
Embedded electronics exam
J.-M Friedt, December 18, 2022

All software to be programmed and executed either on the PC, microcontroller or emulator.

1 Problem (2 points/answer)

Edward N. Lorenz [1] was a meteorologist work-
ing on modelling the atmosphere in the early days
of computational physics when processors exhibited
less computational power than today’s microcon-
trollers. The Lorenz equation is called a chaotic sys-
tem, chaos being defined as the exponential growth
of initial errors in the system description, or due to
different simulation conditions such as timesteps.
Despite being chaotic, the system remains bounded
withing a finite state space: if we are to consider
x as a temperature, y as a pressure and z as a
wind speed, these quantities remain bounded within
reasonable values under most simulation circum-
stances. Atmospheric condition (“weather”) pre-
vision is considered chaotic since the quantities are
known to remain within bounded values but their
actual value at a given time is difficult to assess, Figure 1: Original manuscript by E.N. Lorenz [1]

with an error growing exponentially over simulation time.
The simplified set of equations (Fig. 2) representing the state of the atmosphere behaviour as three variables (x, y, z) is

summarized [2] as
dx
dt = −σx+ σy
dy
dt = Rx− y − xz
dz
dt = −Bz + xy

with constants σ = 10, B = 8
3 and R = 28. Remember that a differential equation dx

dt = a is solved by computing the small
variation dx during a small duration dt as a× dt and updating the variable x with its evolution x← x+ dx.

1. In order to first become familiar with the processing method, implement in C using floating point numbers the solver

for identifying the location of a ball dropped from the top of a building following the free fall equation d2x
dt2 = −g with

g = 10 m.s−2 the constant acceleration of gravity, or in other words v = dx
dt and dv

dt = −g with v the ball velocity and
x its position. What is the position of the ball, initially static before being dropped, after a 10 s fall computed with a
dt = 10−3 s step?

2. How many iterations did you need to reach that result? When printing the solution of the calculation, also provide the
theoretical result x = 1

2gt
2: the ·2 function is provided by the pow() function of the mathematical library: how do you

compile the program to link with this library providing the squaring function?

3. Repeat the calculation with dt = 10−2 s: how does the result compare with the previous conclusion?

4. Repeat the calculation with dt = 10−1 s: how does the result compare with the previous result? Implement the same
calculation in fixed point number representation and compare with this last floating point result: how do they compare?

Now that we are convinced we can numerically solve a differential equation, we wish to repeat Lorenz’s calculation and solve
his set of differential equations to identify (x, y, z) as a function of time. We first consider the floating point implementation to
benefit from modern processor features, before considering the fixed point implementation best suited for embedded systems not
fitted with a hardware floating point unit.

5. Using floating point numbers in C, solve the first 50 seconds of Lorenz’s set of equations for a time step dt = 10−3 s and
initial conditions (x, y, z) = (0.1, 0., 0.). Plot the evolution of x and z as a function of time.

6. Repeat with dt = 10−2 s: how does the result compare with the previous computation?

7. Repeat with dt = 10−1 s: how does the result compare with the previous computation?

8. Implement the Lorenz equation solver as a fixed point representation keeping three relevant decimals. How does the result
compare with the simulation of question 4?

James Gleick [3] tells the story of E. Lorenz’s discovery as
“One day in the winter of 1961, wanting to examine one sequence at greater length, Lorenz took a shortcut. Instead of starting
the whole run over, he started midway through. To give the machine its initial conditions, he typed the numbers straight from

1

the earlier printout. Then he walked down the hall to get away from the noise and drink a cup of coffee. When he returned an
hour later, he saw something unexpected, something that planted a seed for a new science.

This new run should have exactly duplicated the old. Lorenz had copied the numbers into the machine himself. The program
had not changed. Yet as he stared at the new printout, Lorenz saw his weather diverging so rapidly from the pattern of the last
run that, within just a few months, all resemblance had disappeared. He looked at one set of numbers, then back at the other.
He might as well have chosen two random weathers out of a hat. His first thought was that another vacuum tube had gone bad.

Suddenly he realized the truth. There had been no malfunction. The problem lay in the numbers he had typed. In the
computer’s memory, six decimal places were stored: .506127. On the printout, to save space, just three appeared: .506. Lorenz
had entered the shorter, rounded-off numbers, assuming that the difference – one part in a thousand – was inconsequential.

[...]
... in Lorenz’s particular system of equations, small errors proved catastrophic ”

9. The stability of Lorenz’s attractor – the set of values the variables x, y and z might reach whatever the initial conditions
and initial errors, is best visualized by plotting one variable against the other instead of their time dependence: solve the
Lorenz equation usin fixed point numbers keeping two decimals and plot z against x. How does the chart compare with
the same plot using the solutions found in the previous question?

Figure 2: Excerpts from the original manuscript by E.N. Lorenz introducing (left) the non-linear set of coupled equations as well
as the linearization only valid locally (Eq. 29), and (right) the parameters leading to chaotic behaviour.

2 Questions (1 point/answer)

10. A program running on a STM32 displays messages over the 9600 baud asynchronous serial port in 8N1 format: the C
software for communicating is printf("%3.3f\r\n",M_PI) for displaying π with a maximum of 3 digits in the integer part
and 3 digits in the fractional part. How long does the communication last? Justifiy (the constant M_PI is provided by the
mathematical library in math.h).

11. Compiling an executable output.elf requires three C-language source codes a.c, b.c and c.c. Provide the Makefile for
generating output.elf that will only recompile a single source code when modified in the text editor in order to regenerate
the executable, and will avoid re-compiling the objects resulting from the untouched source files.

12. The following screenshot was captured on an SPI bus configured to program a 28-bit Direct Digtal Synthesizer (DDS)
AD9834 (top chart) clocked at a reference frequency of 70 MHz

2

Identify which color amongst the three bottom curves matches which signal amongst CS#, MOSI and CLOCK. What is
the SPI configuration set for this communication (CPHA, CPOL or MODE)? Justify.

13. On the previous chart, what was the word sent to the DDS over the SPI bus? Justify.

14. Considering that the Frequency Tuning Word is transmitted as two 14-bit words separated by two most-significant-bits
indicating which register is being programmed, does the output frequency of the DDS (top signal and curson) match your
expectaction? Justify.

15. Considering bit indexes start at 0, select bits 6 to 14 of a 16-bit word and set bit 12 of the initial integer to 1.

16. How was the integer of the previous quesiton declared in the C language?

Negative grades if copies from Google/web search irrelevant to the questions are provided as answers.

References

[1] E.N. Lorenz, Deterministic nonperiodic flow, J. of Atmospheric Sciences 20(2) 130–141 (1963) at https://journals.

ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml

[2] H.O. Peitgen, H Jürgens, D. Saupe, & M.J. Feigenbaum, Chaos and fractals: new frontiers of science, Springer New York
(1992)

[3] J. Gleick, Chaos: Making a New Science, Random House UK (1997)

3

https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml

Answers

1. A deterministic equation whose output only depends through polynomial laws on constants and time leads to stable
solutions, in this case the free fall of a ball always converges to the 500 ± 5 m solution irrelevant on the time step dt.
Such behaviour led Descartes in the 17th century to consider nature as deterministic and its evolution to be predictable
assuming initial conditions to be known accurately enough

2. using the pow)() function involves the mathematical library libm linked to the executable by gcc with the -lm flag. The
floating point implementation is
#inc lude<s t d i o . h>
#inc lude<math . h> // pow() r e qu i r e s compi l ing with −lm
i n t main ()
{ f l o a t g=−10. ,v=0. ,x=0. ;
f l o a t dt=0.001 , t , dx , dv ; // change t to 0.01 or 0.1
i n t n ;
f o r (t =0. ; t<=10.; t+=dt)

{dv=g∗dt ; dx=v∗dt ;
v=v+dv ; x=x+dx ;
n++;

}
p r i n t f ("%d: %f %f\n" ,n , x , 0 . 5 ∗ g∗pow(t , 2)) ;

}

3. all results consistently converge to 500 m whatever the timestep, with better convergence with smaller timesteps but more
computational power needed to reach the solution.

4. The fixed point implementation of the same algorithm replaces the arithmetic operations “+” and most importantly “*”
with addfix() and mulfix() described below, and scaling all parameters including the acceleration g with the scaling
factor indicating the location of the decimal in the integer representation.

5. Lorenz equation is solved with
#inc lude <s t d i o . h>
i n t main ()
{double x=0.1 ,y=0. , z=0. , sigma ,R,B, dx , dy , dz ;
double dt=.001 , t ;
i n t k ;
sigma=10. ;
B=8 ./3 . ;
R=470 ./19 . ;
f o r (t=0; t <50. ; t+=dt)

{dx=sigma ∗(y−x) ∗dt ;
dy=(x∗(R−z)−y) ∗dt ;
dz=(x∗y−B∗z) ∗dt ;
x=x+dx ;
y=y+dy ;
z=z+dz ;
p r i n t f ("%f %f %f\n" , x , y , z) ;

}
}

6. The dt = 10−2 s leads to a completely different behaviour of the variables as a function of time when computed with
dt = 10−3 s as shown in the figure below, even though their value remains constrained withing the same boundaries:

0 10000 20000 30000 40000 50000 60000
-20

-10

0

10

20

X

0 10000 20000 30000 40000 50000 60000
-30
-20
-10

0
10
20
30

Y

0 10000 20000 30000 40000 50000 60000
0

10
20
30
40
50

Z

time (sample index)

1e-3

1e-2

1e-3

1e-2

1e-3

1e-2

4

7. With too large a timestep, e.g. dt = 0.1 s, the solution diverges to infinity and can no longer be represented as a floating
point number, hence the display of a solution as NaN or Not a Number.

8. Using the fixed point library
#inc lude "fixed.h"

long addf ix (long in1 , long in2) { r e turn (in1+in2) ;}

long mul f ix (long in1 , long in2)
{ long long tmp ;
tmp=(long long) in1 ∗(long long) in2 ;
tmp/=SCALE;
re turn ((i n t)tmp) ;

}

long d i v f i x (long in1 , long in2)
{ long long tmp=(long long) in1 ∗SCALE;
i f (in2 !=0)

tmp/=(long long) in2 ;
e l s e tmp=0;
re turn ((long)tmp) ;

}

we implement the solution to the Lorenz equation as fixed point calculation
#inc lude <s t d i o . h>
#inc lude "fixed.h"

i n t main ()
{ i n t x=(i n t) (0 . 1∗SCALE) , y=0,z=0,sigma ,R,B, dx , dy , dz ;
i n t dt=(i n t) (. 0 1∗SCALE) , t ;
i n t k ;
sigma=(10∗SCALE) ;
B=(i n t) ((8 . / 3 .) ∗SCALE) ;
R=(in t) (470 . /19 .∗SCALE) ;
p r i n t f ("%d %d %d\n" , x , dt ,B) ;
f o r (t=0; t<(50∗SCALE) ; t+=dt)

{dx=mul f ix (sigma , mul f ix (addf ix (y,−x) , dt)) ;
dy=mul f ix (add f ix (mul f ix (x , add f ix (R,−z)) ,−y) , dt) ;
dz=mul f ix (add f ix (mul f ix (x , y) ,−mulf ix (B, z)) , dt) ;
x=addf ix (x , dx) ;
y=addf ix (y , dy) ;
z=addf ix (z , dz) ;
p r i n t f ("%d %d %d\n" , x , y , z) ;

}
}

9. By plotting one variable as a function of the other (here z as a function of x), similar initial conditions lead to divergent
behaviour still contrainted within bounded values of each variable along a structure known as a strange attractor in the
phase space (x, y, z):

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-20 -15 -10 -5 0 5 10 15 20

Z

X

’t1e-3’ u 1:3

’t1e-2’ u 1:3

5

10. 9600 bauds at 8N1 is 10.4 ms/symbol and the string represents π with three decimals or 5 digits including the decimal
separator followed by two symbols for the line feed and carriage return so a total of 7 symbols or 72.9 ms.

11. The makefile is
a l l : output . e l f
output . e l f : a . o b . o c . o

gcc −o output . e l f a . o b . o c . o
a . o : a . c

gcc −c a . c
b . o : b . c

gcc −c b . c
c . o : c . c

gcc −c c . c

12. green is chip select, blue is the periodic clock, red is the data. The rest state of the clock is high so CPOL=1, and the first
clock transition exhibits the stable state of data so CPHA=0.

13. The word is 0x40404040 but the endianness could have been opposite.

14. After removing the two pairs of unwanted bits, the freqency tuning word becomes the concatenation of 0x0040 (12 least
significant bits) and 0x010 (12 most signifcant bits) or 0x0100040 which is converted by the DDS to 0x0100040/2^28*70e6

or 273450 Hz, matching the frequency displayed on the oscilloscope screenshot.

15. short s;s|=(1<<12);s=(s>>6)&0x0x1ff

16. see above

6

	Problem (2 points/answer)
	Questions (1 point/answer)

