J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

High-overtone Bulk Acoustic Resonator (HBAR) as passive sensor: towards microwave wireless interrogation

J.-M Friedt<sup>1</sup>, N. Chrétien<sup>1</sup>, T. Baron<sup>2</sup>, É. Lebrasseur<sup>2</sup>, G. Martin<sup>2</sup>, S. Ballandras<sup>1,2</sup>

<sup>1</sup> SENSeOR, Besançon, France <sup>2</sup> FEMTO-ST Time & Frequency, Besançon, France

Emails: {jmfriedt,ballandr}@femto-st.fr

slides available at http://jmfriedt.free.fr

November 23, 2012

3

J.M Friedt & al.

## RADAR & sensor

Dasics

Increasing operating frequency

Conclusion

## Introduction

**Context:** acoustic wave transducers used as passive, wireless sensors

**Objective:** use of commercially available RADAR for probing cooperative target acting as sensor

- Alternative strategy to energy harvesting: no energy at all !
- Passive transducer acts as sensor remotely characterized
- The sensor itself is tiny ( $<5 \times 5 \text{ mm}^2$ ) but the antenna is huge
- Analog transducer does not provide identification or anticollision capability

 $\Rightarrow$  increase operating range to the microwave range for **reduced antenna size** and **spatial multiplexing** thanks to directive beams with modest antenna dimensions on the reader.

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## Basics of RADAR

- bistatic (physically separated emitter and receiver) or monostatic configurations: isolation defines rage
- echos due to electromagnetic impedance variations (permittivity ε<sub>r</sub> and conductivity σ)

$$v = \frac{c}{\sqrt{\frac{\varepsilon_r}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} + 1\right)}}$$

- provides both magnitude *and phase* informations on the returned pulse
- typical frequency range: 50 MHz-50 GHz <sup>a</sup>

 $^a{\rm H.}$  Stockman, Communication by means of reflected power, Proc. I.R.E  ${\bf 36}$  pp.1196-1204 (1948)

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## Basics of RADAR

(日) (同) (日) (日)

- bistatic (physically separated emitter and receiver) or monostatic configurations: isolation defines rage
- echos due to electromagnetic impedance variations (permittivity ε<sub>r</sub> and conductivity σ)

$$v = \frac{c}{\sqrt{\frac{\varepsilon_r}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} + 1\right)}}$$

- provides both magnitude *and phase* informations on the returned pulse
- typical frequency range: 50 MHz-50 GHz <sup>a</sup>

<sup>a</sup>H. Stockman, *Communication by means of reflected power*, Proc. I.R.E **36** pp.1196-1204 (1948)

Nov 21 2012 - eWise

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

# RADAR example (2)

(a)

HF-VHF RADAR is long range (even over the horizon), but requires excessive antenna dimensions for industrial applications  $(\lambda_m = 300/f_{MHz} \Rightarrow \lambda/4 = 1 \text{ m at 75 MHz}).$ 



Objective: electromagnetic scanvengers, here called cooperative target

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

Basics of Surface Acoustic Wave (SAW) delay lines

- acoustic = propagation of a mechanical wave on a substrate
- most efficient way of converting electromagnetic (EM) to mechanical: piezoelectric substrate + interdigitated transducers
- identification + sensor
- physical quantity measurement function of acoustic velocity
- incoming EM pulse generates mechanical pulse which returns as EM with a time delay function of physical quantity (temperature, stress, pressure ...)



- high electromechanical coupling coefficient (LNO)
- mirror = patterned electrodes
- time delay between incoming pulse and reflection = measurement
- typical velocity: 1500-5000 m/s for most materials
- typical delays: 1-5  $\mu$ s (3  $\mu$ s at 3000 m/s  $\Rightarrow$  4.5 mm path)

## J.M Friedt & al.

- RADAR & sensor basics
- . . . . . .
- Increasing operating frequency
- Conclusion

# SAW delay line as RADAR cooperative target

Acoustic transducer as RADAR cooperative target:

- complement the passive interface monitoring with sensor interrogation
- linear conversion process from EM to mechanical: no threshold voltage (cf diodes in Si based RFID)



Challenge: at 5000 m/s, a sensor operating at 5 GHz would require 250 nm lithography (with  $\ll \lambda$  resolution)

900

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## Link budget for delay lines

- RADAR illumination of point-like target: decay as  $1/d^4$
- Free Space Propagation Loss (FSPL)

$$10 \times \log_{10} \left( \frac{\lambda^2}{4\pi} \times \frac{\lambda^2}{4\pi} \times \frac{1}{\left(4\pi d^2\right)^2} \right) = 10 \log_{10} \left( \frac{\lambda^4}{(4\pi)^4 d^4} \right)$$

• Considering we know the range at ice-rock interface and reflection coeffient

$$\left(rac{arepsilon_{\it ice} - arepsilon_{\it rock}}{arepsilon_{\it ice} + arepsilon_{\it rock}}
ight)^2 \simeq 19 \; {
m dB}$$

$$\Rightarrow d_{SAW} = d_{ice-rock} imes 10^{(IL_{ice-rock} - IL_{SAW})/40} \simeq$$
 40 m

assuming  $d_{ice-rock} = 100$  m, consistent with SNR of a 5 m deep-measurement  $^1$ 

<sup>1</sup>J.-M Friedt, T. Rétornaz, S. Alzuaga, T. Baron, G. Martin, T. Laroche, S. Ballandras, M. Griselin & J.-P. Simonnet, *Surface Acoustic Wave Devices as Passive Buried Sensors* J. Appl. Phys. **109** (3), pp. 034905 (2011) ( (B) + (E) +

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## High-overtone Bulk Acoustic Resonator (HBAR)

 The acoustic wave no longer propagates at the air-crystal interface but in the bulk of the crystal

- Operating frequencies are defined by layer thicknesses rather than lithography of electrodes
- Oly-crystalline active layer (AIN, ZnO) or single-crystal (lithium niobate): high coupling
- Low loss propagation substrate exhibiting appropriate sensitivity to the measured quantity



Typical dimensions: 5-10  $\mu m$  thick piezo, 300-500  $\mu m$  thick substrate, 2×2 mm^2 chip

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

# High-overtone Bulk Acoustic Resonator (HBAR)

- The acoustic wave no longer propagates at the air-crystal interface but in the bulk of the crystal
- Operating frequencies are defined by layer thicknesses rather than lithography of electrodes
- Poly-crystalline active layer (AIN, ZnO) or single-crystal (lithium niobate): high coupling
- Low loss propagation substrate Frequency comb from 50 to 500 MHz exhibiting appropriate sensitivity to the measured quantity



(日) (同) (日) (日)

I.M Friedt & al.

HRAR

# High-overtone Bulk Acoustic Resonator (HBAR)

- The acoustic wave no longer propagates at the air-crystal interface but in the bulk of the crystal
- 2 Operating frequencies are defined by layer thicknesses rather than lithography of electrodes
- 3 Poly-crystalline active layer (AIN, ZnO) or single-crystal (lithium niobate): high coupling

quantity

- time (s) 4 Low loss propagation substrate Time domain echos, 0.5-2.2  $\mu$ s exhibiting appropriate sensitivity to the measured
- Nov 21 2012 eWise



J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## HBAR measurement strategy

- HBAR spectrum is a comb (in time or frequency domain) of modes
- Frequency domain (resonance identification) or time domain (pulse delay) Digital signal post-processing, *no modification* of RADAR hardware
- Acoustic velocity change with physical property
- no need to change RADAR hardware, only signal post-processing step

**Frequency domain caracterisation**: incompatible with FMCW RADAR (sweep rate  $\ll Q/\pi$  periods) and pulse mode (unable to recover an accurate frequency)

 $\Rightarrow$  time domain approach, search for time delay between returned echos (magnitude & phase)



#### HBAR



(VHF)

# Experimental demonstration (VHF)

## Temperature measurement

# J.M Friedt & al.

#### RADAR & sense basics

### HBAR

Increasing operating frequency

Conclusion



# Experimental demonstration (VHF)

## Temperature measurement

### J.M Friedt & al.



Nov. 21 2012 – eWise

## Towards microwaves: mixing

Using a VHF transducer at microwave frequencies: use a diode next to the sensor as AM demodulator

J.M Friedt & al.



Strategy compatible with **electronic beam steering** on the emission (Space-division multiple access) and omnidirectional receiving antenna (日) (同) (日) (日)

3

Towards microwaves: mixing

Using a VHF transducer at microwave frequencies: use a diode next to the sensor as AM demodulator

wireless interrogation J.M Friedt & al.

High-overtone Bulk Acoustic Resonator

(HBAR) as passive sensor: towards

microwave

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion



Strategy compatible with **electronic beam steering** on the emission (Space-division multiple access) and omnidirectional receiving antenna

Nov. 21 2012 – eWise

## Towards microwaves: mixing

interrogation Using a VHF transducer at microwave frequencies: use a diode next to J.M Friedt & al. the sensor as AM demodulator



off resonance

at resonance

Strategy compatible with **electronic beam steering** on the emission (Space-division multiple access) and omnidirectional receiving antenna

J.M Friedt & al.

RADAR & sensor basics

HBAR

Increasing operating frequency

Conclusion

## Towards microwaves: baseband

- However, adding a rectifying diode brings back the drawback of RFID
- HBAR can reach the microwave frequency range ... if appropriately designed



In this example, the SU8 assembling glue acts as a strong acoustic reflector and generates modes up to 4 GHz

Nov. 21 2012 – eWise

## Conclusion

- High-overtone Bulk Acoustic Resonator (HBAR) as passive sensor: towards microwave wireless interrogation
- J.M Friedt & al.
- RADAR & sense basics
- HBAR
- Increasing operating frequency
- Conclusion

- use of a widely available tool (RADAR) for probing sensors ("cooperative targets")
- piezoelectric-based (linear) transducers for improved interrogation range
- signal processing for (time-based) delay line: temperature
- $\bullet \ \Rightarrow$  acoustic delay lines for tagging or sensor applications
- $\Rightarrow$  HBAR for multimode (multiple RADAR instrument) & time-domain interrogation

A **passive** sensor solves the issue of **local** energy harvesting, and moves the energy requirement to the interrogating RADAR  $\Rightarrow$  best suited in environments where sensor maintenance is impossible once installed (buried in plastic, concrete, soil ...)





(日) (同) (日) (日)