbi-
trary units. Hence, the three cases have been named: PRN/500,
PRN/1000, PRN/1500. The number of configurations p is
1827, with Ci ranging from 3 to 60 and πC ranging from
2 to 22. In each case, the quadratic program has been able to
give a result up to five stages (n = 5) in the cascaded filter.

A. Comparison of Solver Results

This section presents the output of the filter solver i.e.
the computed configurations for each stage, the computed
rejection and the computed silicon area. This is interesting
to understand the choices made by the solver to compute its
solutions.

Table I shows the results obtained by the filter solver for
PRN/500. Table II shows the results obtained by the filter
solver for PRN/1000. Table III shows the results obtained by
the filter solver for PRN/1500.



TABLE II
CONFIGURATIONS (Ci, π

C
i , π

S
i ), REJECTIONS AND AREAS (IN ARBITRARY

UNITS) FOR PRN/1000

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (37, 11, 0) - - - - 56 dB 999

2 (3, 3, 15) (51, 14, 0) - - - 87 dB 975

3 (3, 3, 15) (35, 11, 2) (19, 7, 0) - - 99 dB 1000

4 (3, 4, 16) (27, 8, 2) (19, 7, 3) (11, 5, 0) - 103 dB 998

5 (3, 3, 15) (31, 9, 2) (19, 7, 2) (3, 3, 0) (3, 3, 0) 111 dB 987

TABLE III
CONFIGURATIONS (Ci, π

C
i , π

S
i ), REJECTIONS AND AREAS (IN ARBITRARY

UNITS) FOR PRN/1500

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (47, 15, 0) - - - - 71 dB 1457

2 (19, 6, 17) (51, 14, 0) - - - 103 dB 1489

3 (3, 3, 15) (35, 11, 2) (35, 11, 0) - - 122 dB 1492

4 (3, 3, 15) (27, 8, 2) (27, 9, 2) (19, 7, 0) - 129 dB 1480

From these tables, we can first state that the more stages are
used to define the cascaded FIR filters, the better the rejection.
It was an expected result as it has been previously observed
that many small filters are better than a single large filter
[1], [9], [10], despite such conclusion being hardly used in
practice due to the lack of tools for identifying individual filter
coefficients in the cascaded approach.

Second, the larger the silicon area, the better the rejection.
This was also an expected result as more area means a filter of
better quality (more coefficients or more bits per coefficient).

Then, we also observe that the first stage can have a larger
shift than the other stages. This is explained by the fact that the
solver tries to use just enough bits for the computed rejection
after each stage. In the first stage, a balance between a strong
rejection with a low number of bits is targeted. Equation 7
gives the relation between both values.

Finally, we note that the solver consumes all the given
silicon area.

B. Comparison of Filters

This section presents the rejection for real data on the
FPGA. In all the figures of this section, the solid line represents
the actual rejection of the filtered data on the FPGA as mea-
sured experimentally. The configurations are those computed
in the previous section.

Figure 2 shows the rejection of the different configurations
in the case of PRN/500. Figure 3 shows the rejection of the
different configurations in the case of PRN/1000. Figure 4
shows the rejection of the different configurations in the case
of PRN/1500.

In all cases, we observe that the actual rejection is close to
the rejection computed by the solver.

C. Comparison of Resource Usage

In this section, we compare the actual silicon resources
given by Vivado to the resources in arbitrary units. The goal
is to check that our arbitrary units of silicon area models well
enough the real resources on the FPGA. Especially we want

Fig. 2. Signal spectrum for PRN/500

Fig. 3. Signal spectrum for PRN/1000

to verify that, for a given number of arbitrary units, the actual
silicon resources do not depend on the number of stages n.
Most significantly, our approach aims at remaining far enough
from the practical logic gate implementation used by various
vendors to remain platform independant and be portable from
one architecture to another.

Table IV shows the resources usage in the case of PRN/500,
PRN/1000 and PRN/1500 i.e. when the maximum allowed
silicon area is fixed to 500, 1000 and 1500 arbitrary units.
We have taken care to extract solely the resources used by the
FIR filters and remove additional processing blocks including
FIFO and PL to PS communication.

Fig. 4. Signal spectrum for PRN/1500



TABLE IV
RESOURCE OCCUPATION. THE LAST COLUMN REFERS TO AVAILABLE

RESOURCES ON A ZYNQ-7010 AS FOUND ON THE REDPITAYA.

n PRN/500 PRN/1000 PRN/1500 Zynq 7010
LUT 261 476 653 17600

1 BRAM 1 1 1 120
DSP 21 37 47 80
LUT 2595 5632 718 17600

2 BRAM 2 2 2 120
DSP 0 0 70 80
LUT 2495 3371 3616 17600

3 BRAM 3 3 3 120
DSP 0 19 35 80
LUT 2660 3830 2603 17600

4 BRAM 4 4 4 120
DPS 0 19 46 80
LUT 2456 3319 - 17600

5 BRAM 5 5 - 120
DPS 0 19 - 80

TABLE V
TIME TO SOLVE THE QUADRATIC PROGRAM WITH GUROBI

n Time (PRN/500) Time (PRN/1000) Time (PRN/1500)
1 0.1 s 0.2 s 0.3 s
2 1.2 s 1.8 s 14.1 s
3 46 s 67 s 264 s (≈ 4 min)
4 60 s 3888 s (≈ 64 min) 5505 s (≈ 1 h 30)
5 473 s (≈ 8 min) 6268 s (≈ 104 min) stopped after 40 h

In some cases, Vivado replaces the DSPs by Look Up Tables
(LUTs). We assume that, when the filters coefficients are
small enough, or when the input size is small enough, Vivado
optimized resource consumption by selecting multiplexers to
implement the multiplications instead of a DSP. In this case,
it is quite difficult to compare the whole silicon budget.

However, a rough estimation can be made with a simple
equivalence. Looking at the first column (PRN/500), where the
number of LUTs is quite stable for n ≥ 2, we can deduce that a
DSP is roughly equivalent to 100 LUTs in terms of silicon area
use. With this equivalence, our 500 arbitraty units corresponds
to 2500 LUTs, 1000 arbitrary units corresponds to 5000 LUTs
and 1500 arbitrary units corresponds to 7300 LUTs. The
conclusion is that the orders of magnitude of our arbitrary unit
are quite good. The relatively small differences can probably
be explained by the optimizations done by Vivado based on
the detailed map of available processing resources.

D. Comparison of Computation Times

In this section we present the computation time to solve the
quadratic problem. For each case, the filter solver software
are executed with a Intel(R) Xeon(R) CPU E5606 cadenced
at 2.13 GHz. The CPU has 8 cores that are used by Gurobi
to solve the quadratic problem.

Table V shows the time needed to solve the quadratic
problem when the maximal area is fixed to 500, 1000 and
1500 arbitrary units.

As expected, the computation time seems to rise exponen-
tially with the number of stages. When the area is limited,
the design exploration space is more limited and the solver is

able to find an optimal solution faster. On the contrary, in the
case of PRN/1500 with 5 stages, we were not able to obtain
a result after 40 hours of computation so we decided to stop.

V. CONCLUSION

We have proposed a new approach to work with a cascade
of FIR filter inside a FPGA. We have modeled the FIR filter
operation and the data shift impact. With this model we
have created a quadratic program to select the optimal FIR
coefficient set to reject a maximum of noise.

Our experimental results are very promising in providing
a rational approach to selecting the coefficients of each FIR
filter in the context of a performance target for a chain of
such filters. The FPGA design that is produced automatically
by our workflow is able to filter an input signal as expected
which validates our model and our approach.

A perspective is to model and add the decimators to the
processing chain to have a classical FIR filter and decimator.
The impact of the decimator is not so trivial, especially in
terms of silicon area for the subsequent stages.

All The software used to demonstrate the concepts devel-
oped in this paper is based on the CPU-FPGA co-design
framework available on OscIMP Digital github repository.

The project is supported by a Région Franche-Comté grant.
The development of the software framework is supported by
the OscillatorIMP ANR Equipex grant.

REFERENCES

[1] Y. C. Lim and B. Liu, “Design of cascade form fir filters with discrete
valued coefficients,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 11, pp. 1735–1739, Nov 1988.

[2] K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level pro-
gramming for fpga based image and video processing using hardware
skeletons,” in The 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’01), March 2001, pp. 219–226.

[3] K. Benkrid, A. Benkrid, and S. Belkacemi, “Efficient fpga hardware
development: A multi-language approach,” Journal of Systems Architec-
ture, vol. 53, no. 4, pp. 184 – 209, 2007.

[4] K. Benkrid, S. Belkacemi, and A. Benkrid, “Hide: A hardware intelligent
description environment,” Microprocessors and Microsystems, vol. 30,
no. 6, pp. 283 – 300, 2006, special Issue on FPGA’s.

[5] L. Cen, “A hybrid genetic algorithm for the design of fir filters with spot
coefficients,” Signal Processing, vol. 87, no. 3, pp. 528 – 540, 2007.

[6] A. Dey, S. Susmita, S. Avijit, and G. Shibani, “A method of genetic
algorithm (ga) for fir filter construction: Design and development with
newer approaches in neural network platform,” vol. 1, 01 2011.

[7] H. Samueli, “An improved search algorithm for the design of multipli-
erless fir filters with powers-of-two coefficients,” IEEE Transactions on
Circuits and Systems, vol. 36, no. 7, pp. 1044–1047, July 1989.

[8] Y. Tsao and K. Choi, “Area-efficient parallel fir digital filter structures for
symmetric convolutions based on fast fir algorithm,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2, pp.
366–371, Feb 2012.

[9] Y.-C. Lim, R. Yang, and B. Liu, “The design of cascaded fir filters,” in
1996 IEEE International Symposium on Circuits and Systems. Circuits
and Systems Connecting the World. ISCAS 96, vol. 2, May 1996, pp.
181–184 vol.2.

[10] C. Young and D. L. Jones, “Improvement in finite wordlength fir digital
filter design by cascading,” in [Proceedings] ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, March 1992, pp. 109–112 vol.5.


