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How to make the most of the various languages at our disposal, between the pro-
totyping speed of Python or GNU Octave and the execution speed of C? We will
exchange data between functions written in these languages, either through network
sockets or dynamic libraries.

Our objective in this presentation is to see how to make the most of the three languages for acquiring
and processing digital signals that we use on a daily basis: C for its speed and compactness as a compiled
language, GNU Octave for an interpreted language implementing linear algebra functions inherited from
Matlab, and Python. While each language is used independently, we approach the exchange of informa-
tion between these languages in a concept of centralized or decentralized processing through computer
network communication.

Communication between digital systems, embedded or not, seems to have become the norm, for-
getting the underlying principles. While historically the purpose of the Internet was to standardize
communications between the numerous subnetworks that flourished in the 1960s and 1970s [1] according
to a rational and hierarchical architecture with an obsession for decentralization to avoid dependence
on a single node centralizing exchanges (think “Cold War” and “nuclear attack” for a network funded
by DARPA), today a plethora of additional layers are added on top of Internet Protocol (IP) to bring
new “functionalities.” We were happy with IP, TCP, and UDP [2], and even with raw sockets on Ether-
net when we didn’t need packet routing in a point-to-point connection to control an embedded system
(https://sourceforge.net/projects/proexgprcontrol/), so these application layers seem as unnec-
essary as they are resource-intensive, or even unstable over time with the constant API changes that we
have once again verified while writing this prose.

Nevertheless, here we will explore three application layers propagating signals over IP: XMLRPC,
ZeroMQ, and MQTT, which are responsible for organizing data during transactions. Beyond the ex-
changes through sockets that describe communication interfaces compatible with an Internet connection,
there are many gateways between programming languages for exchanging data and making the most of
each language – the execution speed of the compiled language (C), and the ease of prototyping of the
interpreted language (Python and therefore GNU Radio, GNU Octave). Even though this presentation
aims to be agnostic of any specific application, the processing of radio frequency signals as proposed by
GNU Radio provides the guiding principle of our research and we will rely on the GNU Radio Companion
Python code generator to select the exposed technologies. The nature of the data we want to exchange
is a continuous stream of radio frequency data acquired by hardware receiver and whose information
needs to be processed, locally or remotely, by a computing system implemented in the most appropriate
language.

The presentation is not intended to be an exhaustive
treatment of all the bridges between languages – as we
only have a fairly good knowledge of C, Python, and
GNU Octave that we use on a daily basis for the digi-
tal processing of discretely sampled signals – but rather
a guide to show how each language can contribute to a
complex global system with simple and efficient process-
ing parts for speed (C) and prototyping in interpreted
language with more lenient typing at the expense of ef-
ficiency (Fig. 1). Nevertheless, these bridges come at
the expense of a new dependence on communication in-
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Figure 1: Interactions between C, GNU Octave and
native Python or produced by GNU Radio Companion,
and associated tools tackled in this article.

frastructures with the inherent risks of APIs breaking and therefore loss of functionality beyond our
control.

1 TCP/IP and UDP/IP

Let’s start with the basics: the interoperability of computers connected on a network according to the
principles of the Internet.
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The hierarchy of abstraction layers is formalized by
the OSI (Open Systems Interconnection) standard, which
may seem arbitrary until one tries to implement it in a
practical case [3] to discover that each layer implies dif-
ferent technical expertise and knowledge. Thus, the low-
est layer – hardware – will be easily approached by an
electronics specialist, while the highest layer – the appli-
cation layer – involves many abstract computer concepts.
In between, information needs to be assembled into pack-
ets, routed from one machine to another so that discrete
aloow for routing the information from the source to the
destination, and the parties involved must agree on the
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Figure 2: OSI layer hierarchy describing the services
needed for a communication through a computer net-
work. We shall be interested here to the upper layers.

representation of the information and the various services capable of processing the information (socket
ports). The principle of the OSI hierarchy is that each higher layer assumes that the lower layers have
been implemented and are functional. Therefore, no packet routing by TCP in connected mode, which
guarantees the integrity of the exchanges, or UDP in which a server broadcasts information to clients
that may or may not receive it, is possible without access control and conversion of physical address into
a software address by ARP (Fig. 2).
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Figure 3: Concept of a server – waiting to provide a service – and a client – requesting a service,
exchanging data either in connected mode to guarantee exchanges (TCP) or in datagram mode without
validation of transactions (UDP).

Above the IP layer, which translates physical addresses into logical addresses, there are two modes of
communication: TCP, which guarantees transactions (connected mode) and in which the server blocks
its exchanges until they are acknowledged by the client, and UDP (datagram), in which the server sends
data that may or may not be received by a client in an order that is not guaranteed depending on
the packet routing along the route between the server and the client. In this second case, the server
performs its operations independently of any connection from a client to receive or not receive the
acquired data: this mode of communication is best suited when implementing a RADAR, for example,
which can freely control a software defined radio receiver and move the antennas while a client receives
data when conditions are favorable. Universal clients that make it easy to test servers are telnet and
netcat for TCP, the latter with its -u option for receiving information in UDP. One might wonder why
not always use TCP, which guarantees data exchanges? A TCP exchange requires storing transiting
packets that could be corrupted or whose order has been swapped due to changes in the routing rules on
the network during communication: a TCP/IP stack is very heavy to implement and resource-intensive,
while a UDP exchange can be implemented in a few lines in the absence of any acknowledgments.

The concept of a socket is at the heart of a Unix system, which cannot function without it, as defined
by the POSIX standard [4]. Just execute the ss (socket statistics) command to see the hundreds of
communication pipes open on a GNU Linux system, even when disconnected from the Internet but
exchanging information between its various services. Thus, a socket does not necessarily transport data
from one computer to another over a computer network, but can exchange information between processes
running on the same computer: this is called Inter-Process Communications or IPC. Remote control of
processes is a special case of IPC called RPC for Remote Procedure Call. The question then arises about
the representation of the exchanged data and their encapsulation so that the parties involved can agree
on their representation.

Indeed, a basic TCP server – remember that the server is constantly waiting to provide a service to
clients (Fig. 3) who connect occasionally to access this service – is written in C
#inc lude <sys / socke t . h>
#inc lude <r e s o l v . h>
#inc lude <un i s td . h>
#inc lude <s t r i n g s . h>
#inc lude <arpa/ i n e t . h>

#de f i n e MYPORT 9999
#de f i n e MAXBUF 1024
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i n t main ( )
{ i n t sock fd ;
s t r u c t sockaddr in s e l f ;
char bu f f e r [MAXBUF] ;

sock fd = socket (AF INET , SOCK STREAM, 0) ; // type de socke t
bzero(& s e l f , s i z e o f ( s e l f ) ) ;
s e l f . s i n f am i l y = AF INET ;
s e l f . s i n p o r t = htons (MYPORT) ;
s e l f . s i n addr . s addr = INADDR ANY;
bind ( sockfd , ( s t r u c t sockaddr ∗)&s e l f , s i z e o f ( s e l f ) ) ;
l i s t e n ( sockfd , 20) ;
whi l e (1 )
{ s t r u c t sockaddr in c l i e n t a dd r ;
i n t t a i l l e , c l i e n t f d ;
unsigned i n t addr len=s i z e o f ( c l i e n t a dd r ) ;
c l i e n t f d = accept ( sockfd , ( s t r u c t sockaddr ∗)&c l i e n t add r , &addr len ) ;
t a i l l e=recv ( c l i e n t f d , bu f f e r , MAXBUF, 0) ;
send ( c l i e n t f d , bu f f e r , t a i l l e , 0) ;
c l o s e ( c l i e n t f d ) ;

}
c l o s e ( sock fd ) ; r e turn (0 ) ; // Clean up ( shou ld never ge t here )

}
or in Python
import socket
import s t r i n g
whi l e True :

sock=socket . socke t ( socket .AF INET , socke t .SOCK STREAM)
sock . s e t sockopt ( socke t .SOL SOCKET, socke t .SO REUSEADDR, 1)
sock . bind ( ( ’127.0.0.1 ’ , 4242) )
sock . l i s t e n (1 )
conn , addr = sock . accept ( )
with conn :

p r i n t ( ’connected from ’ , addr )
whi l e True :

data=conn . recv (1 )
i f data :

data=data . decode ( )
p r i n t ( data )
i f ’q’ in data :

sock . shutdown ( socke t .SHUTRDWR)
sock . c l o s e ( )
break

to connect a server to a socket (bind), wait for a client connection (listen), and exchange information
(recv, send). These series of bytes have no structure and have meaning only because the two parties
agreed in advance on their organization. These examples are still useful because, for example, in GNU
Radio, the Python server proposed above is launched in an independent thread by
import thread ing
import my server
thread ing . Thread ( t a r g e t=my server , a rgs=( s e l f , ) ) . s t a r t ( )

in a Python Snippet executed during the initialization of the scheduler. Passing the argument self

gives access to all the functions defined by GNU Radio, and in particular, the setter and getter associated
with each variable declared in the processing chain. Therefore, the thread can call self.get var() and
self.set var() if the variable var has been defined in order to modify its content. We extensively use
this mechanism when a client needs to sweep a parameter of a radiofrequency link, such as the carrier
frequency of the signal.

Thus, in GNU Octave, a client of the form
sck=socket (AF INET , SOCK STREAM, 0) ;
s e r v e r i n f o=s t r u c t ( "addr" , "127.0.0.1" , "port" , 4242) ;
connect ( sck , s e r v e r i n f o ) ;
send ( sck , ’s’ ) ; % s t a r t

will connect to port 4242, the same port to which the server has previously bound on the same com-
puter running the server (127.0.0.1), to send a command, for example the letter “s” which could indicate
the start of a processing sequence. Here, a connected TCP connection indicated by SOCK STREAM indi-
cates that the transactions are guaranteed by acknowledgment of each exchange, unlike an unconnected
transaction or datagram according to UDP in which information is transmitted without guaranteeing its
reception. These two modes will be used depending on whether the information needs to be organized
and acknowledged (TCP) or simply sent to clients that may or may not be listening and where the loss
has little consequence (for example, a data stream coming from a radio frequency receiver).

Python and GNU Octave are two interpreted languages that we often use together, Python for its
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flexibility in accessing hardware resources and its use in connecting together the processing blocks of
GNU Radio produced by signal analysis chains designed in GNU Radio Companion, and Octave for
the ease of its matrix implementation of linear algebra algorithms according to the language derived
from Matlab. The programmer, more flexible than the author in Python, will have no difficulty in
translating the algorithms proposed in GNU Octave to NumPy without having to go through https:

//numpy.org/doc/stable/user/numpy-for-matlab-users.html. Thus, in this presentation, we will
strive to exchange not only scalars but especially data vectors between Python and Octave.

From left to right or from right to left: byte order
Apart from certain Airbus Defence documentation for the European Space Agency [5], it seems quite
obvious in the West to place the most significant bits on the left and the least significant bits on the
right, thus writing one thousand two hundred thirty-four as 0x4d2 or 0b10011010010 as indicated by
dec2hex and dec2bin in GNU Octave. The situation is less clear for the arrangement of bytes for a
magnitude coded on 8 bits: historically, the American DARPA and Western countries that dominated
the development of the Internet, it seems natural to place the most significant bytes on the left and the
least significant bytes on the right, and thus write 0x4d2 levé (“to the right”) so that the display of the
memory contents from its lowest address to its highest address displays 0x04 0xd2. As historically the
Internet was developed [1] by BBN on Honeywell and IBM architectures and then by Sun Microsystems
on SPARC and Motorola architectures, it was natural to adopt this order selected by these processor
architectures, called big endian (most significant byte at the lowest address) to transmit information
coded on multiple bytes over the network. However, Intel had the idea of placing the least significant
byte at the lowest address, a choice that becomes logical when arithmetic operations are performed on
a CISC architecture with variable length instructions: the arithmetic and logic unit reads the instruc-
tion (the opcode), begins loading the arguments, and if the first argument read is the units, then the
arithmetic operation can start while reading the next byte containing the tens and possibly the hundreds
and thousands, thus propagating the carry during each sub-operation. This organization of the least
significant byte at the lowest address is called little endian. On the contrary, a big endian organization
requires reading the integer by starting with the thousands before ending with the units to start the
arithmetic operation.
Even though today Intel/AMD little endian processors dominate the market for consumer personal
computers, the Internet, like Java and therefore Android, remains big endian. Exchanging infor-
mation between the two architectures requires agreeing on the byte order: this is the purpose of
the htons (or htonl for 4 bytes) instructions for organizing two bytes (a short in C) in the cor-
rect order, from host to network and vice versa at the other end. These macros are defined in
/usr/include/netinet/in.h on GNU/Linux as an identity or byte swap depending on the architecture
used (#if BYTE ORDER== BIG ENDIAN). While this operation must be performed explicitly in C, it will
be implicit in the infrastructures we will see below (0MQ or MQTT [6] speak of network byte order for
the organization of their fields coded on more than one byte, but the content itself is only a packet of
bytes that the developer must organize properly), or nonexistent for ASCII transactions (XML-RPC) in
which the order of the arguments is that of the exchanged ASCII strings.
Note that in the examples we will discuss below, the exchanges take place within the same computer
(127.0.0.1) and since a processor is consistent with itself, any error in the byte order on transmission
is corrected on receipt (two errors that compensate each other). In production, it is prudent to com-
municate with a machine of opposite endianness to identify potential sources of malfunction – Java is
wonderful for this and we will be careful not to include it in our test cases as this language is unfamiliar
to us.

As opposed to TCP, which guarantees transactions, UDP just sends packets to whoever wants to
hear them. Thus, Fig. 4 presents a GNU Radio Companion processing chain that simply broadcasts
single precision floating point numbers (float symbol in orange in GNU Radio Companion), while at the
other end GNU Octave (left) or Python (right) executes

pkg load instrument−c on t r o l
whi l e (1 )

s=udpport ( "LocalHost" , "127.0.0.1" , "→
↪→LocalPort" , 2000) ;

va l=read ( s , 4000 ) ;
vec to r=typecas t ( val , "single" ) ;
p l o t ( vec to r ) ; pause ( 0 . 1 )
c l e a r ( "s" )

end

import socket
import array
from matp lo t l i b import pyplot as p l t
s=socket . socke t ( socket .AF INET , socket .→

↪→SOCKDGRAM)
s . bind ( ( "127.0.0.1" , 2000) )
whi l e True : # 4000 by t e s=1000 f l o a t

val , addr=s . recvfrom (4000)
vec to r=array . array ( ’f’ , va l )
p l t . p l o t ( vec to r )
p l t . show ( )

to open the UDP socket on port 2000 of the local computer (on which GNU Radio writes), display the
acquired data after converting the byte packet into a vector of floating-point numbers, and close the
socket. This perpetual opening/closing of the socket may seem questionable, but it is the best way we
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have found to ensure that the processed data is the latest transmitted and not old data held in a buffer.
In the case of UDP, even if some data is lost, it is not a problem since we guarantee obtaining a vector
of the correct number of fresh data. The best way to synchronize the acquired data with a physical
event such as the rotation of an antenna is to send a command to GNU Radio to perform the action,
wait for the necessary time for the command to be completed or ideally an acknowledgment by a TCP
communication in response to the request, then open the UDP socket and capture the desired number of
data in this configuration, and repeat for all the envisaged configurations – for example, for a synthetic
aperture radar, with all successive positions of the antennas.

Options
Title: Not titled yet
Output Language: Python
Generate Options: QT GUI

QT GUI Range
ID: f
Default Value: 1k
Start: 0
Stop: 16k
Step: 1

Variable
ID: samp_rate
Value: 32k

outcmd

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

outin
Throttle

Sample Rate: 32k
in

UDP Sink
Address: 127.0.0.1
Destination Port: 2k
Header: None
UDP Packet Data Size: 1.472k
Send Null Packet as EOF: No

in

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

Figure 4: Left: signal processing chain feeding a UDP socket on port 2000 of the local computer
(127.0.0.1) in order to share with any program that might be listening to process this datastream.
Right: oscilloscope graphical output Time Sink of GNU Radio with the GNU Octave graphical output
which has converted the received array of bytes to float with typecast().

When launching the GNU Radio program transmitting the data on port 2000 of the local socket
(127.0.0.1) in UDPmode, we can validate the emission of data using netcat with nc -l -p 2000 -u 127.0.0.1

with -l to listen and -u for UDP.
Similarly, we can use GNU Radio to provide a processing chain for signals acquired by an inter-

face broadcasting its information via UDP and utilizing the UDP Sink as proposed in Fig. 5, this time
exchanging 4-byte (32-bit) encoded integers as indicated by the green icon in the GNU Radio Companion
processing chain. In this example, we send a ramp from GNUOctave (val=int32([k:k+1024]);v=typecast(val,’uint8’);
on the left) or in Python (numpy.arange(0+k,1024+k,dtype=numpy.int32) on the right) but we could,
of course, send any sequence of measurements, for example acquired by RS232 from an instrument.

pkg load instrument−c on t r o l
s=udpport ( ) ;
k=0;
whi l e (1 )

va l=int32 ( [ k : k+1024]) ;
v=typecas t ( val , ’uint8’ ) ;
wr i t e ( s , v , "127.0.0.1" , 2000) ;
k=k+1;
i f ( k==1000) k=0;end

end

import socke t
import numpy
k=0
sock = socket . socke t ( socket .AF INET , →

↪→ socke t .SOCKDGRAM)
whi le True :

va l=numpy . arange (0+k,1024+k , dtype=numpy .→
↪→ i n t32 )

sock . sendto ( val , ( "127.0.0.1" , 2000) )
k=k+1
i f ( k==1000) :

k=0

Figure 5: Top: GNU Radio signal processing chain for fetching the data stream coming on port 2000 of
the computer executing the script, and displaying its content. Bottom: GNU Octave (left) and Python
(right) scripts generating ramps and send the data on a UDP port to be interpreted as 32-bit integer
values.

Based on these lower layers of the OSI hierarchy, we will now explore some mechanisms organizing
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transactions and facilitating client access to the interfaces exposed by the servers.

2 XMLRPC

A TCP/IP or UDP/IP client-server requires agreeing on the protocol for exchanging information between
the client and server. In order to organize these transactions by encapsulating them in a format that can
be easily processed automatically, it may seem logical to announce the nature of the required service and
the associated variable. In the previous example, only the designer knows that the variable ”var” exists
with its associated read and define functions, and an external client may not be aware of the available
function list. It seems natural to encapsulate the data in messages, and thus to encapsulate them in a
syntax easily decodable by a computer, such as JSON or XML, at the expense, of course, of increased
message size and dependency on message decoding libraries.

In the implementation of XMLRPC, calls to remote functions (Remote Procedure Call) are encapsu-
lated in XML messages as described in [7]. In this way, a client only needs to inform the server of which
service (function) it wants to use in order to modify its content (variable value). Just run ”apt-cache
search xmlrpc” under Debian/GNU Linux to see the multitude of languages implementing this protocol,
especially Python. In this language, a client can be written in just a few lines
from xmlrpc . c l i e n t import ServerProxy
s=ServerProxy ( ’http :// localhost :8080 ’ )
s . s e t f r e q (5000)

to modify the server’s configuration that we defined in GNU Radio using the processing chain proposed
in Fig. 6. In this processing chain, the frequency of the signal from the Signal Source block is a variable
freq and we observe the effect of the remote command to the freq by the change in the period of the
sine wave on the time domain graphical output.

In order to test the proper functioning of the server, it is not even necessary to write a line of code, since
the shell command xmlrpc is provided in the package libxmlrpc-core-c3-dev of Debian/GNU Linux.
This command can be used with the command xmlrpc localhost:8080 set_freq i/1664 to modify
the variable freq and assign the integer value (i) of 1664. Alternatively, a string can be transmitted
by prefixing the argument with “s” or a floating-point number with “d” (the types are described in man

xmlrpc).
According to the XMLRPC specifications [7], we can construct the message in XML format to send

the value 1664 as a 4-byte integer to set the variable freq using its setter set freq:

curl -X POST -H ’Content-Type: text/xml’ -d ’<methodCall>\n<methodName>set_freq</methodName>\

\n<params><param><value><i4>1664</i4></value></param></params>\n</methodCall>’\

’http://localhost:8080/RPC2’

Thus, any language that does not support XMLRPC but can communicate via HTTP using the POST
method can communicate with the server. Unfortunately, we did not succeed in achieving this result in
GNU Octave, either due to the difficulty of interfacing with external libraries implementing a protocol
(some authors report linking to Java libraries from GNU Octave to use their XMLRPC implementation,
but we were unable to reproduce this result) or due to a poor implementation of webwrite that cannot
fill the “data” field with an XML message of a POST request as described at http://savannah.gnu.
org/bugs/?56624. We will see later (section 7) that we were led to learn how to link C functions to GNU
Octave, providing a solution to implement any communication protocol and expose it to GNU Octave.

At the moment, we are not able to expose the variables used in a GNU Radio processing chain, as
the request to the listMethods method of the client with
import xmlrpc . c l i e n t
proxy = xmlrpc . c l i e n t . ServerProxy ( "http :// localhost :8080/" )

f o r method name in proxy . system . l i s tMethods ( ) : # l i s t o f f onc t i on s
i f (method name . f i nd ( "set_" )>=0) : # provided by the se rve r

pr in t (method name )

t ry :
setampl=proxy . set ampl ( 0 . 2 ) # f a i l s (no ampl v a r i a b l e )

except xmlrpc . c l i e n t . Fault as e r r :
p r i n t ( "Unsupported function" )

t ry :
s e t f r e q=proxy . s e t f r e q (200) # success , f r e q r ede f ined

except xmlrpc . c l i e n t . Fault as e r r :
p r i n t ( "Unsupported function" )

refuses to provide the list of variables. Therefore, only trying the different functions and intercepting
errors (try: ... except:) allows to test if a variable exists or not. In the example above, set freq

is successful but set ampl fails because the amplitude is not a defined variable in the processing chain.
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Figure 6: Reconfiguration of a parameter of a GNU Radio processing chain – therefore Python – through a
command sent from the shell. The variable freq defines the frequency of the sine wave signal source, and
therefore exposes the set freq method which we call from the shell through xmlrpc (bottom right). The
Python server acknowledges the reception of the command (bottom left) in the GNU Radio Companion
console, and the frequency is effectively modified (red arrow) upon sending the command.

In order to expose the list of methods, https://docs.python.org/3/library/xmlrpc.server.html
explains that we need to enable this functionality in the server. To do this, we add a Python snippet in
GNU Radio containing the command self.xmlrpc server 0.register introspection functions()

to activate the ability of the server xmlrpc server 0 (associated block ID) to provide all services and
consequently only call the variables that are actually defined (Fig. 7).

self.xmlrpc_server_0.register_introspection_functions()python3 ./python_client.py
set_freq
set_samp_rate

Options
Title: Not titled yet
Output Language: Python
Generate Options: No GUI
Run Options: Prompt for Exit

Variable
ID: freq
Value: 0

Variable
ID: samp_rate
Value: 32k

Python Snippet
Section of Flowgraph: Main - After Init
Code Snippet: self...ctions()

XMLRPC Server
Address: localhost
Port: 8.08k

Figure 7: Activation of the register introspection functions() method in a Python Snippet in
order to allow XMLRPC clients to fetch the list of variables known by the server.

We now have two approaches to define server parameters from the client side: a TCP/IP server or
an XMLRPC server. These connected connections are appropriate to ensure that the message sent by
the client is well understood and acknowledged by the server. However, it is common for the server to
continue its acquisition and signal processing activities even if no client is listening to its services: this
non-blocking connection is supported by UDP, which once again does not encapsulate information but
only groups bytes to communicate to potential clients listening. If no one is listening, the information
is simply lost, and if the routing changes during communication, neither the order nor the integrity of
the data stream is guaranteed. In order to facilitate the organization of transmitted information, we will
complete the previous demonstration of UDP exchanges by using a more abstract library called ZeroMQ
(0MQ).
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3 ZeroMQ

We first encountered ZeroMQ as a communication block in GNU Radio Companion, a Python code
generator for digital processing of radio frequency signals. Barry Dugan, who is responsible for the
documentation of GNU Radio Companion blocks, provided a detailed description of ZeroMQ in [8].
Here, we will limit ourselves to presenting implementations in Python, GNU Octave, and C, knowing
that the proprietary software Matlab also supports this communication protocol, as do many other
languages as indicated below.

$ apt-cache search mq | grep z

python3-zmq - Python3 bindings for 0MQ library

libczmq4 - High-level C binding for ZeroMQ

libgnuradio-zeromq3.10.5 - gnuradio zeromq functions

octave-zeromq - ZeroMQ binding for Octave

to name just a few.

SUB
TCPTCP

REQ REP PUB
?

Figure 8: ZeroMQ (or 0MQ) provides an application layer above TCP/IP and UDP/IP to abstract the
transmitted information and encapsulate it in packets with metadata. Like TCP or UDP, 0MQ provides
a connected mode (REQ-REP) that guarantees blocking transactions, and a non-connected mode (PUB-
SUB) that we will favor for our applications of transferring data acquired by software-defined radio
receiver for remote processing.

Various works provide basic codes [9, 10], but either with errors or incompatibilities due to version
updates: examining the numerous generations of documentation that are sometimes incompatible with
current libraries can be tedious (transition from 0MQ version 3 from 2013 to version 4 from 2021),
highlighting the danger of the evolution of these complex APIs for a long-lasting project.

Like TCP and UDP, ZeroMQ offers a connected mode that guarantees transactions – request-reply in
ZeroMQ’s terminology – but with a heavy bidirectional protocol for acknowledgement, and a mode for
broadcasting information without guarantee of reception, which is the UDP datagram – named publish-
subscribe at ZeroMQ (Fig. 8). An example of a server in C, requiring the installation of the package
libczmq-dev on Debian/GNU Linux, is as follows:
#inc lude <s t d i o . h>
#inc lude <un i s td . h>
#inc lude <s t r i n g . h>
#inc lude <zmq . h>

i n t main ( )
{ i n t k=0;
char message [ 2 5 6 ] ;
void ∗ context = zmq ctx new ( ) ;
void ∗ pub l i s h e r = zmq socket ( context , ZMQPUB) ;
i f ( zmq bind ( pub l i she r , "tcp ://127.0.0.1:5556" )==0)

{whi le (1 )
{ s p r i n t f ( message , "Hello %03d" , k ) ; k++;
zmq send ( pub l i sher , message , s t r l e n ( message ) , 0) ;
s l e e p (1 ) ;

}
zmq close ( pub l i s h e r ) ;
zmq ctx destroy ( context ) ;

} e l s e p r i n t f ( "Socket error\n" ) ;
r e turn 0 ;

}
or in Python for a version sharing arrays of values (vectors) generated by NumPy
import numpy as np # pkg load s i g n a l ;
import zmq # pkg load zeromq ;
import time
port = "5556"

context=zmq . Context ( )
sock=context . socke t (zmq .PUB)
sock . bind ( "tcp ://*:"+s t r ( port ) ) # broadcas t
k=0
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whi le True :
payload=np . arange (0+k,1024+k)
p r i n t ( k )
k=k+1
sock . send ( payload )
time . s l e e p (1 )

while a C client is written as
// h t t p s :// s t a c kov e r f l ow . com/ ques t i ons /67025151/zeromq−pub−sub−example−in−c−l i b zmq
#inc lude <s t d i o . h>
#inc lude <zmq . h>

i n t main ( )
{ long long ∗ r e s ;

void ∗ context = zmq ctx new ( ) ;
void ∗ s ub s c r i b e r = zmq socket ( context , ZMQ SUB) ;
char message [ 1 0 2 4 ∗ 8 ] ;
i n t l en ;
zmq connect ( subsc r ibe r , "tcp ://127.0.0.1:5556" ) ;
zmq setsockopt ( subsc r ibe r , ZMQ SUBSCRIBE, "" , 0) ;
r e s=( long long ∗) ( message ) ;
whi l e (1 ) {

l en=zmq recv ( subsc r ibe r , message , 1024∗8 , 0) ;
i f ( l en !=−1) { p r i n t f ( "%d: %lld %lld %lld\n" , len , ( r e s [ 0 ] ) , r e s [ 1 ] , ( r e s [ 1 0 2 3 ] ) ) ;}
e l s e p r i n t f ( "error\n" ) ;

}
zmq close ( s ub s c r i b e r ) ;
zmq ctx destroy ( context ) ;
r e turn 0 ;

}
or using GNU Octave if the octave-zeromq package was installed with
pkg load zeromq ;
Nt=1024
sock1=zmq socket (ZMQ SUB) ;
zmq connect ( sock1 , "tcp ://127.0.0.1:5556" ) ;
zmq setsockopt ( sock1 , ZMQ SUBSCRIBE, "" ) ;
recv=zmq recv ( sock1 , Nt∗8 , 0) ;
% vec tor=typeca s t ( recv ,” s i n g l e complex ”) ;
vec to r=typecas t ( recv , "int64" )

or in Python as
import numpy as np # pkg load s i g n a l ;
import zmq # pkg load zeromq ;
import array
from matp lo t l i b import pyplot as p l t

Nt=256
context=zmq . Context ( )

sock1=context . socket (zmq .SUB) # sock1=zmq socket (ZMQ SUB) ;
sock1 . connect ( "tcp ://127.0.0.1:5556" ) ;
sock1 . s e t sockopt (zmq .SUBSCRIBE, b"" )
vector1 =[ ]
whi l e ( l en ( vector1 )<Nt) :

raw recv=sock1 . recv ( )
recv=array . array ( ’f’ , raw recv ) # f−> l f o r i n t e g e r s
pr in t ( recv ) # vector1tmp=recv [ 0 : : 2 ]
p l t . p l o t ( recv ) # vector2tmp=recv [ 1 : : 2 ] f o r i n t e r l e a v e d
p l t . show ( )

We can convince ourselves that the PUB server continues its activity even in the absence of a client
listening by observing the incrementing countdown every second.

$ ./ex1_server &

$ ./ex1_client

Hello 007

Hello 008

Hello 009

^C

$ ./ex1_client

Hello 013

Hello 014

^C

clearly shows that even by interrupting the SUB client, the PUB server continues to increment its
variable, which will go from 9 to 13 upon reconnection.
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$ python3 ./server.py &

$ python3 ./client.py

Hello 8

Hello 9

Hello 10

^C

$ python3 ./client.py

Hello 16

Hello 17

Hello 18

^C

Figure 9: Left: illustration of a PUB server that continues its countdown whether the SUB client is
connected or not. When reconnecting after an interruption by CTRL-C, the client resumes the countdown
to the value reached by the server, with intermediate values being lost. However (right), if a wait that
keeps the socket connected – for example, waiting to close the first display of matplotlib – separates
two reads, the values transmitted during the wait are stored in a buffer and displayed, with an increment
of 7 to 8 and then 9, while the server had reached a much higher countdown at the time of the last
display, as we demonstrate by killing the client and relaunching it with a countdown that resumes at 19.

However, if the client does not disconnect its SUB socket, the sequence remains contiguous and the
packets are stored until they are processed. The only way we have found to ensure that the data stream is
the most recent and not remnants of a previous message – for example, when processing radio frequency
signals acquired by a mobile antenna to ensure that the data is acquired at the new antenna position –
is to close and reopen the SUB socket to eliminate the queue of pending data (Fig. 9).

On the other hand, in a REP-REQ scenario, a ping-pong game requires the REQuest client to ask
the REPly server for new data (Fig. 10) and not to resend a packet without being invited to do so,
otherwise risking receiving an error of the type “Operation cannot be accomplished in current state”.

REQ Client
import socket
import zmq
import array
context=zmq . Context ( )
sock1=context . socket (zmq .REQ)
sock1 . connect ( "tcp ://127.0.0.1:5556" ) ;
whi l e True :
noe r ro r =1;
whi l e noe r ro r :
sock1 . send (b"Hello" )
rcv=sock1 . recv ( )
# pr in t ( rcv . decode ( ’ a s c i i ’ ) ) s i s t r
r=array . array ( ’i’ , rcv )
p r i n t ( f "{len(r)} {r[0]} {r[1]} {r[-1]}"→

↪→)

REP server
import numpy as np # pkg load s i g n a l ;
import zmq # pkg load zeromq ;
import time
port = "5556"

payload="Hello"
context=zmq . Context ( )
k=0
whi l e True :

sock=context . socke t (zmq .REP)
sock . bind ( "tcp ://*:"+s t r ( port ) ) # →

↪→broadcas t
whi le True :

message = sock . recv ( )
p r i n t ( message )
payload=np . arange (0+k,1024+k , dtype=np→

↪→ . i n t32 )
sock . send ( payload )
p r i n t ( k )
k=k+1
time . s l e e p (1 )

Producing the data flow from GNU Radio makes prototyping more fun by continuously generating
data, potentially from a physical radio frequency receiver but here from synthetic signals which therefore
require a Throttle block to limit GNU Radio scheduler’s data production to samp rate samples per
second. In Figure 11, we observe that the data produced in Python by the code generated by GNU
Radio Companion is properly read in C (bottom-left) or Python (bottom-right) which allows displaying
the waveform using matplotlib and verifying its adequacy with the sawtooth pattern produced, but
with a variable number of transmitted data as imposed by the GNU Radio scheduler. Indeed in this
context, we cannot make assumptions about the length of the transmitted vectors and will either have
to wait to accumulate enough points to process the data (for example convolution or Fourier transform
which require a known number of values in a vector to calculate the integral) or only process the useful
subset and store the other values.

Similarly, the communication between GNU Radio (using Python) and GNU Octave is demonstrated
in Fig. 12, which highlights the necessity of explicitly converting the byte packet produced by the
publisher in order to interpret it correctly, either as floating point numbers (single) or as complex
numbers for an IQ data stream, or as integers (int32 for 4 bytes/integer) – the list of arguments
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Figure 10: Exchanges between client and server in which each vector is required by the client REQ to
be provided by the server REP, ensuring transaction sequencing and absence of data loss.

Figure 11: Generation of a sawtooth signal by GNU Radio (Signal Source of shape Saw Tooth, amplitude
1 and frequency 1.024 produced at a rate of 1000 samples/s and unit amplitude multiplied by 1024 when
converting from floating-point number – orange symbol – to 32-bit integer – green symbol – transmitted
in 0MQ PUB and received in Python at the bottom right by a 0MQ SUB for display using matplotlib,
validating the consistency of the transaction, and in C at the bottom left, confirming that multiple clients
can simultaneously receive the published data vectors.

supported by GNU Octave’s typecast is provided by help typecast. This conversion of the byte
packet to the appropriate type is also valid for Python with the array argument as documented at
https://docs.python.org/3/library/array.html. Therefore, it is the responsibility of the developer
to ensure that the exchanged data types are consistent, or to implement a protocol that guarantees
transaction coherence if the nature of the exchanged data is likely to vary.

0MQ allows for easy exchanging information either through connected or broadcasted protocols,
with the concept of topics that clients can subscribe to in order to only keep a subset of the transmitted
information. However, it should be noted that the information is broadcast in clear text, which guarantees
efficiency but also comes with the risk of easy manipulation of IP packets nowadays (Fig. 13). In the
output of tcpdump, we can easily recognize the 32 bytes of the IPv4 header starting with 0x40 [2], along
with a TCP transaction (the “06” in 0x4006, with the first nibble being the maximum packet time-
to-live TTL set to 64), the source IP and the destination IP (0x7f000001 or 127.0.0.1 in decimal), the
communication port 0x15b4 which equals 5556 in decimal, and so on.

Indeed, in the context of broadcasting data from a radiofrequency receiver, eavesdropping on the
transmitted data is probably of little importance, but injecting erroneous data could be catastrophic.
It is not so much the obfuscation of the data that is important, but rather their integrity, which could
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Figure 12: Generation of a sawtooth signal by GNU Radio (Signal Source of shape Saw Tooth, amplitude
1, and frequency 1.024, produced at a rate of 1000 points/s and unit amplitude multiplied by 1024 when
passing from floating-point number – orange symbol – to 32-bit integer – green symbol – transmitted
through 0MQ PUB and received by GNU Radio through 0MQ SUB for graphical display, validating the
coherence of the transaction.

justify an additional layer of authentication that is clearly missing when we display the transmitted data
to the SUB client in C using tcpdump.

connack

Figure 13: Observation using tcpdump -vv -x ’port 5556’ -i lo (more selective than any) of the
data transmitted by 0MQ: after the 32 bytes of the IP header, we can see that the overhead of the 0MQ
protocol is minimal, with some information about the nature of the transaction (CONNACK for a server-
to-client connection), the payload size (green) 0x8000=32768 (remember that the order is little endian
on the network), followed by the clear text data (red delimitation), in accordance with the information
provided by the server in C (first transaction).
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4 MQTT

MQTT (Message Queuing Telemetry Transport) is emerging as a protocol for the “Internet of Things”
(IoT), where embedded systems are designed to communicate. The need for a TCP/IP stack to implement
MQTT is surprising in this context: IP, ICMP, and UDP took up only a few kilobytes of RAM and
flash, much less memory than is needed to store TCP packets that must accumulate in case of packet
loss or rerouting that would change their order. It seems that the main benefit of MQTT, beyond its
centralization on a single server (referred to as a broker in MQTT terminology), is the SSL encryption
of the exchanged packets (once again at the expense of the client’s computing power seeking to transmit
its information).

SUBPUB

broker
mosquito

:1883
:1883

TCP

Figure 14: MQTT relies on a data hub – the broker – which centralizes the exchanges, and even though we
remain in a Publish-Subscribe model with published topics that a client may or may not subscribe to, this
time all participants are called clients that connect to the server which is the broker that communicates
on port 1883.

Similar to 0MQ, MQTT operates in a publish-subscribe context, but this time not in a point-to-point
connection but through a single broker that centralizes the transactions and therefore appears as a weak
point in the network (Fig. 14). Thus, every service in MQTT is implemented as a client, whether a
publisher or subscriber, with a single server that is the broker. Each publisher can offer services through
filters, and each subscriber can filter the information it wants to process. This mechanism appears
inefficient in context of exchanging radiofrequency data streams that aim for efficiency, but https:

//opensource.com/article/18/6/mqtt provides a concrete example of the use of these functionalities
in the analysis of energy production in the state of New York, where a very rich dataset is slowly
made available by electricity producers and accessed via MQTT with appropriate filters according to a
hierarchy resembling a file system structure.

4.1 MQTT for Python, bash and C

An implementation of the MQTT broker is called mosquito and this library is the one we will use
once installed with sudo apt install mosquitto mosquitto-clients on Debian/GNU Linux. On
the client side, an implementation of MQTT, also promoted by the Eclipse Foundation [11], is called
Paho and provides compatibility for a multitude of languages including C and Python. On Debian/GNU
Linux, we therefore install sudo apt install libpaho-mqtt-dev for C, identified by searching for
which package in the distribution provides the header describing the content of libraries MQTTClient.h,
and python3-paho-mqtt for Python.

First, we make sure that a broker is running on the Linux operating system to allow these develop-
ments, either by ps aux | grep mosq which should indicate
/usr/sbin/mosquitto -c /etc/mosquitto/mosquitto.conf, or by reading the content of
/var/log/mosquitto/mosquitto.log as an administrator. The communication between this server and
MQTT clients will take place through port 1883, which must be open through any network transaction
protection mechanism (firewall). We validate the proper functioning of the broker from the command
line through some simple publish-subscribe exchanges:

$ mosquitto_pub -t "mycomputer" -m "Hello"

$ mosquitto_pub -t "mycomputer" -m "World"

$ mosquitto_sub -t "mycomputer"

Hello

World

Convinced of the broker’s good operating conditions, we start by implementing an exchange of data
vectors, always ensuring the coherence of the exchanges since MQTT simply transmits byte arrays with-
out encoding the data organization: in C, the publish service (which we will not call server considering
the broker) is coded as
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#inc lude "stdio.h"

#inc lude "stdlib.h"

#inc lude "stdint.h"

#inc lude "MQTTClient.h"

#de f i n e ADDRESS "tcp ://127.0.0.1:1883"

#de f i n e CLIENTID ""

#de f i n e TOPIC "float_vect"

#de f i n e QOS 1
#de f i n e TIMEOUT 10000L
#de f i n e N 1024

i n t main ( i n t argc , char ∗ argv [ ] )
{

MQTTClient c l i e n t ;
MQTTClient connectOptions conn opts = MQTTCl ient connectOpt ions in i t i a l i z e r ;
MQTTClient message pubmsg = MQTTCl ient message in i t ia l i z e r ;
MQTTClient deliveryToken token ;
i n t rc ;
i n t 3 2 t payload [N ] ;
i n t k ;
f o r ( k=0;k<N; k++) payload [ k]=k ;

MQTTClient create(& c l i e n t , ADDRESS, CLIENTID, MQTTCLIENT PERSISTENCE NONE, NULL) ;
conn opts . k e epA l i v e In t e rva l = 20 ;
conn opts . c l e a n s e s s i o n = 1 ;

MQTTClient connect ( c l i e n t , &conn opts ) ;
pubmsg . payload = payload ;
pubmsg . pay loadlen = s i z e o f ( payload ) ; // 4096
pubmsg . qos = QOS;
pubmsg . r e t a i n ed = 0 ;
MQTTClient publishMessage ( c l i e n t , TOPIC, &pubmsg , &token ) ;
p r i n t f ( "Waiting for up to %d seconds for publication\n" , ( i n t ) (TIMEOUT/1000) ) ;
r c = MQTTClient waitForCompletion ( c l i e n t , token , TIMEOUT) ;
p r i n t f ( "Message with delivery token %d delivered\n" , token ) ;
MQTTClient disconnect ( c l i e n t , 10000) ;
MQTTClient destroy(& c l i e n t ) ;
r e turn rc ;

}
which is compiled using gcc source.c -lpaho-mqtt3c. The same result is achieved with Python with
import paho . mqtt . c l i e n t as mqtt
import numpy

c l i e n t=mqtt . C l i en t ( )
c l i e n t . connect ( "127.0.0.1" )

data=numpy . arange (0 ,1024 , dtype=numpy . in t32 )
c l i e n t . pub l i sh ( "float_vect" , data . tobytes ( ) , 0 )

and in both cases we verify that a transaction is executed by publishing data received by the shell
command mosquitto_sub -t "float_vect" with a subscribe service that subscribes to the float_vect
stream as we have selected when creating the publisher. However, since mosquitto sub does not know
the nature of the data structure being transmitted, it only displays bytes as ASCII characters that have no
meaning. Therefore, we need to write clients – subscribe – able to decode the transmitted information, for
example by taking inspiration from https://eclipse.dev/paho/files/mqttdoc/MQTTClient/html/

subasync.html in C:
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <s t d i n t . h>
#inc lude "MQTTClient.h"

#de f i n e ADDRESS "tcp:// localhost :1883"

#de f i n e CLIENTID "ExampleClientSub"

#de f i n e TOPIC "float_vect"

#de f i n e QOS 1
#de f i n e TIMEOUT 10000L

v o l a t i l e MQTTClient deliveryToken de l i v e r ed token ;
void d e l i v e r e d ( void ∗ context , MQTTClient deliveryToken dt )
{

p r i n t f ( "Message with token value %d delivery confirmed\n" , dt ) ;
d e l i v e r ed token = dt ;

}
i n t msgarrvd ( void ∗ context , char ∗topicName , i n t topicLen , MQTTClient message ∗message )
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{
i n t i ;
i n t 3 2 t ∗ payloadptr ;
payloadptr = ( i n t 3 2 t ∗)message−>payload ;
f o r ( i =0; i<message−>payload len / s i z e o f ( i n t 3 2 t ) ; i++)
{

p r i n t f ( "%d " , payloadptr [ i ] ) ;
}
putchar ( ’\n’ ) ;
MQTTClient freeMessage(&message ) ;
MQTTClient free ( topicName ) ;
r e turn 1 ;

}

void conn lo s t ( void ∗ context , char ∗ cause )
{

p r i n t f ( "\nConnection lost\n" ) ;
p r i n t f ( " cause: %s\n" , cause ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

MQTTClient c l i e n t ;
MQTTClient connectOptions conn opts = MQTTCl ient connectOpt ions in i t i a l i z e r ;
i n t rc ;
i n t ch ;
MQTTClient create(& c l i e n t , ADDRESS, CLIENTID,

MQTTCLIENT PERSISTENCE NONE, NULL) ;
conn opts . k e epA l i v e In t e rva l = 20 ;
conn opts . c l e a n s e s s i o n = 1 ;
MQTTClient setCallbacks ( c l i e n t , NULL, connlost , msgarrvd , d e l i v e r e d ) ;
i f ( ( rc = MQTTClient connect ( c l i e n t , &conn opts ) ) != MQTTCLIENT SUCCESS)
{

p r i n t f ( "Failed to connect , return code %d\n" , r c ) ;
e x i t (EXIT FAILURE) ;

}
p r i n t f ( "Subscribing to topic %s\nfor client %s using QoS%d\n\n"

"Press Q<Enter > to quit\n\n" , TOPIC, CLIENTID, QOS) ;
MQTTClient subscribe ( c l i e n t , TOPIC, QOS) ;
do
{

ch = getchar ( ) ;
} whi le ( ch!=’Q’ && ch != ’q’ ) ;
MQTTClient disconnect ( c l i e n t , 10000) ;
MQTTClient destroy(& c l i e n t ) ;
r e turn rc ;

}
or in Python
import paho . mqtt . c l i e n t as mqtt
import numpy
import time

de f c a l l b a ck f un c ( c l i e n t , userdata , message ) :
p r i n t ( "rcv " , numpy . f rombuf f e r ( message . payload , dtype=numpy . in t32 ) )

c l i e n t=mqtt . C l i en t ( )
c l i e n t . connect ( "127.0.0.1" )

c l i e n t . sub s c r i b e ( "float_vect" )
c l i e n t . on message=ca l l b a ck f un c
c l i e n t . l o o p s t a r t ( )
time . s l e e p (40)

which both highlight an interesting mechanism of automatically invoking a callback function when re-
ceiving a packet without the need to explicitly use a separate thread, as the C convention wouls require
all reads to be blocking.

4.2 MQTT for GNU Octave

MQTT is not provided as a Debian/GNU Linux package for GNU Octave, but it can be installed without
issues from the available source archives at https://sourceforge.net/p/octave-mqtt. Indeed, from
the source download directory, running make dist will create a .tar.gz archive in the target directory.
Then, in GNU Octave, we execute the command pkg install target/octave-mqtt-0.0.3.tar.gz

to install octave-mqtt in $HOME/.local/share/octave/api-v57/packages/mqtt-0.0.3/. This new
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package now provides access to the functions necessary to connect to the server (broker), and thus
all transactions are seen from the perspective of a client: for a subscribe connection that receives the
messages
pkg load mqtt
c l i e n t = mqttc l i en t ( "tcp ://127.0.0.1" ) ;
subs = subs c r i b e ( c l i e n t , "float_vect" ) ;
vec to r =[ ]
do

recv = read ( c l i e n t , "float_vect" ) ;
i f ( isempty ( recv )==0)
% vec tor=typeca s t ( recv ,” s i n g l e complex ”) ;

vec to r=typecas t ( recv . Data , "int32" )
end

un t i l ( isempty ( vec to r )==0)

and for a publish connection that sends:
pkg load mqtt
c l i e n t = mqttc l i en t ( "tcp ://127.0.0.1" )
vec to r =[1 :1024 ]
data=typecas t ( vector , "char" )
wr i t e ( c l i e n t , "float_vect" , data , "QualityOfService" , 1) ;

However, GNU Octave does not allow strong typing of the exchanged variables and we observe that
the emitted array is in the form of floating-point numbers expressed in double precision (thus 8 bytes
per data) and that from Python’s point of view, this array is read by modifying the callback function
using
de f c a l l b a ck f un c ( c l i e n t , userdata , message ) :

p r i n t (numpy . f rombuf f e r ( message . payload , dtype=numpy . f l o a t 6 4 ) )

hence a conversion of the byte array to double precision floating point thanks to dtype=numpy.float64.
Finally, we conclude this overview of MQTT by highlighting the simplicity of integrating a Python

library into GNU Radio: indeed, https://github.com/crasu/gr-mqtt offers an interface between GNU
Radio and MQTT by simply encapsulating the functions that we have just explained in the work method
of a dedicated Python block compatible with GNU Radio calls.

5 Unix filesystem

By addressing mechanisms involving sockets – the source of divergence between the implementation of
Unix that exposes network interfaces according to a specific API [12], and its original philosophy of
“everything is a file” – we have omitted the probably simplest approach to communicate between two
processes, the pipe. In fact, if we create a pseudo-file that communicates its input with its output through
mkfifo /tmp/myfifo, then any data entering the pipe will be accessible to any process connected to its
output as if it were a regular file, but without data storage on physical media. A special case would be
the link between the stdout of one process and the stdin of another process using the symbol |, but
here we will focus on the case of files as accessible by open(), read(), write(), and close().

To ensure proper functionality, launch the GNU Radio program shown in Fig. 15, and observe that
nothing happens (no display on the Time Sink output oscilloscope) until the other end of the pipeline is
connected. However, by running cat < /tmp/myfifo in a terminal, we can see that the scheduler starts
generating data, the binary representation of which is displayed in the terminal. Furthermore, using
GNU Octave, we can perform the same operation with the following code:

f=fopen(’/tmp/myfifo’);while (1);d=fread(f,1000,’float’);plot(d);refresh();end

which code opens the file once, and then continuously reads the last 1000 floating-point numbers (implic-
itly encoded as 4 bytes, i.e., 4000 bytes) in order to display their contents. By manipulating the slider
bar that varies the frequency of the signal, we can observe increasing latency, as all the data cannot
be consumed in real time. We attempted to close and reopen the file within the loop, but this did not
change the fact that the pipeline does its job by storing all injected data until it is consumed.

Note that /tmp/myfifo must be created before launching GNU Radio; otherwise, a true file (without
the p attribute in the first field of ls -la /tmp/myfifo) will be created in its absence and gradually
filled without providing the expected result.

This approach is elegantly presented for cascading data in a software-defined radio processing chain
during the 2023 session of the Software Defined Radio Academy, available at [13].
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mkfifo /tmp/myfifo

Options
Title: Not titled yet
Output Language: Python
Generate Options: QT GUI

QT GUI Range
ID: f
Default Value: 1k
Start: 0
Stop: 16k
Step: 1

Variable
ID: samp_rate
Value: 32k

outcmd

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

in

File Sink
File: /tmp/myfifo
Unbuffered: Off
Append file: Overwrite

outin
Throttle

Sample Rate: 32k

in

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

Figure 15: A simple GNU Radio Companion processing chain (top) produces a data stream at a rate of
approximately 32000 samples per second (block Throttle) and feeds it into a file connected to a FIFO.
At the other end, GNU Octave opens this file, reads its contents, and displays it on a graph as fast as
possible (bottom). The oscilloscope (middle) allows validation of when the data is produced by GNU
Radio during the execution of the p rocessing chain.

6 C in Python: ctypes and pybind11

So far, we have explored data sharing through sockets, making communication transparent within a
single computer or across computers connected through a network, in order to share data acquisition
and processing between various tasks potentially written in different languages. However, an alternative
to leveraging the advantages of different languages without using a socket is to create executables capable
of invoking a dynamic library or a binary version of the compiled code from the interpreted language.
Our colleague Benôıt Dubois (FEMTO-Engineering) uses ctypes, a library for i calling C functions
from Python, bringing together the speed of a compiled language with the flexibility of an interpreted
language. In doing so, we wondered about the coherence of the memory areas addressed by each language
and whether the data structure is shared or duplicated. To do this, various C functions manipulating
various types of pointers are defined in a file t.c
#inc lude <s t d i o . h>
void f on c t i on c ( const char ∗y ) { p r i n t f ( "C: %p\n" , y ) ;}
long fonc t i ond ( double ∗y ) { p r i n t f ( "C: %p\n" , y ) ; r e turn ( ( long )y ) ; }
long f onc t i onv ( void ∗ y ) { p r i n t f ( "C: %p\n" , y ) ; r e turn ( ( long )y ) ; }
void fonc t i onp ( void ) { p r i n t f ( "Hello\n" ) ;}
compiled to an object using the command gcc -c t.c -fPIC, and then creating a dynamic library
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named t.so from the object using the command gcc -shared t.o -o t.so. We check the contents of
the library by using the command nm -D t.so to ensure that it contains the functions we have defined.
We observe that we want to pass a character pointer (also called a string, hence called with arguments
between “...” in all languages), a pointer to an array of floats (such as a vector or matrix in C), a pointer
of an undefined type often used when the nature of the argument is not specified at compile time (such
as a data structure), and finally a procedure with no arguments.

This C library is called from Python using ctypes with
import ctypes as ct
import numpy as np
c l i b = ct .CDLL( "./t.so" ) # charge l a b i b l i o t h e q u e
c l i b . f onc t i ond . r e s type=ct . c i n t # type de re tour
c l i b . f onc t i ond . argtypes=[np . c t y p e s l i b . ndpointer ( dtype=np . f l oa t64 , ndim=1, f l a g s="→

↪→C_CONTIGUOUS" ) ]
# ˆˆˆ type de l ’ argument

a=np . arange (10 , dtype=’float64 ’ )
p r i n t ( f "Python: {a.ctypes.data:x}" ) # emplacement de a
c l i b . f onc t i ond ( a ) # a f f i c h e l e po in teur sur a
c l i b . f onc t i onp ( )

to display when executed

$ python3 ./t.py

Python: 1650310

C: 0x1650310

Hello

demonstrating that the pointer is the same in the structure created by NumPy and the one received by
the function fonctiond() in C.

Recently (since its version 3.9), GNU Radio has decided to expose its processing blocks in C++ to
Python using pybind11, a technique that leverages C++ features to link this language with Python at
compile time. The example above becomes almost compatible with Python by declaring the functions
in a file that we will name tpybind.cpp containing
#inc lude <pybind11/pybind11 . h>

#inc lude "t.c"

PYBIND11 MODULE( tpybind , m) { // must be the same name than the l i b
m. doc ( ) = "pybind11 example plugin" ; // op t i ona l module doc s t r ing
m. de f ( "fonctiond" , &fonct iond , "double pointer" ) ;
m. de f ( "fonctionv" , &fonct ionv , "void pointer" ) ;
m. de f ( "fonctionc" , &fonc t i onc , "byte/char pointer" ) ;
m. de f ( "fonctionp" , &fonct ionp , "no argument" ) ;

}
and despite our disgust at #include a C source code, this program is compiled with

g++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) tpybind.cpp \

-o tpybind$(python3-config --extension-suffix)

to produce a file with extension .cpython-311-x86 64-linux-gnu.so that we copy into
/usr/lib/python3.11/lib-dynload to make it accessible. It should be noted that the consistency of
names between the library that will be loaded in Python by import tpybind and the first argument of
PYBIND11 MODULE is important: it must be the same name [14]. By doing this, we will be able to execute
in Python
import tpybind
tpybind . f onc t i onp ( ) # Hel lo
tpybind . f on c t i on c ( "Hello" ) # C: 0 x7 f f f42394320
tpybind . f onc t i ond ( [ 1 . , 2 . ] ) # incompat ib l e func t i on arguments .

and indeed the passage of an array (pointer) of floating point numbers does not seem to be supported
when we consult the list of arguments of pybind11 in [15]. A method called memoryview seems to be
designed to expose the content of memory of a structure in Python to C/C++ functions, but we were
not able to tell it how to feed the pointer of floating point numbers from functiond().

7 C in GNU Octave: SWIG and mkoctfile

SWIG (Simplified Wrapper and Interface Generator), an old method used by GNU Radio to export
its C++ libraries to Python before switching to pybind, was introduced by William Daniau in his
presentation on interfacing C++ functions with various interpreted languages [16], but Octave is not
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among the considered tools. We were able to easily interface functions accepting character strings
(char* pointer) or functions written in C without arguments with an Octave using
%module t wrap /∗ MUST be the name o f the . oct f i l e ∗/
%f e a tu r e (” autodoc ” , 1) ;
%i n l i n e %{
extern i n t f onc t i ond ( double ∗) ;
extern void f on c t i on c ( const char ∗) ;
extern void fonc t i onp ( void ) ;
extern void f onc t i onv ( void ∗) ;
%}
which is compiled using swig -octave t.i to produce t wrap.cxx, which is then compiled into a li-
brary recognized by GNU Octave using g++ -c -I/usr/include/octave-7.3.0 -fpic -std=c++20

t wrap.cxx, and linked into an executable using
gcc -shared t.o t wrap.o -L/usr/lib/x86 64-linux-gnu/octave/7.3.0 -rdynamic -loctinterp

-loctave -lpthread -lm -o t wrap.oct (where the object t.o is the same as before when illustrating
how to link with Python using ctypes), which allows calling it from GNU Octave:

> t_wrap

> t_wrap.fonctionc("hello")

> C: 0x7fdea44d8470

> t_wrap.fonctiond([1])

> error: in method ’fonctiond’, argument 1 of type ’double *’ (SWIG_TypeError)

to display the address of the argument of the function fonctionc(). However, once again, as was the
case with pybind, we were unable to pass a pointer to an array of numbers (integers, floats) since the
GNU Octave matrix is a complex C++ class representing the properties of the array in addition to its
content.

However, GNU Octave offers native interfacing with C/C++ functions through mkoctfile. Thus,
a trivial program inspired by https://docs.octave.org/latest/External-Code-Interface.html in
the form of
#inc lude <octave / oct . h>

DEFUNDLD ( pointeraddr , args , , ” Po inter address ”)
{ i f ( a rgs . l ength ( ) != 1) p r i n t u sage ( ) ;
p r i n t f (”%p\n”,& args (0 ) ) ;
r e turn oc tave va lue ( ( unsigned long )&args (0 ) ) ;

}
is compiled using mkoctfile pointeraddr.cc (the extension is important because mkoctfile selects
gcc or g++ according to the extension .c or .cc) to produce a file with the extension .oct whose name
must be the same as that of the function. When running under GNU Octave

> dec2hex(pointeraddr(a))

0x7f05004d92c0

ans = 7F05004D92C0

we see that the pointer address is correctly displayed and returned to the interpreter. The documenta-
tion warns of some possible subtleties when including C in C++ https://docs.octave.org/latest/

Calling-External-Code-from-Oct_002dFiles.html that are typically encountered when these two
languages coexist.

8 Conclusion

We have endeavored to demonstrate how to communicate between different languages in order to dis-
tribute processing either by making the most of each language, or by sharing resources across separate
computers. To do this, we explored XMLRPC, 0MQ and MQTT for socket-based communication, or
ctypes, pybind, and SWIG for integrating C functions into GNU Octave. Many more mechanisms have
been proposed to the point of getting lost, with more or less advanced debugging capabilities: for ex-
ample, since version 3.9, GNU Radio has decided to abandon SWIG in favor of native integration of
C++ with Python through pybind (https://pybind11.readthedocs.io/en/stable/basics.html), a
transition that did not happen without pain, breaking compatibility with all existing processing blocks.
Thus, the choice of the right infrastructure will guarantee the sustainability of developments and the
continuity of a project... until the next incompatible API update!
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One point we did not address in this presentation is the use of websockets as an alternative to the na-
tive POSIX sockets, but at the highest application layer of the OSI model. André Buhart (F1ATB) men-
tions this approach in RemoteSDR at https://f1atb.fr/index.php/2020/07/19/gnu-radio-to-web-client/.
The reader is encouraged to explore this path if cross-platform compatibility is required.

All the programs proposed in this article are available at http://github.com/jmfriedt/gnuradio_
communication
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