
Porting GNU Radio to Buildroot: application to an embedded digital
network analyzer

feedback on a graduate course on developing an embedded network analyzer

G. Goavec-Merou, J.-M Friedt

FEMTO-ST Time & Frequency,
Besançon, France

8/27/2020 12:33:10 PM
1311.6010K42-103899-La

Trc3 S21 dB Mag 2 dB/ Ref -10 dB Cal 1

Ch1 Center 434 MHz Pwr -10 dBm Bw 10 kHz Span 2.5 MHz

-18

-16

-14

-12

-10

-8

-6

-4

-2

-20

0

-10 dB

Trc2 S21 Phase 10°/ Ref -10° Cal 2

Ch1 Center 434 MHz Pwr -10 dBm Bw 10 kHz Span 2.5 MHz

-50

-40

-30

-20

-10

0

10

20

30

-60

40

-10°

source receiver

Y
 (

m
m

)

X (mm)

432.443174 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

433.218974 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

434.368974 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

reflectivity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

References at http://jmfriedt.free.fr

January 14, 2021

1 / 22

http://jmfriedt.free.fr

Outline
1. The Buildroot framework (kernel + library + userspace application + toolchain)
2. GNU Radio running on the target system (Raspberry Pi4) – demonstration with FM broadcast

radio demodulation and sound transfer to the host used as sound card 1.
3. RPiTX as flexible signal source to probe the Device Under Test: embedded network analyzer

Buildroot

on host (PC)

sdcard.img

on SD card

filesystem with GNU

Radio on RPi4

graphical flowchart with GNU

Radio Companion on PC

Python code

on RPi4 Radio on RPi4

run GNU

Python

generate

& scp to RPi4

make dd SD card

on RPi4

sdcard.img

on PC

...

...

https://github.com/oscimp/gnss-sdr

1G. Goavec-Merou, J.-M Friedt, “On ne compile jamais sur la cible embarquée” : Buildroot propose GNURadio sur
Raspberry Pi (et autres), Hackable, to be published, at http://jmfriedt.free.fr/hackable_buildroot.pdf

2 / 22

https://github.com/oscimp/gnss-sdr
http://jmfriedt.free.fr/hackable_buildroot.pdf

Outline
1. The Buildroot framework (kernel + library + userspace application + toolchain)

2. GNU Radio running on the target system (Raspberry Pi4) – demonstration with FM broadcast
radio demodulation and sound transfer to the host used as sound card 1.

3. RPiTX as flexible signal source to probe the Device Under Test: embedded network analyzer

Buildroot

on host (PC)

sdcard.img

on SD card

filesystem with GNU

Radio on RPi4

graphical flowchart with GNU

Radio Companion on PC

Python code

on RPi4 Radio on RPi4

run GNU

Python

generate

& scp to RPi4

make dd SD card

on RPi4

sdcard.img

on PC

...

...

RPi4
DVB−T USB

source
DUT

Eth PC
0MQ

GNU Radio

1G. Goavec-Merou, J.-M Friedt, “On ne compile jamais sur la cible embarquée” : Buildroot propose GNURadio sur
Raspberry Pi (et autres), Hackable, to be published, at http://jmfriedt.free.fr/hackable_buildroot.pdf

3 / 22

http://jmfriedt.free.fr/hackable_buildroot.pdf

Performamce: Buildroot v.s Raspbian v.s Ubuntu (RPi4)
Buildroot, powersave Buildroot, performance Raspbian, ondemand Ubuntu 20.10, ondemand

volk 64u popcntpuppet 64uu volk 64u popcntpuppet 64u volk 64u popcntpuppet 64u volk 64u popcntpuppet 64u
generic completed in 7103.62 ms generic completed in 3089.73 ms no architectures to test generic completed in 1256.07 ms
neon completed in 4038.24 ms neon completed in 1897.77 ms neon completed in 1329.41 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic

volk 64u popcntpuppet 64u volk 64u popcntpuppet 64u volk 64u popcntpuppet 64u volk 64u popcntpuppet 64u
generic completed in 7154.26 ms redgeneric completed in 3157.41 ms no architectures to test generic completed in 1271.43 ms
neon completed in 4106.08 ms neon completed in 2081.84 ms neon completed in 1594.87 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic

volk 16ic deinterleave real 8i volk 16ic deinterleave real 8i volk 16ic deinterleave real 8i volk 16ic deinterleave real 8i
generic completed in 1745.19 ms generic completed in 697.845 ms generic completed in 420.678ms generic completed in 390.322 ms
neon completed in 254.155 ms neon completed in 105.462 ms u orc completed in 391.035ms neon completed in 121.945 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: u orc Best aligned arch: neon
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: u orc Best unaligned arch: neon

volk 16ic s32f deinterleave 32f x2 volk 16ic s32f deinterleave 32f x2 volk 16ic s32f deinterleave 32f x2 volk 16ic s32f deinterleave 32f x2
generic completed in 2258.27 ms generic completed in 2185.24 ms generic completed in 2211.99ms generic completed in 2125.54 ms
neon completed in 1274.83 ms neon completed in 728.173 ms u orc completed in 4766.13ms neon completed in 687.01 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic Best aligned arch: neon
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic Best unaligned arch: neon
volk 16i s32f convert 32f volk 16i s32f convert 32f volk 16i s32f convert 32f volk 16i s32f convert 32f

generic completed in 2181 ms generic completed in 870.3 ms generic completed in 749.928ms generic completed in 530.426 ms
neon completed in 697.446 ms neon completed in 310.137 ms a generic completed in 750.233ms neon completed in 298.812 ms

a generic completed in 2181.02 ms a generic completed in 870.304 ms a generic completed in 531.097 ms
Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic Best aligned arch: neon

Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic Best unaligned arch: neon
volk 16i convert 8i volk 16i convert 8i volk 16i convert 8i volk 16i convert 8i

generic completed in 1745.56 ms generic completed in 696.289 ms generic completed in 457.922ms generic completed in 462.959 ms
neon completed in 134.038 ms neon completed in 75.7975 ms a generic completed in 458.445ms neon completed in 66.5504 ms

a generic completed in 1745.59 ms a generic completed in 696.28 ms Best aligned arch: generic Best aligned arch: neon
Best aligned arch: neon Best aligned arch: neon Best unaligned arch: generic Best unaligned arch: neon

volk 32f cos 32f volk 32f cos 32f volk 32f cos 32f volk 32f cos 32f
generic fast completed in 51036.2 ms generic fast completed in 19325.9 ms generic fast completed in 22240.9ms generic fast completed in 18609.7 ms

generic completed in 13673.1 ms generic completed in 4678.62 ms generic completed in 5470.72ms generic completed in 4150.04 ms
neon completed in 2637.33 ms

Best aligned arch: generic Best aligned arch: generic Best aligned arch: generic Best aligned arch: neon
Best unaligned arch: generic Best unaligned arch: generic Best unaligned arch: generic Best unaligned arch: neon

C
.J

.
M

u
rr

ay
,

T
h

e
S

u
p

er
m

en
:

T
h

e
S

to
ry

o
f

S
ey

-
m

o
u

r
C

ra
y

a
n

d
th

e
T

ec
h

n
ic

a
l

W
iz

ar
d

s
B

eh
in

d
th

e
S

u
p

er
co

m
p

u
te

r
,

Jo
h

n
W

il
ey

&
S

o
n

s
(1

9
9

7
)

4 / 22

Embedded system development under GNU/Linux

Embedded systems development is about optimizing resources (lower power consumption for
maximum computational power) ⇒ don’t compile on the target !
Functional GNU/Linux (host = Intel x86) environment:

I develop for the target ARM board by cross-compiling: need for a consistent toolchain (compiler
and binary handling utilities), kernel (Linux), libraries and userspace applications

I several frameworks provide such consistent functionaliy (Yocto, OpenEmbedded, Buildroot) – the
latter being arguably the easiest to grasp and requiring fewer resources (8 GB hard disk space)

I fetch the latest stable release of Buildroot:
wget https://buildroot.org/downloads/buildroot-2020.11.1.tar.gz

(or check https://buildroot.org/download.html)

I do not attempt moving the Buildroot directory to some different location after configuring: some
hard-coded directory structure will be broken

5 / 22

https://buildroot.org/download.html

Embedded system development: initial compilation of Buildroot
I ls configs/raspberrypi*: check available configurations (raspberrypi4 64 defconfig)
I make raspberrypi4 64 defconfig to configure with the default configuration
I make to compile Buildroot: many archives will be downloaded ⇒ about 8 GB
I Buildroot (BR) should be self-contained and independent of the host operating system assuming

basic developer functions are available (gcc, g++, make, git, cmake ...)
I at the end: output/images/sdcard.img is the image to be transferred to the SD card
I bitwise copy from a file to a storage medium: dd (Disk Dump)

I WARNING: the following command will definitely delete all data on the target medium.
Make sure how the SD-card is called. It is usually /dev/sdb but in case a mobile hard disk/USB
stick is inserted, it could be that the SD-card is called something else. Check many times before
running dd

I identify the block name 2 using dmesg | tail after inserting the SD card reader, or lsblk
[514523.735373] scsi 6:0:0:0: Direct-Access Mass Storage Device 1.00 PQ: 0 ANSI: 0 CCS

[514523.735669] sd 6:0:0:0: Attached scsi generic sg1 type 0

[514523.994885] sd 6:0:0:0: [sdb] 31422464 512-byte logical blocks: (16.1 GB/15.0 GiB)

[514523.995006] sd 6:0:0:0: [sdb] Write Protect is off

[514523.995008] sd 6:0:0:0: [sdb] Mode Sense: 03 00 00 00

[514523.995129] sd 6:0:0:0: [sdb] No Caching mode page found

[514523.995133] sd 6:0:0:0: [sdb] Assuming drive cache: write through

[514524.024807] sdb: sdb1 sdb2

[514524.025712] sd 6:0:0:0: [sdb] Attached SCSI removable disk

I sudo dd if=output/images/sdcard.img of=/dev/sdd (repeat for every BR modification)

2also make sure a file manager has not automagically mounted the filesystems stored on the SD 6 / 22

Network configuration
We need to connect the Raspberry Pi4 to the host computer
I point to point Ethernet connection easily established if host and target on the same sub-network
I On the SD-card: network configuration is handled by /etc/network/interfaces

iface eth0 inet static

address 192.168.2.2

netmask 255.255.255.0

I No Ethernet ? serial-USB cable to setup the configuration −→
I No Ethernet ? virtual Ethernet over USB-C3 (routing table !)

I first SD card partition: add dtoverlay=dwc2 to config.txt
I second SD card partition: add in /etc/init.d/ an executable

script S01-module with
modprobe dwc2

modprobe g_ether

I Secure SHell (ssh) server on target provided by dropbear
I in the Buildroot directory on the host computer: make menuconfig to configure BR with new

packages
I search (“/”) the keywork dropbear and select this package
I ssh server requires a root password: System Configuration → Enable root login with

password → provide a password → make generates sdcard.img → dd
3https://dev.webonomic.nl/4-ways-to-connect-your-raspberry-pi-4-to-the-internet 7 / 22

https://dev.webonomic.nl/4-ways-to-connect-your-raspberry-pi-4-to-the-internet

Buildroot with GNU Radio support
GNU Radio requires multiple additional options not selected with the default Buildroot:
I glibc C library (instead of uClibc)
I eudev device handling
I Python3 support
I some additional GNU Radio options (Python support, 0-MQ ...)

Buildroot cannot handle dependency changes (Kconfig) ⇒ make clean for major upgrades
To avoid iterative selection of the Buildroot packages, a new defconfig file is available from

https://github.com/oscimp/PlutoSDR/tree/master/configs

Download raspberrypi4 64 gnuradio defconfig, put the file in the local Buildroot configs, and
restart the whole compilation
make clean && make raspberrypi4_64_gnuradio_defconfig && make

(should be faster since the downloaded archives are still in dl/): total disk space about 12 GB
I Check that GNU Radio is properly installed: on the RPi4,

python3

import gnuradio

must return with a prompt and no warning/error
8 / 22

https://github.com/oscimp/PlutoSDR/tree/master/configs

Adding audio support
Audio is not active in the default Buildroot configuration.
To activate audio, add in the config.txt of the first partition of the SD card:
dtparam=audio=on

After booting, dmesg will now display

[3.438439] bcm2835_audio bcm2835_audio: card created with 8 channels

ALSA4 utilities have been installed on the custom Buildroot configuration supporting GNU Radio:
test sound with
speaker-test -t sine -f 440

My first GNU Radio flowchart running on RPi4

I Host: use PyBOMBS (Python Build Overlay Managed Bundle System) as described at
https://github.com/gnuradio/pybombs to install GNU Radio 3.8 on your system

I no graphical output on the target: launch gnuradio-companion on the PC (host) and select
Options → Generate Options → No GUI

I the Id defines the name of the output Python script
I Run → Generate converts flowgraph to Python script
I copy (scp) Python script from host to target
I target (Raspberry Pi4): execute python3 my script.py

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

outfreq

Signal Source

Sample Rate: 48k

Waveform: Cosine

Frequency: 440

Amplitude: 900m

Offset: 0

Initial Phase (Radians): 0

in0

in1

Audio Sink

Sample Rate: 48k

4Advanced Linux Sound Architecture 48 kS/s, stereo sink ⇒ tone on audio jack 9 / 22

https://github.com/gnuradio/pybombs

Outline

We are now sure GNU Radio is properly installed and GNU Radio can access the sound card

General context: we wish to design an instrument in which the data are collected by the Raspberry
Pi 4, under control of the PC, to be transferred to the PC for processing and display.

(Python3)
PCsource RPi4DVB−T

signal

commands

samples

RF
DUT

red will be addressed later in the project

GNU Radio on Raspberry Pi 4

1. first demonstration with RTL-SDR dongle: FM receiver

2. from RPi4 to PC used as sound card: Zero-MQ publish/subscribe

3. from PC to RPi4: TCP/IP server running as a Python thread

Objective: a FM radio receiver running on the RPi4, streaming sound from the RPi4 to the PC,
whose carrier frequency is controlled from the PC

10 / 22

GNU Radio on Raspberry Pi4: streaming from RPi4 to PC
1. FM radio receiver to check proper operation of DVB-T dongle using the sound card

samp_rate=48000*24

cutoff=samp_rate/12

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4
in0

in1

Audio Sink

Sample Rate: 48k

outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 36k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 40

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

2. Streaming from RPi4 to PC5 target host

48000*24

input rate=samp_rate/6

cutoff=samp_rate/12

Adapt IP @ to you embedded
board network configuration

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 48k

Window: Hamming

Beta: 6.76

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

ZMQ PUB Sink

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

IP is the embedded board
network address

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

Audio Sink

Sample Rate: 48k

ZMQ SUB Source

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

5UDP-like Zero-MQ stream: Publish-Subscribe mechanism, tcp://192.168.x.y:5555 is the RPi4 Ethernet @ (listen)
11 / 22

Commands from PC to RPi4

Multithreaded Python script approach
I GNU Radio Companion is a Python script generator

I GNU Radio Companion 3.8 allows for inserting additional Python commands in its initialization code: Python
Snippets

I GNU Radio Companion 3.8 allows for adding Python functions: Python Module

I Launch a separate thread running a TCP (connected mode) server

I Receive commands from the PC running a TCP client (telnet)

I Tune the GNU Radio flowgraph variables by calling the callback function associated with the modified variable

What is a thread ?

I function run in parallel to the main program but sharing the same memory space
i m p o r t t h r e a d i n g
i m p o r t t ime

d e f jmf1 (argument) :
w h i l e True :

p r i n t (argument)
t ime . s l e e p (1)

t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(1 ,)) . s t a r t ()
t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(2 ,)) . s t a r t ()
t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(3 ,)) . s t a r t ()

12 / 22

What is a server ?
Definition: a server waits for a connection, a client connects to the server when it needs information
i m p o r t s o c k e t
i m p o r t s t r i n g
w h i l e True :

sock=s o c k e t . s o c k e t (s o c k e t . AF INET , s o c k e t . SOCK STREAM)
sock . s e t s o c k o p t (s o c k e t . SOL SOCKET , s o c k e t . SO REUSEADDR, 1)
sock . b i n d ((’127.0.0.1 ’ , 4242))
p r i n t ("Waiting for connection")
sock . l i s t e n (1)
conn , addr = sock . a c c e p t ()
w i t h conn :

p r i n t (’connected from ’ , addr)
w h i l e True :

data=conn . r e c v (1)
i f data :

data=data . decode ()
p r i n t (data)
i f ’q’ i n data :

sock . shutdown (s o c k e t .SHUT RDWR)
sock . c l o s e ()
b r e a k

I Run python3 my server in one terminal
I Run telnet localhost 4242 in another terminal
I Enjoy ... quit by sending ’q’

GNU Radio
RPi4 running FM station freq.

TCP/IP

ZeroMQ

audio

Python GUI

sound card
PC

DVB−T
dongleRF I, Q

USB

13 / 22

Putting it all together ...
Python Snippet executes the thread including the Python Module running the TCP server controlling the GNU Radio
execution by tuning parameters with the associated callback function

"*" x 4

f rise
x4

xterm
running
GNU Radio
Companion

Modify the previous flowchart, streaming the output of the FM demodulator to the PC, to tune the broadcast station

frequency on the Raspberry Pi4 from the PC.

14 / 22

Outline

General context: embedded network analyzer architectured around the Raspberry Pi 4 and using an
RTL-SDR DVB-T dongle as radiofrequency receiver.

(Python3)
PCsource RPi4DVB−T

signal

commands

samples

RF
DUT

Emitting a radiofrequency signal from the Raspberry Pi 4 clock

1. Investigating radiofrequency emission sources

2. Using the RPi4 internal PLL feeding a GPIO as radiofrequency source

3. Making sure the radiofrequency is controlled and understood by receiving with the DVB-T dongle

Objective: emitting an FM radio signal from the Raspberry Pi4 and listening to the resulting sound 6

6sample video of expected result: http://jmfriedt.free.fr/201229_rpitx.mp4
15 / 22

http://jmfriedt.free.fr/201229_rpitx.mp4

Radiofrequency sources
Characterize the transfer function of a passive Device Under Test
⇒ radiofrequency driving signal
I broadband = noise: Zener diode, but requires high (24 V) voltage for broadband signal +

radiofrequency amplifiers
I pulse: must be short and sharp edges. Test with ADCMP fast comparators (e.g. ADCMP573 7

for single supply operation): functional but requires an external trigger, e.g. RPi PWM
These solutions require additional, external hardware and are prone to artefacts ...

Broadband noise source 40 ns pulse every 160 ns 40 ns pulse every 800 ns

... but the RPi GPIO can be driven from a radiofrequency clock source ! See the PiFM project 8.

7https://www.analog.com/en/products/adcmp573.html
8http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

16 / 22

https://www.analog.com/en/products/adcmp573.html
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

Fractional PLL

/D

VCOLO

/N

LO/D

VCO/N

LOxN/D
VCO=

700 MHz D=8

270=0,66x4096

dVCO=2,6 kHz

2dVCO=LO/D /2 12

(dN=1/2)12

I Raspberry Pi single board computers provide a reference clock LO (700 MHz for RPi4, 500 MHz for others)

I this clock feeds a fractional Phase Locked Loop (PLL 9) with a pre-scaler of D

I the PLL Voltage Controlled Oscillator (VCO) is divided by N

I the phase comparator compares LO/D with VCO/N: VCO = LO × N/D

I output frequency < 200 MHz (GPIO limitation) ⇒ use overtone (5th overtone of FM band to reach 434 MHz
ISM band)

I output frequency resolution: considering that VCO = LO × N/D and that the resolution dD on D is 2−12,
frequency resolution at 434 MHz is dVCO = LO × dD/D2 by tuning the fractional part of the PLL

I since dD = 2−12 and D ' 8 for a 433.92/5 = 86.8 MHz ⇒ dVCO = 2.7 kHz � DDS resolution but usable for
Q = 104 @ 434 MHz (width ' 43 kHz).

9https://elinux.org/The_Undocumented_Pi
17 / 22

https://elinux.org/The_Undocumented_Pi

Many implementations derived from the original PiFM demonstration 10:
I https://github.com/ChristopheJacquet/PiFmRds is easiest 11 to understand

I GPIO clock sourced from a fractional PLL is described pp.104–105 of
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0.pdf

I a much more general (and complex 12) implementation is available at github.com/F5OEO/rpitx relying on
github.com/F5OEO/librpitx

I interfacing the latter with GNU Radio {I,Q} stream is explained at
https://github.com/ha7ilm/rpitx-app-note

I http://abyz.me.uk/rpi/pigpio/pigs.html explains that “Access to clock 1 is protected by a password as its
use will likely crash the Pi. The password is given by or’ing 0x5A000000 with the GPIO number.”

Our application only requires a single continuous-wave (CW) tone for a Frequency Swept CW analyzer
I Makefile based software: replace gcc with arm-linux-gcc from Buildroot output/host/usr/bin

I cmake based software:

cmake -DCMAKE_INSTALL_PREFIX:PATH=$BR_RPI/output/target/usr \

-DCMAKE_TOOLCHAIN_FILE=$BR_RPI/output/host/share/buildroot/toolchainfile.cmake ../

10O. Mattos & O. Weigl, https://github.com/rm-hull/pifm described at
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

11github.com/ChristopheJacquet/PiFmRds/blob/master/src/pi fm rds.c#L534
12E. Courjaud Rpitx: Raspberry Pi SDR transmitter for the masses, SDRA (2017) at

https://www.youtube.com/watch?v=Jku4i8t_nPc
18 / 22

https://github.com/ChristopheJacquet/PiFmRds
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0.pdf
github.com/F5OEO/rpitx
github.com/F5OEO/librpitx
https://github.com/ha7ilm/rpitx-app-note
http://abyz.me.uk/rpi/pigpio/pigs.html
https://github.com/rm-hull/pifm
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
https://www.youtube.com/watch?v=Jku4i8t_nPc

Overtone
The RPi GPIO has been observed to generate a strong signal up to 250 MHz.

We aim for the 434 MHz band ⇒ use overtones

-70

-60

-50

-40

-30

-20

-10

 0

 10

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 3x10
8

 3.5x10
8

 4x10
8

 4.5x10
8

 5x10
8

p
o

w
e

r
(d

B
m

)

8
8

 M
H

z

4
4

0
 M

H
z

2
6

4
 M

H
z

frequency (Hz)

86.8 MHz
88.0 MHz

noise floor

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

 4.25x10
8

 4.3x10
8

 4.35x10
8

 4.4x10
8

p
o

w
e

r
(d

B
m

)

frequency (Hz)

88.0 MHz
86.8 MHz
85.6 MHz
86.8 MHz

noise floor

Broadband spectrum Zoom on the (FM modulated) overtone signal

Square wave output ⇒ overtone N scales as 1/N. Emit at 434/5 = 86.8 MHz

19 / 22

FM emission/reception from the RPi4
On the embedded board: CLI flowchart for acquisition, demodulation and streaming (lowering the
sampling rate and hence the communication bandwidth)

wideband FM demodulation
+ decimation to reach audio rate

lower sampling rate

stream 48 kS/s audio signal

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4
outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 36k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 86.8M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

in

ZMQ PUB Sink

Address: tcp://1....0.16:5555

Timeout (msec): 100

Pass Tags: No

On the host PC: GUI for displaying the spectrum and playing audio on the sound card from the
signal generated by PiFM(-RDS) ⇒ video @
http://jmfriedt.free.fr/201229_rpitx.mp4

Options

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 48k

in
Audio Sink

Sample Rate: 48k

freq

in

freq

bw

QT GUI Frequency Sink

FFT Size: 8.192k

Center Frequency (Hz): 0

Bandwidth (Hz): 48k

out

ZMQ SUB Source

Address: tcp://1....0.16:5555

Timeout (msec): 100

Pass Tags: No

20 / 22

http://jmfriedt.free.fr/201229_rpitx.mp4

Conclusion: characterize the SAW resonator transfer function
PiFM as BR2 EXTERNAL external package at https://github.com/oscimp/PlutoSDR/ in the for next branch

1. Modify PiFM or use https://github.com/F5OEO/rpitx/ → chirp to sweep a frequency (FSCW signal)

2. Generate signals and check that their spectra are consistent with expectations/frequency range

3. Control the emitted signal, in addition to the received signal, from the Python server

21 / 22

https://github.com/oscimp/PlutoSDR/

General conclusion
I GNU Radio port to Buildroot provides access to all

boards supported by BR (PlutoSDR 13, RPi*, Beagle-
bone*, Redpitaya 14/Zynq*, STM32MP157-DK2 ...)

I opportunity to become familiar with embedded
development tools

I single board computer computational power has
reached the level needed by SDR.

USB-
RS232

Eth

souris
USB

alim.
USB C

TODO (article on the FOSDEM web site)
I Using non-officially supported packages (e.g. gnss-sdr)

with BR2 EXTERNAL

Further reading
I K. Yaghmour, J. Masters, G. Ben-Yossef, P. Gerum, Building Embedded Linux Systems, 2nd Ed., O’Reilly (2008)

I J. Madieu, Linux Device Drivers Development, Packt (2017)

I C. Hallinan, Embedded Linux Primer: A Practical, Real-World Approach, 2nd Ed., Prentice Hall (2010)

I M. Corbin, Buildroot for RISC-V, FOSDEM 2019 15

I P. Ficheux & É. Bénard, Linux embarqué, Eyrolles (2012) [French]

I P. Ficheux, Linux embarqué – Mise en place et développement, Eyrolles (2017) [French]
13https://github.com/oscimp/PlutoSDR
14https://github.com/trabucayre/redpitaya.git
15https://archive.fosdem.org/2019/schedule/event/riscvbuildroot/

22 / 22

https://github.com/oscimp/PlutoSDR
https://github.com/trabucayre/redpitaya.git
https://archive.fosdem.org/2019/schedule/event/riscvbuildroot/

