
Digital Communication
J.-M Friedt, April 3, 2025

DCF77 is a German, Very Low Frequency (VLF) station broadcasting timing signals for synchroniz-
ing clocks accross Europe. The carrier frequency of DCF77 is 77.5 kHz. Although this frequency range
is withing the sampling rate of high-quality sound cards sampling at 192 kHz, we shall benefit from
signals collected remotely and streamed over the Internet, named WebSDR. One of the best known
websdr is http://websdr.ewi.utwente.nl:8901/ at the Dutch university of Twente in Enschede.
Although the receiver location is 285 km from the emitter location in Mainflingen, the received signal
is strong (see below, red ellipses including useful setting parameters).

Connect to http://websdr.ewi.utwente.nl:8901/ (not accessible through an Eduroam con-
nection 1) and set the carrier frequency to 80 kHz, CW (Continuous Wave) mode, 5 kHz filter width
(the waterfall chart can be adjusted by setting “band”) and Start recording an audio signal (“Audio
recording”). After collecting a few seconds worth of data, “stop” the recording and save a local copy of
the WAV file.

1. The “file” unix command allows for getting information on the content of a file whose name is
given as argument: what is the sampling rate and data format of the collected information? are
they real or complex data?

We wish to analyze the structure of the signal and the various modulation schemes for transfer-
ing time over VLF. This processing can be completed on your favorite signal processing framework,
whether GNU Octave, Numpy or GNU Radio or any other, whichever you are most comfortable with
and will allow you to tackle most challenges. Under GNU Octave, the characteristics of an audio record
saved as a WAV file is obtained with audioinfo() and reading the content of the file is achieved with
audioread(). GNU Radio provides the Wav File Source. Python’s wave module can be used as
described at https://docs.python.org/3/library/wave.html.

2. The useful signal is off centered and must be brought to baseband for processing. What fre-
quency offset do you expect, or can observe on a Fast Fourier Tranform of the recording?

3. Bring the signal to baseband, centered on 0-Hz. What additional spectral component are we
left with and how can we get rid of this unwanted signal? What would have happened if we had
sampled the signal at 6 ksamples/s instead of the observed sampling rate?

The initial modulation scheme implemented in 1959 was amplitude modulation to transmit the
timing information.

1in case of failure to download a live dataset, a pre-recorded dataset is provided at http://jmfriedt.free.fr/websdr_
recording_start_2025-03-15T12_55_25Z_80.0kHz.wav

1

http://websdr.ewi.utwente.nl:8901/
http://websdr.ewi.utwente.nl:8901/
https://docs.python.org/3/library/wave.html
http://jmfriedt.free.fr/websdr_recording_start_2025-03-15T12_55_25Z_80.0kHz.wav
http://jmfriedt.free.fr/websdr_recording_start_2025-03-15T12_55_25Z_80.0kHz.wav

4. display the amplitude of the signal brought to baseband: what is the time interval of the markers
identified as a drop in the signal amplitude?

5. How accurately did you have to tune the centering of the carrier close to 0-Hz to achieve ampli-
tude demodulation?

The amplitude modulation was complemented in 1988 by Hetzel2 with a phase modulation carry-
ing a 29-chip long pseudo-random sequence, with a small phase swing of ±10◦ to minimize the impact
on existing AM-demodulation receivers.

6. display the phase of the baseband signal. What striking characteristics do you observe that
might prevent identifying the pseudo-random sequence?

7. How do you identify the coarse frequency correction which might allow for correcting this issue?
What is the frequency resolution of the proposed method?

8. In case the phase correction from the previous method was insufficient, what fine frequency
tuning strategy can we use to cancel any leftover frequency offset?

9. Why is fine frequency correction needed for phase demodulation?

10. How often does the pseudo-random sequence pattern repeat within the message? What mathe-
matical tool did you use to reach this conclusion? How sensitive is this mathematical estimator
to frequency offset?

11. The 512-chip long pseudo-random sequence is provided athttp://jmfriedt.free.fr/dcf77_
lfsr.txt in text (ASCII) format and http://jmfriedt.free.fr/dcf77_lfsr.bin in binary
(1-byte/chip) format. We are told in Hetzel’s paper that the chip duration is 120 carrier periods.
What is the chiprate?

12. How does it compare with the sampling rate? How shall we process the samples read from the
dcf77_lfsr file so we can compare them with the data collected in the WAV file? How do you
find the parameters for this processing, and what function do you use (in whatever processing
framework you selected)?

13. Find the copies of the pseudo-random sequence in the recorded signal: how often does it re-
peat? What mathematical tool did you use to achieve this result?

14. How accurately did you need to correct the frequency to achieve this result? Justify this conclu-
sion.

15. Why do you think Hetzel added the phase modulation to the amplitude modulation? What ben-
efit can you identify from the signals you processed?

16. Why did we off-center the receiver frequency when recording the DCF77 signal we analyzed?
How is this kind of receiver architecture named?

2P. Hetzel, Time dissemination via the LF transmitter DCF77 using a pseudo-random phase-shift keying of the carrier, Proc.
2nd EFTF (1988) at https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_4/4.4_zeit_und_
frequenz/pdf/5_1988_Hetzel_-_Proc_EFTF_88.pdf

2

http://jmfriedt.free.fr/dcf77_lfsr.txt
http://jmfriedt.free.fr/dcf77_lfsr.txt
http://jmfriedt.free.fr/dcf77_lfsr.bin
https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_4/4.4_zeit_und_frequenz/pdf/5_1988_Hetzel_-_Proc_EFTF_88.pdf
https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_4/4.4_zeit_und_frequenz/pdf/5_1988_Hetzel_-_Proc_EFTF_88.pdf

Answers

1. file websdr.wav tellsWAVE audio, Microsoft PCM, 16 bit, mono 14238 Hz so the record-
ing only includes real (no imaginary part) samples recorded at a sampling frequency of 14238 Hz.

2. We centered the local oscillator receiver and 80 kHz and DCF77 is broadcasting on 77.5 kHz,
so we expect a 2.5 kHz offset, which is indeed observed on the FFT when correctly setting the
X-axis from − fs /2 to + fs /2.

3. GNU Radio’s Frequency Xlating FIR Filter brings the useful signal to baseband either by
multiplying with a +2.5 or −2.5 kHz local oscallator since both signals are present in the spec-
trum of the real signal. Had we sampled at 6 kHz, the rejected image would have been re-
introduced within the spectrum by aliasing and would have needed a narrower filter for removal.

4. the magnitude of the complex signal is representative of the AM modulation. The amplitude
drop occurs at the beginning of each second.

5. AM demodulation only requires a coarse frequency offset compensation since AM is an inco-
herent demodulation scheme.

6. Despite correcting for the 2.5 kHz offset, a small frequency offset remains observed as linear
phase drift.

7. The coarse frequency offset is identified with an FFT, or by fitting the phase as a function of
time up to the first wrapping by 2π. The resolution is the bin-width of the FFT (fs /N with N the
number of samples in the FFT) or the inverse of the duration to the first phase wrapping.

8. Linear phase fitting.

9. The phase drift prevents the correlation with the pseudo random sequence.

10. The autocorrelation searches for the repeated pattern and is insensitive to the frequency offset
since it occurs in both the reference and the delayed signal.

11. The chip rate is 77500/120 = 645.83 Hz

12. Since we decimated by 10 after frequency transposition and low pass filtering, the sampling
rate has become 14238/10 = 1423.8 Hz, which is more than twice the chip rate. We must re-
sample the pseudo random code so it contains as many samples per symbols than the signal:
rats(1423.8/(77500/120),6) indicates 97/44 so we interpolate by 97 and decimate by 44 in
the Rational Resampler Block of GNU Radio or resample of GNU Octave.

13. The cross-correlation peaks repeat every second, even though the result is not striking with GNU
Radio.

14. The frequency offset must be corrected better than a fraction of the inverse of the duration of
the code.

15. The bandwidth of the phase modulation is much broader than the AM signal bandwidth which
only changes state once every second with a slow rise and fall time. Hence, the timing resolution
is greatly improved with the addition of the phase modulation by Hetzel.

16. Had we centered the local oscillator on the signal carrier, we would have missed half of the
information and not been able to recover a phase. The use of the intermediate frequency to
create the complex signal close to baseband is called a superheterodyne architecture.

3

In GNU Octave, the processing script might be

1 close all
2
3 pkg load signal
4 d=dir(’*wav’);
5 d(1).name
6 a=audioinfo(d(1).name)
7 fs=a.SampleRate;
8 x=audioread(d(1).name);
9 freq=linspace(-fs/2,fs/2,length(x)); % graduer l’axe des frequences

10 subplot(311)
11 plot(freq,abs(fftshift(fft(x))))
12 t=[0:length(x)-1]’/fs;
13 nco=exp(j*2*pi*t*2500); % transposition de la frequence nominale
14 y=x.*nco; % Xlating ...
15 hold on
16 plot(freq,abs(fftshift(fft(y))))
17 axis tight;xlabel(’frequency␣(Hz)’);ylabel(’|FFT|␣(a.u.)’);
18
19 subplot(312)
20 b=firls(32,[0 1000 1200 fs/2]*2/fs,[1 1 0 0]);
21 y=filter(b,1,y); % ... FIR filter and decimate
22 y=y(1:10:end); % decimate
23 t=t(1:10:end);
24 fs=fs/10
25 plot(t,abs(y))
26 axis tight;xlabel(’time␣(s)’);ylabel(’|signal|␣(a.u.)’);
27
28 subplot(313)
29 plot(t(1:400),angle(y)(1:400)) % recherche du residu (ou fft) : resolution
30 [a,b]=polyfit(t(1:400),angle(y)(1:400),1); % de l’erreur en frequence
31 hold on
32 plot(t(1:400),a(1)*t(1:400));
33 axis tight;xlabel(’time␣(s)’);ylabel(’phase␣(rad)’);
34
35 figure
36 subplot(211)
37 y=y.*exp(-j*t*a(1));
38 [a,b]=polyfit(t,angle(y),1);
39 y=y.*exp(-j*t*a(1));
40 z=angle(y);z=z-mean(z);
41 plot(t,abs(xcorr(z,z)(length(t):end))) % autocorrelation
42 axis tight;m=max(abs(xcorr(z,z)(length(t)+200:end)));ylim([0 m*1.1]);
43 xlabel(’delay␣(s)’);ylabel(’autocorr␣(a.u.)’);
44 fc=77500/120;
45 % resample code: "Each chip spans 120 cycles of the carrier"
46 % @ https://en.wikipedia.org/wiki/DCF77 = 645.83 Hz
47 % rats(1423.8/(77500/120),6)=97/44
48
49 subplot(212)
50 load lfsr.dat
51 lfsr=2*lfsr-1;
52 lfsr=resample(lfsr,97,44);

4

53 plot(t,abs(xcorr(lfsr,y))(1:length(y)))
54 axis tight;xlabel(’delay␣(s)’);ylabel(’xcorr␣(a.u.)’);

leading to the following figures:

-6000 -4000 -2000 0 2000 4000 6000

1000
2000
3000
4000
5000

|F
F

T
|	
(a

.u
.)

frequency	(Hz)

0 2 4 6 8

0.01
0.02
0.03
0.04
0.05
0.06

|s
ig

n
a
l|	

(a
.u

.)

time	(s)

0 0.05 0.1 0.15 0.2 0.25

-2
-1
0
1
2
3

p
h
a
se

	(
ra

d
)

time	(s)

0 2 4 6 8
0

50

100

150

200

a
u
to
c
o
rr
	(
a
.u
.)

delay	(s)

0 2 4 6 8

2

4

6

8

10

12

14

xc
o
rr
	(
a
.u
.)

delay	(s)

5

With GNU Radio:

Options
ID: dcf77
Title: Not titled yet
Output Language: Python
Generate Options: QT GUI

Variable
ID: D
Value: 10

Variable
ID: N
Value: 4096*2=8.192k

QT GUI Range
ID: df
Default Value: 0
Start: -10
Stop: 10
Step: .01=10m

Variable
ID: samp_rate
Value: 14.238k

out in
Char To Float

ID: blocks_char_to_float_0
Scale: 1

out in
Complex to Arg

ID: blocks_complex_to_arg_0

out in
Complex to Arg

ID: blocks_complex_to_arg_0_0

out in
Complex to Mag

ID: blocks_complex_to_mag_0

outin
Complex to Mag

ID: blocks_complex_to_mag_1

out

File Source
ID: blocks_file_source_0
File: ...e/exam/2025/lfsr.bin
Repeat: Yes
Add begin tag: pmt.PMT_NIL=()
Offset: 0
Length: 0

outin
Keep 1 in N

ID: blocks_keep_one_in_n_0

out in
Multiply Const

ID: blocks_mu...y_const_vxx_0
Constant: 50

out in
Stream to Vector

ID: blocks_stream_to_vector_0

out in
Stream to Vector

ID: blocks_st...to_vector_0_0

outin

Throttle
ID: blocks_throttle2_0
Sample Rate: samp_rate=14.238k
Limit: None

outin
Vector to Stream

ID: blocks_vector_to_stream_0

out

Wav File Source
ID: blocks_wavfile_source_0
File: ...2_55_25Z_80.0kHz.wav
Repeat: Yes

out in

FFT
ID: fft_vxx_0
FFT Size: N=8.192k
Forward/Reverse: Forward
Window: window....anharris(N)=window.blackmanhar...
Shift: Yes
Num. Threads: 1

out in

FFT
ID: fft_vxx_0_0
FFT Size: N=8.192k
Forward/Reverse: Forward
Window: window....anharris(N)=window.blackmanhar...
Shift: Yes
Num. Threads: 1

outin

FFT
ID: fft_vxx_0_0_0
FFT Size: N=8.192k
Forward/Reverse: Reverse
Window: window....anharris(N)=window.blackmanhar...
Shift: Yes
Num. Threads: 1

out
in

freq

Frequency Xlating FIR Filter
ID: freq_xlat..._filter_xxx_0
Decimation: 1
Taps: 1=1
Center Frequency: 2.5k
Sample Rate: samp_rate=14.238k

out
in

freq

Frequency Xlating FIR Filter
ID: freq_xlat..._filter_xxx_1
Decimation: 1
Taps: 1=1
Center Frequency: df=0
Sample Rate: samp_rate/D=1.4238k

outin

Low Pass Filter
ID: low_pass_filter_0
Decimation: 1
Gain: 1
Sample Rate: samp_rate=14.238k
Cutoff Freq: 1k
Transition Width: sa...te/128=111.234
Window: Hamming

in

QT GUI Frequency Sink
ID: qtgui_freq_sink_x_0
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth (Hz): samp_rate=14.238k

in0

in1

QT GUI Frequency Sink
ID: qtgui_freq_sink_x_0_0
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth (Hz): samp_rate=14.238k

in0

in1

in2

QT GUI Time Sink
ID: qtgui_time_sink_x_0
Number of Points: 1024*4=4.096k
Sample Rate: samp_rate/D=1.4238k
Autoscale: No

in

QT GUI Time Sink
ID: qtgui_time_sink_x_1
Number of Points: N=8.192k
Sample Rate: samp_rate/D=1.4238k
Autoscale: No

out in

Rational Resampler
ID: rational_resampler_xxx_0
Interpolation: 97
Decimation: 44
Taps:
Fractional BW: 0

out
in0

in1

Multiply Conjugate
ID: blocks_mu...onjugate_cc_0
Vector Length: N=8.192k

6

7

