
Decoding digital weather satellite images: the LRPT protocol from Meteor-M2
QPSK, Viterbi, Reed Solomon and JPEG: from IQ coefficients to images

J.-M Friedt, February 17, 2019
Analyzing digital satellite communication protocols is an opportunity to explore all the layers
of signal routing, from the physical layer with the phase modulated signal we acquire, to the
error correcting mechanisms (convolution code to be decoded using the Viterbi algorithm
and block code with Reed Solomon) and finally collect data blocks containing the JPEG
image thumbnails to be assembled to provide a complete picture. This whole demonstration
requires, from a hardware perspective, about ten euros worth of investment for finally having
the satisfaction of mastering the whole communication chain as used in space links.

1 Introduction

Shifting from analog to digital communication is an unques-
tionable trend (analog television to DVB-T, analog commercial
broadcast FM to DAB, telephone), and the radiofrequency links
are no exception, aimed at optimizing the radiofrequency spec-
trum usage and the quality of the transmitted signals. While
the analog APT (Automatic Picture Transmission) protocol of
the the low-Earth polar orbiting NOAA satellites is doomed to
disappear with the end of this satellite constellation, the succes-
sion seems to be taken care of with a protocol using the same
bandwidth but digital, allowing the transmission of pictures with
improved resolution: LRPT (Low Rate Picture Transmission).
We shall see that this performance gain is achieved at the ex-
pense of a significantly increased processing complexity.

Most readers will probably hardly ever care about LRPT, if
only because some functional free opensource decoding software is
available. Why then spend so much time decoding images trans-
mitted from the Russian Meteor-M2 [1] satellite, only source cur-
rently easily accessible (low Earth orbiting satellite) transmitting
a LRPT data stream (the LRPT emitter of the European Metop-
A is broken, and Metop-C is being commissioned while these lines
are written) ? On the one hand, LRPT is only one example of the
general class of digital communication protocols currently in use,
with increasingly complex modulation schemes and abstraction
levels ranging over all the OSI layers. We hence not only have an
opportunity to explore these layers and understand practically
their meaning, but other protocols close to LRPT are being used
for high resolution picture transmissions from low-Earth orbiting
satellites (even Terra and Aqua from the MODIS constellation) or
geostationary orbit [2]. Although we shall depart at some point
from the processing chain described in this last reference, the be-
ginning of the acquisition and signal processing chain will be the
same for LRPT decoding. Furthermore, if we are to believe the
documents provided by the various space agencies during the last
two decades, LRPT must be the future of low-bandwidth space
communication, even though Russians are the only ones practi-
cally exploiting the protocol in the VHF (Very High Frequency –
30 to 300 MHz, hence including the band around 137 MHz dedi-
cated to satellite communications) band currently. Beyond these
applied engineering aspects, the techniques we will enforce are
used in many current digital interfaces used daily, from data com-
munication and storage to television: [3] estimated in 2005 that
1015 bits/second were being processed using convolution codes
for television alone.

Figure 1: Meteor-M2 image acquired from Spitsbergen. Northern Scan-
dinavia is visible on the top-right of the image, the North Pole is towards
the bottom-left of the image.

Let us first provide some inspiration to the reader by demonstrating the targeted result (Fig. 1). Meteor M2 transmits on a
137,9 MHz carrier, so that current NOAA APT receiver installations [4] are perfectly suited. Analyzing the reception quality
for LRPT is a bit more complex than in the case of APT: the digital mode is not suitable for an audio-frequency analysis of
the link quality as is the case for APT with its sweet melody at 2400 Hz, and only a constellation diagram observation (see

1

section 5.6) allows for assessing whether the receiver and its antenna are functional. We had to record tens of failed passes before
acquiring a usable signal. The challenge with polar-orbiting satellites is that they often fly over the poles, and only once every
day over any location at our temperate latitudes. We are lucky enough to collect signals from Spitsbergen, at 79◦N, a latitude
at which a polar orbiting satellite is seen every 100 minutes. If we do not take care, we might even spend most of our time
monitoring radiofrequency signals from satellite rather than getting work done ! An additional bonus is to fetch a direct view of
the North Pole, with no geographical interest other than showing that it can be done. The picture shown in Fig. 2 is aimed at
demonstrating how simple hardware is used to receive Meteor M2 signals: as for NOAA satellites, two rigid wires and a Digital
Video Broadcast-Terrestrial (DVB-T) receiver based on the R820T(2) frontend and RTL2832U analog to digital converter and
USB transceiver used as software defined radio are enough. Such hardware, compact and light weight, is easily improvised even
in remote areas if not readily available.

Figure 2: Left: experimental setup. A dipole antenna, a DVB-T receiver and a computer running GNU Radio are enough to
collect data from Meteor M2 on a 137.9 MHz carrier. Right: result after processing the signal received from a NOAA satellite
(analog communication) over Spitsbergen. From such a site, low-Earth polar orbiting satellites reappear every 100 minutes, for
passes lasting about ten minutes.

The careful reader will have noticed (Fig. 2) that we have replaced a basic dipole antenna with a dipole exhibiting an angle
of 120◦ as advised by lna4all.blogspot.com/2017/02/diy-137-mhz-wx-sat-v-dipole-antenna.html. Why this strange
angle ? for the same reason than the elements of a discone antenna exhibit some angle with respect to the radiating vertical
monopole and are not horizontal: in order to match impedance. A quick NEC2 [5] simulation demonstrates how impedance
at resonance is dependent on the angle between the wires:

1

1.5

2

2.5

3

280 285 290 295 300 305 310 315 320

V
S

W
R

 (
n

o
 u

n
it
)

frequence (MHz)

100 deg.

120 deg

180 deg

and indeed, an angle of 120◦ helps us get close to the targeted 50 Ω of the radiofrequency connectors and cables. Practically,
considering how close ground and other disturbing metallic elements including the snow mobile are, the capacitive parasitic
elements are so significant that the antenna is necessarily mismatched. Meeting theoretical expectations can never hurt
nevertheless...

Acquisition and processing are completed as two different steps: GNU Radio is used not only to collect complex, as identity and
quadrature (I,Q), samples from the radiofrequency receiver, but also to perform pre-processing steps to compensate for frequency
offsets between the moving satellite and the ground-based receiver (section 5) and lock the bit-detection clock on the transitions
observed on the digital data stream. Doing so, we reduce the data-rate and hence the size of the file storing the data on the hard
disk for further processing. The image (Fig. 1) was decoded using meteor decoder available at github.com/artlav/meteor_

decoder.git. This software, written in Pascal (apt-get install fpc), is trivially compiled with ./build medet.sh to generate
the program medet which is used with ./medet file.s output -s with file.s the file generated from GNU Radio. Doing so,

2

lna4all.blogspot.com/2017/02/diy-137-mhz-wx-sat-v-dipole-antenna.html
github.com/artlav/meteor_decoder.git
github.com/artlav/meteor_decoder.git

we have obtained a very nice image, have understood nothing of the processing steps, and remain slaves of an excellent developer
who has provided a perfectly functional tool. No interest whatsoever.

Our aim, in this presentation, is to analyze the detailed operations of medet, understand its operating principles, and without
disregarding the comfort of a functional application, benefit from this opportunity of understanding the LRPT protocol to improve
our knowledge on “modern” digital communication techniques.

2 When will the satellite fly overhead ?

The first question to be answered in a project aimed at receiving a low-Earth polar orbiting satellite signal is to know its
flight schedule. Indeed, with an orbit at an altitude of about 800 km from the surface of the Earth, the satellite performs
one complete orbit every 100 minutes, and is visible from a given location on the surface of the planet for a dozen minutes
at most. For historical reasons, our preferred satellite pass prediction tool is SatTrack which, despite its Y2K bug (http:
//pe1chl.nl.eu.org/SatTrack/), remains an excellent command line software perfectly functional. We fill its data/cities.dat
configuration file with a new entry including an identifier, and latitude and longitude (negative towards the east !) coordinates
of the site at which the receiver is located, as well as the orbital parameters of the satellite in tle/tlex.dat: the file fetched
at www.celestrak.com/NORAD/elements/weather.txt provides such regularly updated parameters. Identifying the Metero M2
satellite as METEOR-M 2, we obtain a list of passes in the following format

BTS SatTrack V3.1 Orbit Prediction

Satellite #40069 : METEOR-M 2

Data File : tlex.dat

Element Set Number: 999 (Orbit 21896)

Element Set Epoch : 27Sep18 21:20:50.463 UTC (2.3 days ago)

Orbit Geometry : 816.87 km x 823.72 km at 98.593 deg

Propagation Model : SGP4

Ground Station : NYA --- JQ58WW

Time Zone : UTC (+0.00 h)

Date (UTC) Time (UTC) of Duration Azimuth at Peak Vis Orbit

AOS MEL LOS of Pass AOS MEL LOS Elev

Sun 30Sep18 05:28:54 05:35:40 05:42:25 00:13:31 355 56 117 17.5 DDD 21930

07:10:16 07:17:34 07:25:00 00:14:44 10 81 153 28.4 DDD 21931

08:51:18 08:58:56 09:06:38 00:15:20 25 107 187 48.1* DDD 21932

10:31:55 10:39:41 10:47:31 00:15:37 41 131 220 77.6* DDD 21933

12:12:20 12:20:02 12:27:48 00:15:28 60 334 250 77.5* DDD 21934

13:52:24 14:00:07 14:07:53 00:15:28 83 1 276 68.9* DDD 21935

15:32:29 15:40:15 15:48:01 00:15:33 109 20 299 76.7* DDD 21936

17:12:46 17:20:32 17:28:22 00:15:37 139 226 318 79.1* DDD 21937

18:53:39 19:01:17 19:08:59 00:15:20 171 253 334 49.3* VVV 21938

20:35:17 20:42:35 20:50:01 00:14:44 206 277 349 29.2 VVV 21939

22:17:44 22:24:29 22:31:19 00:13:35 241 303 5 17.9 VVV 21940

Mon 01Oct18 00:00:55 00:07:00 00:13:09 00:12:14 277 330 23 11.9 VVV 21941

01:44:06 01:49:51 01:55:39 00:11:33 308 357 46 9.8 VVV 21942

03:26:49 03:32:46 03:38:46 00:11:58 333 24 76 11.1 VVV 21943

05:08:47 05:15:20 05:21:58 00:13:11 352 51 110 16.0 DDD 21944

06:50:13 06:57:23 07:04:41 00:14:28 7 76 146 25.7 DDD 21945

08:31:14 08:38:53 08:46:31 00:15:16 22 102 180 43.3* DDD 21946

10:12:00 10:19:42 10:27:32 00:15:33 38 124 213 71.4* DDD 21947

11:52:25 12:00:07 12:07:57 00:15:33 56 334 244 81.3* DDD 21948

13:32:33 13:40:15 13:48:02 00:15:28 78 355 271 69.3* DDD 21949

15:12:38 15:20:20 15:28:06 00:15:28 103 20 295 73.9* DDD 21950

16:52:51 17:00:37 17:08:27 00:15:37 133 228 314 84.9* DDD 21951

18:33:32 18:41:14 18:49:00 00:15:28 165 247 331 54.7* VVV 21952

20:15:02 20:22:28 20:29:54 00:14:52 199 273 346 32.3 VVV 21953

We only consider passes with a sufficient elevation for the satellite to be clearly visible (typically about 60◦ as indicated in the
Peak Elev column) and the time is here given in Universal Time (+1 or +2h with respect to French time).

Many users might prefer a graphical interface to get such results. When an internet connection is available, the simplest solution
is probably to fetch the information from the Heavens Above (www.heavens-above.com) web site, requesting pass predictions for
the satellite identified as NORAD 40069 (Fig. 3): the results are consistent with those of SatTrack, considering that Heavens
Above provides results in local time rather than universal time (hence a 2 h difference at the date of October 1st we are concerned
with here), that Heavens Above does not consider passes with a maximum elevation below 10◦, and that the schedule for the
Acquisition Of Signal (ACQ or AOS) and the Loss Of Signal (LOS) is given for an elevation of 10◦ and not 0◦, inducing an offset
of about 2 to 5 minutes between the schedules.

When no internet connection is available, the proprietary and now bygone software WXtoImg (https://wxtoimgrestored.
xyz/) – a long time useful tool for NOAA low-Earth orbiting receiver enthusiasts – can be lured to predict Meteor M2 passes.
This exercise is mostly an opportunity to quickly investigate the structure of the Two Line Elements (TLE) orbital parameter
descriptions. The information allowing to compute the position of a satellite around the Earth is provided by Celestrak as

3

http://pe1chl.nl.eu.org/SatTrack/
http://pe1chl.nl.eu.org/SatTrack/
www.celestrak.com/NORAD/elements/weather.txt
www.heavens-above.com
https://wxtoimgrestored.xyz/
https://wxtoimgrestored.xyz/

Figure 3: Pass previsions using the web site Heavens Above.

METEOR-M 2

1 40069U 14037A 18272.86150993 -.00000016 00000-0 12287-4 0 9997

2 40069 98.5921 321.1231 0004724 305.5966 54.4754 14.20654510219244

The name of the satellite is given as a free text field in the first line, followed by the orbital parameters starting with the
line number and the NORAD identifier of the satellite, followed for its first appearance by the classification level of the satellite
(“U”nclassified, “C”lassified, “S”ecret). Making WXtoImg believe that we will predict the pass schedule of a satellite it is designed
to work with – NOAA APT – we must forge an erroneous TLE with the orbital parameters of Meteor M2 and the identifier of a
NOAA satellite. Let us for example consider NOAA 15 which is no longer fully operational

NOAA 15

1 25338U 98030A 18283.48448267 .00000100 00000-0 60924-4 0 9992

2 25338 98.7662 299.9712 0009347 251.7061 108.0475 14.25879899 61199

Having observed that WxtoImg does not consider the first line, we only modify the identifier in the Meteor M2 sentences by
the NORAD identifier of NOAA 15, namely 25338. Such a simple modification however fails: the last number of each line is
indeed a checksum computed by summing all the characters of each line modulo 10, considering that the “-” is equal to 1 and
other letters and symbols are not considered when computing the sum. Using GNU/Octave, this computation is achieved with

a="2 25338 98.7662 299.9712 0009347 251.7061 108.0475 14.25879899 6119"

a=strrep(a,’-’,’1’);mod(sum(a(find((a<=’9’)&(a>’0’)))-48),10)

which, in this example, answers 9, which is indeed the last number of the second TLE line of NOAA 15. Having understood
these issues, we forge the new sentence

METEOR-M 2

1 25338U 14037A 18272.86150993 -.00000016 00000-0 12287-4 0 9999

2 25338 98.5921 321.1231 0004724 305.5966 54.4754 14.20654510219246

in which the NORAD Meteor M2 identifier was replaced with the one from NOAA 15, and the new checksums were computed
and updated. Under such conditions, WxtoImg performs the computation and displays the result, consistent with Heavens Above
and SatTrack. Indeed, the output shown on Fig. 3 compares favorably with the output of WxtoImg shown below

4

Satellite passes for ny-alesund, norway (78o55’N 11o54’E)

while above 0.1 degrees with a maximum elevation (MEL) over 40.0 degrees

from 2018-09-30 21:46:04 CEST (2018-09-30 19:46:04 UTC).

2018-10-01 UTC

Satellite Dir MEL Long Local Time UTC Time Duration Freq

NOAA 15 S 43E 40E 10-01 10:31:13 08:31:13 15:11 137.6200

NOAA 15 S 71E 20E 10-01 12:11:57 10:11:57 15:30 137.6200

NOAA 15 S 81W 9E 10-01 13:52:22 11:52:22 15:29 137.6200

NOAA 15 S 69W 10E 10-01 15:32:33 13:32:33 15:25 137.6200

NOAA 15 N 74E 16E 10-01 17:12:38 15:12:38 15:26 137.6200

NOAA 15 N 85W 10E 10-01 18:52:51 16:52:51 15:31 137.6200

NOAA 15 N 55W 7W 10-01 20:33:34 18:33:34 15:24 137.6200

We have seen that the 2 minute difference between SatTrack and other prediction software lies in the fact that the former
considers that AOS is achieved when the satellite rises over the horizon while the other two consider higher elevations (with a
default value of 8◦). We notice in all cases the benefits of working at higher latitudes (here 79◦N) where passes repeat every
100 minutes, allowing for many more attempts than at the French latitudes.

We could not resist while watching S. Prüfer present Space Ops 101 at media.ccc.de/v/35c3-9923-space ops 101#t=1265

the urge to reproduce the figures exhibited between 16 and 18 minutes along the presentation illustrating why listening to
satellite from polar regions is most favorabl. In order to achieve the results depicted below using QGis (here version 3.4):

1. install a tool for predicting satellite positions based on the TLE and providing a Shapefile formatted output: we have
used https://github.com/anoved/Ground-Track-Generator/ which is trivially compiled,

2. generate the ground trace of the satellite we are interested in. By providing the Meteor M2 TLE collected around
October 1st 2018 on the Celestrak web site as described in the text, we execute
gtg --input meteor.tle --output m2 --start epoch --end epoch+24h --interval 30s

to get the m2.shp file which includes the position, in spherical coordinates (WGS 72), for the satellite as seen from
ground,

3. download a coast and border database, again in Shapefile format. In our case we used the archive available at https:

//www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-countries-2/

4. we must always work in a projected cartesian framework to process geometrical transforms: all spherical coordinates
are hence projected to a cartesian framework in the local tangent planes. For France, WGS84/UTM31N yields good
results (EPSG:32631) while https://epsg.io/3576 teaches us that EPSG:3576 will provide an acceptable projection
framework around the North Pole

5. having clipped (Vector → Geoprocessing Tools → Clip ...) the border map to the countries around the Arctic
regions (down to about fifty degree north: such a result is achieved by creating a polygon using Layer→ Create Layer

→ New Shapefile Layer... → Geometry Type: Polygon), place the receiver location site on the map, for example
by importing an ASCII file including its longitude and latitude.

6. Trace circles of known circumference on the map. Doing so is achieved by saving the receiver site location coordinates
in a cartesian framework (right mouse button on the layer including the symbol of the receiver site, and Export →
Save Feature As ... by selecting a CRS with the appropriate projection) then we will trace an exclusion zone with
Vector → Geoprocessing Tool → Buffer We are left with identifying the circumference of these circles. The
case of the angle with respect to the center of the Earth at which the satellite appears over the horizon is trivial since
we have a right triangle between the observer, the center of the Earth at radius R, and the satellite at a distance
R + r from the center of the Earth (r the flight altitude of the satallite). Hence, the angle between the observer, the
center of the Earth and the satellite is ϑ = arccos(R/(R + r)) and the length of the arc visible from the satellite is
R cosϑ = R · R/(R + r) = 3050 km. This yields the radius of the largest circle visible on the figures exhibited below.
Practically, we can hardly receive a usable signal from an elevation below ϑ′ = 15◦. In this case, identifying the radius
of the circle defining the visibility zone requires a bit more complex trigonometric relations, by replacing the right angle
with an angle equal to (90 + ϑ′), but the solution to the problem remains unique for a known given angle (the satellite
angle at AOS), a Earth center-observer distance known (R) and a Earth center-satellite distance known (R + r). The
solution for ϑ′ = 15◦ is a radio of the visibility zone of 1760 km. Finally, we shall not bother with facing the Arctic
cold if the satellite maximum elevation during a pass remains below ϑ′ = 60◦. In this case, the radius of the satellite
visibility zone for such a minimum elevation is reduced to 400 km around the observer location. These two circles are
concentric and centered on the observation site on the figures below.

We deduce, by observing these figures, that a single pass at best will yield usable results every day over France with an
elevation of at least 60◦, while 9 to 10 passes out of the daily 14 will meet this condition over Spitsbergen.

5

https://github.com/anoved/Ground-Track-Generator/
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-countries-2/
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-countries-2/
https://epsg.io/3576

Left: ground trace (red dots) of Meteor M2 passes as seen from Besançon during 24 h. Right: ground traces of Meteor M2 passes as seen from Ny
Ålesund in Spitsbergen. Notice that a single trace lies within the circle defining an elevation of at least 60◦ during a pass over France, while at least
9 orbits meet this condition over Spitsbergen. The left figure is given in WGS84/UTM31N projection, while the one on the right is WGS84/North
Pole LAEA Russia. The largest circle centered on each observer site indicates when a satellite becomes visible over the horizon (3030 km radius),
the intermediate circle indicates a visibility at elevations of at least 15◦ (1760 km radius), and the smallest circle describes locations at which the
elevation of the satellite is at least 60◦ (400 km radius).

3 Why such a complex protocol ?

APT for communication analog signal emitted from NOAA satellites is trivial [6]: a dual amplitude (pixel intensity) and frequency
(to get rid of Doppler shift as the satellite travels along its orbit) modulation transmits the information decoded on the ground
by successive FM followed by AM demodulators. Why then leave this simple communication protocol at the expense of a digital
communication mode embedding packets in multiple protocol layers (Fig. 4) which will keep us busy along the pages that follow ?

VCDU

HEADER
M−PDU

M−PDU

HEADER
PACKET

HEADER

PACKET

DATA FIELD

PACKET

HEADER

PACKET

DATA FIELD

PACKET

M−PDU
M−PDU

HEADER
PACKET

MCU

884 bytes/M−PDU
Multiplexing Protocol Data Unit

CADU N CADU N+1 CADU N+3PCA−PDU

CADU

CVCDU

CADU N+2

physical layer: QPSK @ 72 kb/s

XOR−ed CVCDUSYNC.
1ACFFC1D 1ACFFC1D

XOR−ed CVCDUSYNC.

128 bytes892 bytes

8192 bits=1024 bytes/CADU

1020 bytes/CVCDU

Channel Access Data Unit

892 bytes/VCDU

DATA UNIT

886 bytes
VCDU

Virtual Channel Data Unit

Physical Channel Access
Protocol Data Unit

Coded Virtual Channel Data Unit

Reed Solomon

CVCDU CHECK

Minimum Code Unit

Figure 4: Protocol layers to be addressed to convert the physical signal (bottom) to an image (top): the complexity of the protocol
lies in its general purpose and the virtualization of multiple digital channels transmitted by the satellite.

The amount of information transmitted is limited by the allocated bandwidth, but a given bandwidth can be used more or

6

less efficiently to transmit an image with a better or worse quality. The radiofrequency spectrum is a scarce and busy resource:
Meteor-M2 allows for an improved resolution for a given spectral usage thanks to the spectrum optimization provided by the
digital modulation. More importantly, this data encapsulation as packets in successive layers – similar to the OSI layers for
ground networks – fits in with a logic of sharing resources needed for space communication as illustrated in Fig. 5 (NASA image)
following the presentation [7].

Figure 5: Illustration depicting the complexity of space communications to transmit information acquired around terrestrial orbits,
especially from low Earth orbiting satellites (ex-space shuttle and now ISS at 400 km, Hubble at 550 km) which could not be
efficiently used and monitored by being visible only a few minutes every day from a ground station. Only by using a network of
geostationary communication satellites (TDRS in the United States, future EDRS in Europe for the Sentinel satellites) ensures a
nearly permanent link between a space agency and its satellites. Picture taken on the web site earth.esa.int/web/eoportal/

satellite-missions/i/iss-scan.

As an example, a low Earth orbiting satellite such as the International Space Station (ISS, 400 km altitude) or a weather
satellite (800 km altitude) will travel from horizon to horizon in 7 to 11 minutes under best circumstances (maximum elevation
at zenith). With a period of 90 minutes, this means that for a continuous link with the ISS, 13 stations would be needed along
each orbit, or one station every 3000 km, not very practical to implement despite being used at the early days of the space race
[8]. The solution is to communicate through the TDRS (Tracking and Data Relay Satellite), a set of geosynchronous satellites
acting as relays between the low and mid-Earth orbiting satellites and ground. This means that not only is each flying platform
fitted with a multitude of instruments which must share the available bandwidth and hence use a communication protocol for
sharing the communication channel more subtle than simply sequentially communication each instrument result as was seen for
NOAA [6], but also that a given satellite might be used to route information from different origins, and later from different orbits
(e.g Moon or Mars [9]). Such functionalities are for example mandatory to fully exploit a satellite such as the Hubble space
telescope orbiting at about 500 km from the surface of the Earth, which is no more no less than a spying satellite looking in the
wrong direction. All these elements hints at the development of a packaging and routing protocol which must be robust to the
temporary visibility of the satellites from the ground station, with possibly the ability to hand-over from one station no another
due to Earth rotation (see for example the Deep Space Network and its stations distributed on all continents) without the final
used being aware of these successive data sources.

Hence, we find again the same problems of IP packet routing followed by encapsulation of data in TCP or UDP packets, but

7

earth.esa.int/web/eoportal/satellite-missions/i/iss-scan
earth.esa.int/web/eoportal/satellite-missions/i/iss-scan

without the robust and user-friendly libraries provided by the various opensource implementations of the networking layers. We
must hence unstack ourselves the layers of the protocol to understand each subtle operating principle. Luckily, all information is
available, assuming we know where to look for them 1.

4 How to tackle the challenge ?

Communicating digital data on a radiofrequency communication channel as variable as a space link requires a few data protection
strategies to prevent corruption and losses, and even correction capability. These various protocol layer are described in documents
published by the CCSDS, the Consultative Committee for Space Data Systems, at public.ccsds.org (Fig. 6).

Figure 6: OSI layers and acronyms used in the literature describing the LRPT image transmission. This image is extracted from
CCSDS 120.0-G-2 at public.ccsds.org/Pubs/120x0g2s.pdf
.

Reading the document is, to say the least ... challenging. Let us attempt to ease the challenge by starting from the end
(transmitting an image) and reach the signal we have received (the radiofrequency wave):

1. an image is split to be transmitted by the satellite as a set of 8× 8 pixel thumbnails,

2. each one of these thumbnails is compressed (lossy compression) using JPEG: each image thus exhibits a variable size
depending on the amount of details being displayed in each thumbnail (few coefficients for a smooth area, many coefficients
for areas with many features such as mountains). These steps of image assembly are discussed in section 7,

3. one line of the final image is made of 196 thumbnails, for a total width of 1586 pixels

4. transmitting the images collected a various wavelengths (various instruments) is alternated by sending the set of 196 thumb-
nails from one wavelength, then the 196 thumbnails from another wavelength. Between image transmission, a telemetry
sentence is transmitted (section 5.7)

5. these variable size datasets are collected in fixed-size packets. Each packet holds a payload made of 892 bytes followed
by 128 bytes for an optional transmission error correction, to which a 4 byte header for synchronization is added (total:
1024 bytes). This grouping of bytes into sentences is described in section 6,

6. a convolutional code, which will be described in details since it is the core theoretical challenge of the whole work, allows
for correcting noise distributed uniformly during the transmission. Each bit is doubled to create sentences which are
2× 8× 1024 = 16384 bit long (section 5.3),

7. the hardware layer is defined as a QPSK (4-PSK) transmission in which each bit pair is encoded as one of four possible
phase states {0, 90, 180, 270}◦. This transmission runs at a rate of 72 kb/s (section 5).

Having described the outline of the encoding which follows the outline of the OSI layers (Fig. 6), we must unwrap the problem
in the opposite direction to go from the radiofrequency signals received by a digital video broadcast-terrestrial receiver used as
I/Q coefficient source for software defined radiofrequency signal processing.

1notice that the author of libfec library which will be used here, Phil Karn KA9Q, is also the author of the TCP/IP stack for MS-DOS that we used
during our first steps to to discover internet connectivity at the beginning of Linux in 1994/1995, when MS-DOS was still the most common operating
system running on personal computers

8

public.ccsds.org
public.ccsds.org/Pubs/120x0g2s.pdf

5 From the radiofrequency signal to bits

Acquiring digital signals following frequency transposition to get to baseband does not involve any significant challenge: the local
oscillator of the DVB-T receiver used as sample source for radiofrequency signal processing is tuned to the center frequency of
the emitted signal – 173.9 MHz in the case of Meteor M2 – and the bandwidth adjusted to be wide enough to collect all spectral
components of the signal modulating the carrier. He have discussed at length in [10] how phase modulation requires regenerating
on the receiver side a local copy of the carrier prior to modulation in order to identify the phase of the signal by mixing and
filtering. In the case of binary modulations (BPSK – Binary Phase Shift Keying), we have seen [11, 10] that the un-modulated
carrier was recovered by processing the (I, Q) coefficients with an estimator insensitive to π rotations (since the encoding is added
to the carrier by rotating the phase to 0 or π), either by using the arctan(Q/I) function or by squaring the signal in order to
double the phase, namely 0 or 2π, and hence a carrier having lost its modulation but at double the frequency offset between the
emitted signal and the frequency of the local oscillator on the receiver side.

Figure 7: Acquisition sequence aimed at minimizing the size of the file storing data by maximizing the number of processing steps
taken care of by GNU Radio, namely creating a copy of the carrier (Costas loop) and the clock synchronizing data sampling, in
order to recover the bit sequence and only save one 8-bit sample for each information (bit) transmitted. These samples with be
discretized (1 or 0) during post-processing taken care of later.

The same principle is exactly transposed to quadrature phase modulation, in which the information is applied as phase rotations
of the carrier with values equal to 0, π/2, π or 3π/2 (Fig. 7, strongly inspired by github.com/otti-soft/meteor-m2-lrpt/

blob/master/airspy_m2_lrpt_rx.grc). However, instead of simple squaring, getting rid of the phase now requires computing
the fourth power of the signal, yielding a beat signal at four times the offset between the emitted frequency and the receiver local
oscillator (Fig. 8) frequency. Hence, for a given acquisition bandwidth, we can only allow for a lower difference between these two
frequencies than in the case of BPSK.

We have seen on the other hand [10] that once the carrier has been reproduced (Costas), the question of the bit sampling
rate remains since the emitter and receiver clocks are not synchronous, hence the need to detect transitions from one bit value to
another to control the clock sampling the phase. This job is taken care of by clock synchronization blocks such as Clock Recovery
Mueller & Müller or Polyphase Clock Sync which aim at only providing a single sample for each symbol after controlling the clock
sampling the datastream on its transitions.

These two tasks are taken care of by GNU Radio not only because they are perfectly functional in this environment, but most
significantly to reduce the size of the files stored for further processing. The more the datastream is decimated prior to storage,
the smaller the file: in our case, we aim at storing the bit stream as the output of the processing chain, or one byte representing
each bit since the recovered values have not yet been discretized to 1 or 0 but remain a probability to be maybe 1 or maybe 0.
We will see that keeping this uncertainty, considering the clever encoding scheme used during emission, will maximize our chance
of recovering the correct value of each bit. This data storage format is named soft samples, as opposed to hard samples which
have already been discretized to attribute a value of 0 or 1 to each bit [12, p.8].

5.1 Data format

The first question we might wish to answer is whether our understanding of the data format is correct and if the file is worth
processing. Before having the slightest idea on the encoding format, we might simply wonder whether a pattern is repeated.
Indeed, when encapsulating messages as packets, it is quite likely that the size of packets is constant, and that some pattern such
as the header will repeat. Hence, the autocorrelation of the signal must exhibit some peaks spaced by the repetition period of the
messages (Fig. 9).

We observe correlation peaks every multiple of 16384 samples (bytes). Trespassing on the description that will follow, we will
learn that each packet transmitted by Meteor M2 is 1024 byte long or 8192 bits, and that the coding scheme used (convolutional
code [13]) doubles the number of bits to 16384, while in the soft bit format we have one byte representing each bit of the transmitted

9

github.com/otti-soft/meteor-m2-lrpt/blob/master/airspy_m2_lrpt_rx.grc
github.com/otti-soft/meteor-m2-lrpt/blob/master/airspy_m2_lrpt_rx.grc

0
20
40
60
80

100
120
140

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

|F
F

T
|
(n

o
 u

n
it
)

1

0

0.5

1

1.5

2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

|F
F

T
|
(n

o
 u

n
it
)

2

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

|F
F

T
|
(n

o
 u

n
it
)

4

0
2e-08
4e-08
6e-08
8e-08
1e-07

1.2e-07
1.4e-07

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

|F
F

T
|
(n

o
 u

n
it
)

frequency (MHz)

8

Figure 8: Top to bottom: spectrum of the I+jQ coefficients exhibiting the spectrum spreading ; squaring the signal ; computing
the fourth power and the eighth power. Squaring the signal does not allow for spread spectrum compression to recover the carrier:
the modulation is not BPSK. The fourth power allows for removing the modulation and only the carrier is left: the modulation
is QPSK.

message. The position of the correlation peaks observed in Fig. 9 is hence indeed consistent with the expected shape of the signal:
not only have we verified that we understand how to read the file saved by GNU Radio and interpret correctly its content, but
we know that the acquired signal contains the information transmitted by the satellite and is worth further analysis.

5.2 Decoding data

We have so far obtained a sequence of bytes whose value will be most probably be equal to 1 or 0. As with all continuous streams
of data, we must have a starting point to know when to start processing the bit stream, assemble them into letters (bytes),
then words, sentences and paragraphs. The classical approach to identify the beginning of a transmission is to provide a known
sequence in the continuous bitstream, and search for the occurrence of this pattern. The estimator of resemblance between the
successive phases of the signal and the searched pattern is the cross-correlation. Indeed, the technical documentation of LRPT
[14] teaches us that all space transmissions are synchronized on the word 0x1ACFFC1D. The job sounds easy: by cross-correlating
this word, we shall find the synchronization as the maximum of the cross-correlation.

Not so fast. First of all, the bits received from a satellite orbiting at more than 800 km from the surface of the Earth are
corrupted by noise. We must thus search for some kind of repeated pattern to maximize the chances of properly detecting the
transmitted message. A basic approach would consist in simply repeating the message multiple times, but how to select the good
one if two transmissions are not identical ? Better, convolutional encoding uses as input a continuous bit stream, and creates a
new (longer) sequence so that each new bit is a combination of the input bits. This combination is designed to maximize our
chances of recovering the initial message: this processing step is convolutional encoding. Bits encoded this way no longer exhibit
the synchronization word sequence 0x1ACFFC1D buts its convolutional encoded version, which must be determined and searched

10

-60

-40

-20

0

20

40

60

80

100

-200000 -150000 -100000 -50000 0 50000 100000 150000 200000

a
u
to

c
o
rr

e
la

ti
o
n
 (

a
.u

.)

delay (sample number)

x=16384x=-32768

Figure 9: Autocorrelation of 400 ksamples of soft bits stored as the output of the GNU Radio demodulating chain that was in
charge of recovering the carrier frequency and the QPSK clocking rate. Correlation peaks are seen every 16384 samples.

for in the received bit stream.

5.3 Convolutional encoding of the synchronization word

In order to maximize our chances of recovering the value of each bit, a convolution code spreading the information over time is
used in order to introduce redundancy. While encoding is excessively simple to implement, decoding the most probable sequence
following corruption of some of the bits during transmission is possibly very complex. An optimal approach to the dual problem
is to implement decoding as the Viterbi algorithm [15] – named after its author, also co-founder of the Qualcomm company – and
we must thus master these concepts in order to recover usable bit sequences.

Input data are represented as soft bits, or sequences of 8-bit values en-
coding each one possible bit value. The convolution to generate the emit-
ted bits has used as input each source bit, and created two output bits as
combination of a given number of input bits: the convolution algorithm is
qualified as r = 1/2 since it provides twice as many bits on its output as
input bits, and K = 7 since the shift register used as memory of the in-
put bit sequence is 7-bit long [14, p.23]. Convolution can be tackled in
many ways: one approach, closest to the hardware or programmable logic
(FPGA) implementations of the convolutional encoding, consists in a shift
register used as a memory, fed by the new bit of the sequence to be en-
coded, and feeding one or more XOR gates to provide 1/r ≥ 1 output bits
for each input bit (Fig. 10). One way of defining which bits of the shift
register feed the XOR gate is to provide the polynomial whose non-null pow-
ers match the connecting points from the shift register to the XOR gate

new

bit @

72 kb/s

0x4F

0x6D

XOR

XOR

Figure 10: Convolutional coding: bits in the shift register
are sampled at the positions whose indices define the polyno-
mials, added as binary values (exclusive OR operation) and
the two resulting bits are concatenated as output, inducing
an output data rate double of the input data rate.

[16] (Fig. 10, reading from right to left the binary representation of the byte defining each polynomial coefficient). From this
polynomial expression of the convolutional code, we can state the sequence of operations as a matrix operation, as described at
http://www.invocom.et.put.poznan.pl/~invocom/C/P1-7/en/P1-7/p1-7_1_6.htm by considering that the register content
shift at each time step is achieved by shifting the polynomial coefficients along the (long) bit sequence to be encoded. This
generator matrix expression is natural when considering a Matlab implementation since it expresses the convolution as a matrix
operation, and is programmed in this simple case in GNU/Octave by:

d=[0 1 0 1 1 1]

G1=[1 1 1] % 0x7 r=1/2, K=3 (3-bit long shift register)

G2=[1 0 1] % 0x5

G=[G1(1) G2(1) G1(2) G2(2) G1(3) G2(3) 0 0 0 0 0 0;

0 0 G1(1) G2(1) G1(2) G2(2) G1(3) G2(3) 0 0 0 0;

0 0 0 0 G1(1) G2(1) G1(2) G2(2) G1(3) G2(3) 0 0;

0 0 0 0 0 0 G1(1) G2(1) G1(2) G2(2) G1(3) G2(3);

0 0 0 0 0 0 0 0 G1(1) G2(1) G1(2) G2(2);

0 0 0 0 0 0 0 0 0 0 G1(1) G2(1);

]

mod(d*G,2) % matrix product modulo 2 = XOR

11

http://www.invocom.et.put.poznan.pl/~invocom/C/P1-7/en/P1-7/p1-7_1_6.htm

with the alternating coefficients of the two polynomials named G1 and G2, which indeed provides a result consistent with the one
shown at home.netcom.com/~chip.f/viterbi/algrthms.html: 0 1 0 1 1 1→0 0 1 1 1 0 0 0 0 1 1 0.

The creation of the convolution matrix, generated here manually, is generalized to the case we are interested in of a code made
of two polynomials applied to a 7-bit long shift register, with

1 % bytes to be encoded
2 d=[0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1]; % 1A CF FC 1D
3 G1=[1 1 1 1 0 0 1] % 4F polynomial 1
4 G2=[1 0 1 1 0 1 1] % 6D polynomial 2
5 Gg=[];
6 for k=1:length(G1)
7 Gg=[Gg G1(k) G2(k)]; % creates the interleaved version of the two generating polynomials
8 end
9 G=[Gg zeros(1,2∗length(d)−length(Gg))] % first line of the convolution matrix

10 for k=1:length(d)−length(G1)
11 G=[G ; zeros(1,2∗k) Gg zeros(1,2∗length(d)−length(Gg)−2∗k)] ;
12 end
13 for k=length(Gg)−2:−2:2
14 G=[G ; zeros(1,2∗length(d)−(length(Gg(1:k)))) Gg(1:k)];
15 end i % last lines of the convolution matrix
16 res=1−mod(d∗G,2); % mod(d∗G,2)
17 dec2hex(res(1:4:end)∗8+res(2:4:end)∗4+res(3:4:end)∗2+res(4:4:end))’
18 printf(”\n v.s. 0x035d49c24ff2686b or 0xfca2b63db00d9794\n”)

We observe by executing these few lines that encoding the synchronization word 1ACFFC1D00 with the two polynomials 4F
and 6D defining the taps of the XOR gates to the 7-bit long shift register yields the sequence FCA2B63DB00D9794 which is
indeed the one given at [2]. Note that it seems that two standards seem to exist within NASA, in which G1 and G2 seem to be
swapped. Hence, some of the encoding and decoding software available on the web stating that they use the right code do not
yield the expected result. We now understand how to encode the synchronization word using convolutional code.

5.4 Convolutional code representation as state machines

We shall need later, when describing the Viterbi decoding algorithm, to understand state transitions, i.e. not only understand
convolutional codes in terms of matrix operations but also as a finite state machine with a decision to be taken considering the
most probable path from one state to another. How to express the problem we have just described as a matrix product as a state
machine ?

The convolutional code we are interested in uses a 6-bit long shift register to which another new 7th bit is inserted as new
input data. The encoder hence has 26 = 64 possible states. We cannot show them all here, but will only exhibit the first ones
needed to encode the first byte of the synchronization word.

Let us start from a state in which all bits in the shift register are equal to 0 (state that we shall call “a”). Two possible
outcomes are possible: either the new input value is 0 or 1, so in the previous Octave code we have the two cases d=[0 0 0 0 0

0 0] or d=[1 0 0 0 0 0 0]. In the former case, the two output bits generated by the convolutional code are mod(d*G1’,2)=0

and mod(d*G2’,2)=0 or 00, and in the latter case mod(d*G1’,2)=1 and mod(d*G2’,2)=1 or 11. In the former case the output
state is the same as the input state so that a→a while in the latter case the “1” value was input in the register so we have reached
the internal state [1 0 0 0 0 0] which will be called “b”. This analysis continues to generate the following table:

Input bit Input state Name Output bits Output state Transition
0 000000 a 00 000000 a→a
1 000000 a 11 100000 a→b
0 100000 b 10 010000 b→c
1 100000 b 01 110000 b→d
0 010000 c 11 001000 c→...
1 010000 c 00 101000 c→...
0 110000 d 01 011000 d→e
1 110000 d 10 111000 d→...
0 011000 e 00 001100 e→...
1 011000 e 11 101100 e→f
0 101100 f 01 010110 f→...
1 101100 f 10 110110 f→...
...
0 100001 u 01 010000 u→c
1 100001 u 10 110000 u→d
...
0 000001 z 11 000000 z→a
1 000001 z 00 100000 z→b

where the ellipsis (...) in the names of the final state represent cases that are not needed when encoding the first byte of the
synchronization code (state “c” will not be needed either, but is included to make the demonstration clearer). States “u” and “z”

12

home.netcom.com/~chip.f/viterbi/algrthms.html

are inserted to exhibit loops that will appear when the state machine is followed long enough. We invite the reader to ascertain
by himself this result to be convinced of the relevance of the approach.

This state transition table is exploited to illustrate how the 0x1A byte (first byte of the synchronization word) is encoded.
The first three bits at 0 of the most significant nibble are encoded as 00 and keep the state machine in state “a”, while the last
bit at 1 is encoded as 11 and leads to state “b”. The most significant bit of the A nibble is 1 and we are in state “b” so that we
generate 01 and reach state “d”. The next bit is 0 (reminder: 0xA=0b1010) and with the current state at “d” we output 01 to
reach “e”. State “e” takes as input 1 to generate 11 and reach “f”, and finally “f” with an input of 0 generates 01. As a summary,
by encoding 0x1A we have produced 0b0000001101011101=0x035D which is indeed the expected value (notice that 0x035D is the
opposite of 0xFCA2 that was mentioned earlier as the beginning of the encoding solution – both solutions are the same assuming
a 180-degree phase rotation of the bits).

A state machine representation can hence be given as shown in Fig. 11, with on top the successive states from “a” to “f” as
a function of the input bit, and on the bottom the output bits for each of these transitions.

a b

00

11

c
10 ...

...

d01

00

11

01

10

e

...

00

11 f
...

...

01

10

a b

0

1
c

0 ...

...

d1

1

0

0

1

e

...

0

1 f
...

...

0

1

Figure 11: Top: states, named from “a” to “f”, and transitions as a function of the input bit value. Bottom: output bit values
as a function of the transitions. By following the path described in the text, the input sequence 0x1A=0b00011010 is encoded as
0b0000001101011101=0x035D.

5.5 Decoding a convolutional code: Viterbi algorithm

Having described the state machine used to convert an input word to an output word with double length, we now wish to understand
the decision sequence that will maximize the probability of reverting the process, considering that some of the received data might
have been corrupted during the transmission. Let us consider the result before addressing the explanation.

We will use later a library efficiently implementing (in C language) convolutional encoding and decoding: libfec (github.
com/quiet/libfec) is described at [2] and its sample code vtest27.c is used as starting point to implement the decoder. Alter-
natively, www.spiral.net/software/viterbi.html provides a code generator to decode, using the Viterbi algorithm, meeting
the requirements of LRPT. We start assessing libfec with the simple case of decoding the sentence encoded as FC A2 B6 3D B0

0D 97 94 – that we have already seen as resulting from the convolutional code encoding of the synchronization word – to check
whether we are indeed able to recover the initial word:

1 #include <stdio.h> // gcc -Wall -o t t.c -I./libfec ./libfec/libfec.a

2 #include <fec.h>

3 #define MAXBYTES (4) // final message is 4-byte long

4
5 #define VITPOLYA 0x4F // 0d79 : polynomial 1 taps

6 #define VITPOLYB 0x6D // 0d109 : polynomial 2 taps

7
8 int viterbiPolynomial[2] = {VITPOLYA, VITPOLYB};

9 unsigned char symbols[MAXBYTES*8*2]= // *8 for byte->bit, and *2 Viterbi

10 {1,1,1,1,1,1,0,0, // fc

11 1,0,1,0,0,0,1,0, // a2

12 1,0,1,1,0,1,1,0, // b6

13 0,0,1,1,1,1,0,1, // 3d

13

github.com/quiet/libfec
github.com/quiet/libfec
www.spiral.net/software/viterbi.html

14 1,0,1,1,0,0,0,0, // b0

15 0,0,0,0,1,1,0,1, // 0d

16 1,0,0,1,0,1,1,1, // 97

17 1,0,0,1,0,1,0,0};// 94

18
19 int main(int argc,char *argv[]){

20 int i,framebits;

21 unsigned char data[MAXBYTES]; // *8 for bytes->bits & *2 Viterbi

22 void *vp;

23 framebits = MAXBYTES*8;

24 for (i=0;i<framebits*2;i++) symbols[i]=1-symbols[i]; // flip bits

25 for (i=0;i<framebits*2;i++) symbols[i]=symbols[i]*255; // bit -> byte /!\

26 set_viterbi27_polynomial(viterbiPolynomial); // definition of taps

27 vp=create_viterbi27(framebits);

28 init_viterbi27(vp,0);

29 update_viterbi27_blk(vp,symbols,framebits+6);

30 chainback_viterbi27(vp,data,framebits,0);

31 for (i=0;i<MAXBYTES;i++) printf("%02hhX",data[i]);

32 printf("\n");

33 exit(0);

34 }

with the only subtlety of the code, which takes as input the successive bit values (here hard bits since already saturated as 0
or 1) of the word to be decoded, to encode each bit on the whole range of the a byte (hence 0 to 255 and not 0 or 1),
and possibly flipping the bits (0 ↔ 1) in order not to recover the complement of the word we are looking for (phase rotation by
180◦ of the initial phase modulation for example). By executing this code, we indeed recover 1ACFFC1D which is the word we are
looking for, so we understand how to use libfec. Let us try now to understand the underlying algorithm.

The convolution code implemented during the encoding step was designed to introduce some memory in the bit sequence in
order to make the transmission robust to random errors which might be introduced by a uniformly distributed noise (as opposed
to noise bursts that would corrupt a whole sequence of bits). The problem of decoding hence means going through the state
machine proposed in Fig. 11 the other way around, aiming to find the most probable path considering the received bit sequence.
Let us consider that we have received the sequence 0b0000001111011101: what emitted bit sequence has most probably generated
the transmitted code ? The Viterbi decoder is initialized with all bits set to 0, or state “a” if referring to Fig. 11. We receive 00,
so we stay in state “a” and know that the transmitted bit was 0. Similarly for the next to 00 sequences that follow, and the pair
11 indicates that we have switched to “b” after a 1 was encoded. When receiving 11 we are in state “b”, which is not consistent:
“b” can only produce 01 (if 1 had been transmitted) or 10 (if 0 had been transmitted). An erroneous bit has thus been received.
At the moment we cannot decide which path to follow, so we continue analyzing the two possible cases, “c” and “d”. The next
two bits are 01, and here we conclude that “c” is hardly possible since “c” can only produce 00 or 11, while “d” is indeed able to
produce the observed 01 (emitted bit equal to 0) to yield to state “e”. Thus, the we give up following the path along “c” in order
to continue along “d” and then “e”. When in state “e” we receive 11 which is a possible bit state (emitted bit 1) to yield to “f”
and finally 01 is a possible value of “f” which allows us to conclude that the last transmitted bit was 0. We have this been able
to correct one erroneous bit and deduce that the most probable transmitted sequence was 0b00011010=0x1A which should have
led to 0b0000001101011101 in which the erroneous bit is highlighted in red (Fig. 12).

00 00 00 11 11 01 11 01

a

b

c

e

f

d

0 0 0
0 1

2 errors: give up

1

1

1

Figure 12: Top, the sequence of received bits, grouped by 2 since the convolution code generates two output bits for each encoded
input bit. On the vertical axis, the states of the machine describing the encoder. In red characters, the numbers of accumulated
errors along each path of the decoder. Practically, giving up on one branch would be decided when two paths meet the same
state: in this case, the sequence accumulating most errors is left at the benefit of the most probable sequence since exhibiting
fewer accumulated errors.

Based on this knowledge, we can now search by correlating with the received sequence the synchronization word once encoded
by the convolution code, with correlation peaks demonstrating our understanding of the message encoding, and the ability to
identify the beginning of each transmitted packet. When correlating the encoded word with the I/Q coefficient dataset and

14

converted to bits through the symbol to bit mapping shown in Fig. 13 ... the result does not show any correlation peak and is
not usable (Fig. 15, top). Something is still missing in our analysis ...

5.6 Constellation rotation

The lack of correlation hints at the lack of understanding as to how bits are
encoded in the acquired message, assuming that the convolutional code encoded
synchronization word is correct, an assumption we will take as true considering the
information provided at [2]. When we investigated binary phase modulation (BPSK
– Binary Phase Shift Keying), we have seen that we had to consider two possible
cases [11, 10]: either the acquired signal was in phase with the local oscillator, and
the bit states obtained by comparing the received signal with the local oscillator
carrier copy (Costas loop) were those expected, or the signal was in phase opposition
and the bits were flipped with respect to their expected value. In both cases, the
correlation with a synchronization word accumulates energy along the bit sequence
and yields, by considering the absolute value, to a correlation peak, whether we
have the right sequence in the collected sentence or its opposite. This simple case

Constellation Soft Decoder

−1−j −> 0=00

−1+j −> 1=01

+1+j −> 3=11

+1−j −> 2=10

11

00 10

01

Figure 13: QPSK Constellation QPSK: each pos-
sible phase state encodes 2 bits. Assigning each sym-
bol, from 0 to 3, to the appropriate bit pairs will be
part of the decoding challenge.

is more complex when considering QPSK (Quadrature Phase Shift Keying) in which the phase takes one of four possible states
each encoding a pair of bits. Assigning the phase value to a pair of bits is not obvious, but most significantly any error in the
symbol-bit pair mapping yields an erroneous sequence that will not correlate with the word we are looking for. As an example,
let us consider the mapping stating that 0◦ matches the bit pair 10 and 90◦ to 11 (Gray code in which only a single bit varies
between two adjacent phase values), then the sequence 0-90◦ yields 1011 while the mapping 0◦ to 11 and 90◦ to 01 will interpret
the same phase sequence to 1101: the two messages generated by the same phase sequence are completely different and have no
chance of accumulating energy needed to generate the correlation peak along the comparison with the reference synchronization
word. We have not identified any other scheme for identifying the mapping from phase to bit pairs other than brute force by
testing all possible bit combinations, as seen when reading the source code of m.c.patts[][] from medet.dpr in meteor decoder :

1111110010100010101101100011110110110000000011011001011110010100

0101011011111011110100111001010011011010101001001100000111000010

0000001101011101010010011100001001001111111100100110100001101011

1010100100000100001011000110101100100101010110110011111000111101

1111110001010001011110010011111001110000000011100110101101101000

0101011000001000000111001001011100011010101001110011110100111110

0000001110101110100001101100000110001111111100011001010010010111

1010100111110111111000110110100011100101010110001100001011000001

provides all possible bit combinations in the sentence encoded by convolution code, and the correlations of the received mes-
sage with all these variations of the code are computed.

However, one issue remains: these bit inversions are easily implemented on the binary values of the reference word by swapping
1 and 0, but how can we perform the same operation with soft bits in which the phase of the received message is encoded with
continuous values quantified on 8-bit values ? Shall we decide from now on which phase value to attribute (soft → hard bits),
or can we keep on handling raw values ? We must interpret bit swapping operations as constellation rotation or symmetry (Fig.
14). We observe that swapping bits is interpreted as operations between the real and imaginary part, either by rotating, or by
symmetry along one of the complex axis. Hence, by manipulating the real and imaginary parts of the acquired data, we can
achieve the same result as the one obtained by swapping bits, but by keeping the continuous values of soft bits and postpone the
attribution of each bit (0 or 1) to each phase during the decoding by the Viterbi algorithm.

I

(0, 0)(1, 0)

(0, 1)(1, 1)

I

(0, 0)(1, 0)

(0, 1)(1, 1)

I

(0, 0)(1, 0)

(0, 1)(1, 1)

I

(0, 0)(1, 0)

(0, 1)(1, 1)

Im

-Re

-Im

Re Re

Im

Im

Re

Im
-Re Re

-Im

QQ Q Q

Figure 14: Rotations and symmetry of the constellation, and corresponding result on the real and imaginary axis (I and Q) of
the complex plane on which the raw collected data are represented.

Identifying the mapping between the four QPSK phase conditions in the constellation diagram (I on the X axis, Q on the Y
axis) and the matching bit pairs hence require a brute for attack, in which all possible combinations are tester. Correlating the
phase of the signals with the various combinations of the header word following the convolutional encoder is shown on Fig. 15.

15

Only one mapping to a given bit pair yields a periodic sequence of correlation peaks (Fig. 15, bottom): this is the right mapping
that will be used throughout the following decoding steps.

0

500

1000

1500

2000

0 50000 100000 150000 200000 250000 300000 350000 400000

|x
c
o
rr

|
(a

.u
.)

sync word=0xfc 0xa2 0xb6 0x3d 0xb0 0x0d 0x97 0x94

0

500

1000

1500

2000

0 50000 100000 150000 200000 250000 300000 350000 400000

|x
c
o
rr

|
(a

.u
.)

11 -> 01 ; 10 -> 11 ; 00 -> 10 ; 01 -> 00

0

500

1000

1500

2000

0 50000 100000 150000 200000 250000 300000 350000 400000

|x
c
o
rr

|
(a

.u
.)

11 -> 11 ; 00 -> 00 ; 10 -> 01 ; 01 -> 10

0

500

1000

1500

2000

0 50000 100000 150000 200000 250000 300000 350000 400000

|x
c
o
rr

|
(a

.u
.)

sample number (1.4112 MS/s)

11 -> 01 ; 01 -> 11 ; 00 -> 10 ; 10 -> 00

Figure 15: Correlation for the four possible cases of QPSK constellation rotation with the known header word. We observe that
only the fourth case – bottom – yields period correlation peaks representative of the beginning of new sentences. This mapping
between the four QPSK symbols and bit pairs is the correct one.

This permutation will from now on be applied to all I/Q sets of the acquired message since we know that doing so will yield
the original bit sequence sent by the satellite during the Viterbi decoding applied to the resulting soft bits.

5.7 From bits to sentences: applying the Viterbi algorithm decoding

We now have a sequence of phases with values in the set [0;π/2;π; 3π/2] properly organized to become a sequence a bits in which
the synchronization word was found, and a unique mapping from the various symbols {00; 01; 11; 10} to each phase value provides
a solution exhibiting this correlation. We are now left with decoding to remove the convolutional code encoding, and then apply
to the resulting bits (which were hence the bits encoded by the satellite prior to the convolutional code) a sequence of XOR
(exclusive OR) with a polynomial designed to maximize the randomness of the resulting dataset and hence avoid long repetitions
of the same bit state.

We have mentioned the availability of libfec efficiently implementing the decoding of convolutional code encoded signal. We
extend the previous basic example to the practical case of decoding full sentences.

Our first idea was to feed the library and decode the whole file of the acquired dataset. Doing so, we hide the initialization
and terminations issues of the convolutional decoding using the Viterbi algorithm. This works, since we observe after decoding
that, every 1024 bytes, we recover the synchronization word 0x1ACFFC1D.

16

Warning: we have met a segmentation fault error when trying to allocate an array large enough to be filled with the
whole dataset. Indeed, the file containing the soft bits as one byte for each sample is 11.17 MB large, so we tried to allocate
a static array as would any good embedded systems developer which does not have access to dynamic memory allocation
through malloc due to its excessive resource requirements. However, doing so attempts to allocate the array on the stack,
and the default stack size on GNU/Linux is 8192 kB, as shown by ulimit -s: 8192. Rather than increasing the stack size,
we have used the operating system’s dynamic memory allocation to locate the array on the heap rather than on the stack,
hence removing the constraint on the available memory space.

1 #include <stdio.h> // from libfec/vtest27.c

2 #include <stdlib.h> // gcc -o demo_libfec demo_libfec.c -I./libfec ./libfec/libfec.a

3 #include <fcntl.h>

4 #include <unistd.h> // read

5 #include <fec.h>

6 #define MAXBYTES (11170164/16) // file size /8 (bytes-> bits) /2 (Viterbi)

7
8 #define VITPOLYA 0x4F

9 #define VITPOLYB 0x6D

10 int viterbiPolynomial[2] = {VITPOLYA, VITPOLYB};

11
12 int main(int argc,char *argv[]){

13 int i,framebits,fd;

14 unsigned char data[MAXBYTES],*symbols;

15 void *vp;

16
17 symbols=(unsigned char*)malloc(8*2*(MAXBYTES+6)); // *8 for bytes->bits & *2 Viterbi

18 // root@rugged:~# ulimit -a

19 // stack size (kbytes, -s) 8192

20 // -> static allocation (stack) of max 8 MB, after requires malloc on the heap

21 fd=open("./extrait.s",O_RDONLY); read(fd,symbols,MAXBYTES*16); close(fd);

22
23 for (i=1;i<MAXBYTES*16;i+=2) symbols[i]=-symbols[i]; // I/Q constellation rotation

24 framebits = MAXBYTES*8;

25 set_viterbi27_polynomial(viterbiPolynomial);

26 vp=create_viterbi27(framebits);

27 init_viterbi27(vp,0);

28 update_viterbi27_blk(vp,&symbols[4756+8],framebits+6);

29 chainback_viterbi27(vp,data,framebits,0);

30 for (i=0;i<20;i++) printf("%02hhX",data[i]);

31 printf("\n");

32 fd=open("./sortie.bin",O_WRONLY|O_CREAT,S_IRWXU|S_IRWXG|S_IRWXO);

33 write(fd,data,framebits);

34 close(fd);

35 exit(0);

36 }

L. Teske [2] tells us however that this approach is not optimum, since it requires that the whole file is loaded in memory at
once. We know that 1024 byte blocks (2048 bytes after encoding) are individually encoded, and hence rather than decoding the
whole file, we might focus on searching for the encoded header synchronization word, and decode the 2048 next bytes starting
from this position. For safety and let the decoder initialize, we will make sure we fetch a few samples before and after the block
to be decoded. The resulting main function looks like

1 fdi=open("./extrait.s",O_RDONLY);

2 fdo=open("./sortie.bin",O_WRONLY|O_CREAT,S_IRWXU|S_IRWXG|S_IRWXO);

3 read(fdi,symbols,4756+8); // offset

4 framebits = MAXBYTES*8;

5
6 do {

7 res=read(fdi,symbols,2*framebits+50); // fetches a bit more data

8 lseek(fdi,-50,SEEK_CUR); // go back

9 for (i=1;i<2*framebits;i+=2) symbols[i]=-symbols[i]; // I/Q constellation rotation

10 set_viterbi27_polynomial(viterbiPolynomial);

11 vp=create_viterbi27(framebits);

12 init_viterbi27(vp,0);

13 update_viterbi27_blk(vp,symbols,framebits+6);

14 chainback_viterbi27(vp,data,framebits,0);

17

15 write(fdo,data,MAXBYTES); // decoding result, as long

16 } while (res==(2*framebits+50)); // ... as more data is available

17 close(fdi); close(fdo);

Additionally, this block-based processing will allow us later to add Reed Solomon block error correction (section A). Using
this block error correction is optional: the data blocks obtained after convolutional code decoding using the Viterbi algorithm
can be used as is, and in a first step we shall bypass the Reed Solomon block error correction, but only using the first 1024-4-
128=892 bytes in each block (after removing the first 4 bytes of the synchronization word at the beginning of the block and the
last 128 bytes needed for block error correction). This point will be addressed in the appendix.

Alternatively, the reader who prefers to keep on working with GNU/Octave instead of using the C language can use the program
provided at https://github.com/Filios92/Viterbi-Decoder/blob/master/viterbi.m which is also perfectly functional with

1 f=fopen("extrait.s"); % soft bits generated from GNURadio

2 d=fread(f,inf,’int8’); % read file

3 d(2:2:end)=-d(2:2:end); % constellation rotation

4 phrase=(d<0)’; % soft -> hard bits

5 [dv,e]=viterbi([1 1 1 1 0 0 1 ; 1 0 1 1 0 1 1],phrase,0);

6 data=(dv(1:4:end)*8+dv(2:4:end)*4+dv(3:4:end)*2+dv(4:4:end));

Finally, the reader willing to explore Meteor M2 decoding using exclusively GNU Radio is not forgotten: the error correcting
code libraries and libfec are implemented in gr-satellite at github.com/daniestevez/gr-satellites and described in
details in the blog of D. Estévez at destevez.net. Thanks to his help following multiple email exchanges, we ended up decoding
the synchronization word by using the Viterbi algorithm convolutional code decoding block following the signal processing scheme
shown in Fig. 16. Starting with a binary file including the encoded word fca2b63db00d9794, generated for example with

echo -e -n "\xfc\xa2\xb6\x3d\xb0\x0d\x97\x94" > input.bin

we aim at recovering the synchronization word 1acffc1d which would demonstrate our understanding of the decoding process.
Warning: the aspect that stopped us was not the decoder configuration, which exactly uses the same definition as libfec, but
the format of the input data. Indeed, GNU Radio expects, as hidden in one of the documentations of the fec decode ccsds 27 fb

processing block (GNU Radio Companion Decode CCSDS 27 block) of gr-fec block, to be given as input a value between -1 and
+1 (and not 0 to +1 as would have been expected for a bitwise representation: we are here using soft bits between exp(jπ) = −1
and exp(j0) = +1 and not hard bits). We hence process the bits read from the input file including the encoded word, multiply
by 2 (hence a scale factor inverse of 0.5, value to be filled in the Char to Float block), subtract 1 and possibly switch bit values
(multiplication by -1) to achieve the expected result and not its opposite. We check on the graphical output of Fig. 16 that
reading the file yields the proper bit sequence, and by observing the output of the processed bit stream (using xxd for example)
we obtain

$xxd result.bin | cut -d: -f2

1acf fc1d 1acf fc1d 0334 53c0 1acf fc1d4S.....

which is not perfect but close enough to our expectation. We indeed find the sequence 1acffc1d but mixed with a few erroneous
sequences 033453c0 which are included due to the wrong Viterbi decoder initialization state. Indeed, Viterbi assumes that the
initialization state is all shift register values equal to 0, which is not necessarily true when the encoded word is repetitively read
in a loop. D. Estévez presents at destevez.net/2017/01/coding-for-hit-satellites-and-other-ccsds-satellites/ the
various declinations of the decoder configuration to meet the configuration of the various CCSDS norm declinations.

We claim to understand how to decode the messages sent by the satellite, but are we truly sure of the validity of these bits ?
In order to quickly assess a known bit sequence, we follow up on the strategy described in the beginning of this article, namely
correlate with a know pattern. We are told that, without knowing anything about the sentence encoding which will be described
in the next section, the protocol described at [17] in Appendix A includes a frame description of the telemetry claimed to include
the date onboard the satellite: this sentence is identified with the PRS-64 code made of the sequence “2 24 167 163 146 221 254
191”. Are we able to find this byte sequence in the sentences we have decoded ? Having obtained bits that we assume to be stored
in an array called dv, we concatenate using GNU/Octave bits to nibbles and nibbles to bytes (data array) and to sentences (fin
matrix below): array

1 % data is a byte array from Viterbi decoding as discussed previously

2 for k=1:24 % analyze first 24 blocks

3 d(:,k)=data(1+(k-1)*2048:k*2048); % 2048 nibble sentences

4 dd(:,k)=d(1:2:end,k)*16+d(2:2:end,k); % nibbles -> bytes

5 fin(:,k)=dd(5:end,k); % remove the synchronization header from each sentence

6 fin(:,k)=[bitxor(fin(1:255,k)’,pn) bitxor(fin(1+255:255+255,k)’,pn) ...

7 bitxor(fin(1+255*2:255+255*2,k)’,pn) bitxor(fin(1+255*3:255+255*3,k)’,pn)];

8 end

We observe that we had to apply the pn code which was designed to make the bit sequence as random as possible (and hence
spread the information) using the bijective function of the XOR mask. This random structure of the sentences avoids long
sequences of the same bit value, which would make clock recovery difficult. The 255-byte long pn sequence is given at https:

18

https://github.com/Filios92/Viterbi-Decoder/blob/master/viterbi.m
github.com/daniestevez/gr-satellites
destevez.net
destevez.net/2017/01/coding-for-hit-satellites-and-other-ccsds-satellites/
https://www.teske.net.br/lucas/2016/11/goes-satellite-hunt-part-4-packet-demuxer/
https://www.teske.net.br/lucas/2016/11/goes-satellite-hunt-part-4-packet-demuxer/

Figure 16: GNU Radio Companion signal processing chain exploiting gr-satellite and the generalized Viterbi algorithm con-
volutional code decoding block FEC Extended Decoder configured to meet the CCSDS standard to demonstrate synchronization
word decoding. The input can be generalized to the file recorded with the soft bits representing the Meteor-M2 transmission. The
input word annotated on the bottom chart is opposite of the word written in the file so that the output meets our expectation:
inverting the bits is taken care of by the multiplication by -1 just before the display on the top-right of the processing chain.

//www.teske.net.br/lucas/2016/11/goes-satellite-hunt-part-4-packet-demuxer/ and we just apply this mask to our
bytes grouped by 255-element long packets (the 4-byte header, which are not affected by this transform, have already been
removed).

Finally, these sentences are analyzer to search for the magic sequence PRS-64 known to prefix the telemetry sentence. Finding
this sequence would demonstrate that our procedure is consistent, since not only we identify the telemetry identification sequence
– a set of bytes with little change of random occurrence – but furthermore the analysis of the telemetry values provides consistent
results with the acquisition time and the output of meteor decoder (Onboard time: 11:48:33.788) as

date_header=final(589:589+7,9)’ % found in CADU 9 (out of the 24 processed)

date=final(589+8:589+11,9)’

ans =

11

48

33

197

We have found the time it was onboard the satellite when the image was acquired, demonstrating the validity of the byte
recovery from the I/Q stream. Now that we are confident the bit sequence is correct, we are left to analyze how the sentences are
assembled to decode the image, an activity closer to computer science than signal processing.

6 From sentences to paragraphs

The bit sequences matches the norm described in the technical documentation, so we have finished the decoding investigation.
Not completely ... the satellite transmits an image, and we have only recovered a data. Can we go beyond this basic result ?

This is the point where OSI layers appear. An image is a large set of information, too large to be stored in a unique packet
transmitted from the satellite. Worst, the satellite sends information acquired at least on three spectral ranges (depending on
whether it is on the dayside or nightside these three ranges change ... but what is day and night in Spitsbergen, with its 3 months of
day and 3 months of complete darkness ?!) interleaved in various packets. We understand better why the OSI standard separates

19

https://www.teske.net.br/lucas/2016/11/goes-satellite-hunt-part-4-packet-demuxer/
https://www.teske.net.br/lucas/2016/11/goes-satellite-hunt-part-4-packet-demuxer/

the various abstraction layers: an image is one large entity split into color layers which are themselves split into blocks (JPEG
encoding) which are themselves split into packets transmitted to the ground with all the error correction code and redundancy
to maximize chances that the receiver recovers an error-free datastream. We have indeed stated JPEG compression above: for
someone who was trained with all the drawbacks of lossy compression and artifacts induced by the JPEG compression, is it
possible that images transmitted from satellites are thus encoded ? The tradeoff lies probably in the available bandwidth around
the relatively low frequency carrier with respect to the large data size of the high resolution picture to be transmitted: we shall
of course be careful, when processing such images, not to focus on artifacts related to the 8 × 8 pixel block encoding which will
be the topic of the forthcoming discussion.

An aspect that was quite unclear to us in the various documentations lies in the definition of the Minimum Code Unit (MCU):
we are taught that each MCU include 196 adjacent areas of a picture, made of 14 thumbnails of 8× 8 pixels. The part that was
not clear to us in the documentation is that successive MCUs are independent from each other. Hence, a picture line is made of
14 MCUs, each including 14 thumbnails of 8×8 pixels: 14×14=196 and 14×14×8 = 1568 pixels is indeed the width of an image
transmitted by Meteor M2. Thus, our objective is to decode the 8× 8 pixel JPEG thumbnails, concatenate the resulting image,
and so on until a full line of the final image is assembled for a given wavelength. The procedure is then repeated for the other
two wavelengths, before starting again following a maintenance telemetry sentence (identifier 70 in the APID field, APplication
IDentifier – the image being defined with APID identifiers in the range from 64 to 69 [17]).

Furthermore, one MCU packet might not completely fit inside the payload of the M-PDU layer protocol: it could be that one
M-PDU includes multiple successive MCUs (for example when the JPEG thumbnails are small due to the lack of features in an
homogeneous area being imaged) or that one MCU is shared among two M-PDU. Hence, the VCDU packet header includes a
pointer to the index of the starting point of the next M-PDU. Before this pointer, we collect the left-over the the previous M-PDU.

We had stored in the fin matrix the successive sentences decoded after application of the Viterbi algorithm and derandom-
ization: we display the content of the first lines for this matrix to notice the consistency of several patterns – header of the packet
– before reaching the random payload. The documents that appeared clearest to understand how to decode sentences is [18].

octave:28> fin(1:16,:) % see 20020081350.pdf NASA p.9 of PDF

64 64 64 64 64 64 64 64 64 64 64 64 64 64 Version

5 5 5 5 5 5 5 5 5 5 5 5 5 5 Type

140 140 140 140 140 140 140 140 140 140 140 140 140 140 \

163 163 163 163 163 163 163 163 163 163 163 163 163 163 - counter

43 44 45 46 47 48 49 50 51 52 53 54 55 56 /

0 0 0 0 0 0 0 0 0 0 0 0 0 0 sig. field

0 0 0 0 0 0 0 0 0 0 0 0 0 0 VCDU insert

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... zone

0 0 2 1 0 0 0 0 0 0 0 0 2 0 5 bits @ 0

18 142 28 54 18 130 78 226 0 20 70 28 82 32 M_PDU header

77 166 239 222 73 82 83 199 8 28 232 247 165 183 M_PDU...

133 188 229 42 24 23 220 94 68 117 92 151 87 203 ... 882 bytes

75 177 221 215 0 48 49 128 13 166 8 218 126 212

42 138 254 87 12 32 249 87 34 172 247 107 9 142

146 238 236 80 215 96 143 121 0 124 12 89 86 191

179 227 64 144 89 59 240 105 105 251 46 43 0 199

^

which is analyzed as follows, from the first to the last line, beginning with the 6-byte long VCDU Primary Header:

1. 64 matches the version constant equal to 01 followed by 6 zeros for the most significant bits of the VCDU Id (S/C id).
Hence, the first 8 bits are 0100 0000,

2. the identified of the transmitting satellite follows (field Type of the VCDU Id): this field is described at [17] as being equal
to 5 if the instrument is present and 63 if the instrument is absent. Here a value of 5 is a positive omen for the next steps
of image decoding. Furthermore, [19, p.149] indicates that a VCDU Id of 5 (AVHRR LR) is associated with channels APID
64..69 as will be seen later.

3. the 3-byte long VCDU Counter is incremented at each new packet, as observed on the last byte (140 163 43..56) of the three
byte matching the sentence counter,

4. all following fields (signaling field) are filled with zeros to indicate real time data transfer, as are the fields VCDU Insert
zone and absence of cryptography [19, p.150],

5. finally, the last two bytes of the header provide the pointer indicating the address of the the first packet included in the current
sentence. This information is arguably the most important since an M PDU packet most certainly spans along multiple
sentences, and hence knowing where the first M PDU included in the current packets starts allows for synchronizing the
beginning of the decoding process of a new image. The first 5 bits are always equal to 0 [19, p.147] while the 11 last bits
provide the address, within the sentence, of the first useful packet. In this processing sequence, the pointer is computed as

x=fin(9,:)*256+fin(10,:)+12 = 30 154 552 322 30 142 90 238 12 32 82 40 606 44

20

6. the 882 bytes that follow are the M-PDU payload including the Virtual channel field. We become convinced that the position
of the header computed above is correct by

for k=1:length(x);fin(x(k),k),end

which returns 64 64 64 64 65 65 65 65 68 64 64 64 64 65 which is the list of the virtual channel identifiers we shall
analyze later, i.e. the various wavelengths at which the images are collected (APID in the 64 to 69 range [17])

7. the ninth column is a bit unusual since it includes the first packet of the transmission of the image with APID 68, so exhibits
a header offset equal to 0 with respect to the end of the VCDU header, allowing to start tackling the M PDU payload format
without having to search for the beginning address pointer. We shall thus see that 8=0000 1000 is the version (ID=000/Type
Indicator=0/Secondary Header 1=present/000 APID), then APID=68 is one of the measurement channels [17] ad finally
the length of the packet (in bytes) is provided by {0 105}.

7 So much text ... pictures now

We have identified how to decode the VCDU sentence, so that now we have to analyze the M PDU payload. Multiple M PDU can
be grouped inside one VCDU sentence (for example when the JPEG thumbnail payload is highly compressed) and one M PDU
can be distributed between two successive VCDU – there is not reason for the M PDU payload size to be a multiple of the VCDU
sentence length.

We have previously identified the pointers, in the VCDU header, towards the beginning of the first M PDU payload in the
VCDU. Displaying the first bytes of each M PDU, we observe a consistent pattern

8 8 8 8 8 8 8 8 8 8 8

68 68 68 68 68 68 68 70 64 64 64

13 13 13 13 13 13 13 205 77 13 13

34 35 36 37 38 39 40 41 42 43 44

0 0 0 0 0 0 0 0 0 0 0

105 47 49 69 81 107 57 57 97 77 79

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2

136 136 136 136 136 136 136 136 136 136 136

181 181 181 181 181 181 181 181 186 186 186

124 124 124 124 124 124 124 124 76 76 76

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

98 112 126 140 154 168 182 2 0 14 28

0 0 0 0 0 0 0 24 0 0 0

0 0 0 0 0 0 0 167 0 0 0

255 255 255 255 255 255 255 163 255 255 255

240 240 240 240 240 240 240 146 240 240 240

77 77 77 77 77 77 77 221 77 79 81

243 186 210 178 136 175 242 154 173 238 235

197 41 160 177 253 120 216 191 166 148 77

60 194 210 146 236 9 151 11 88 100 166

240 156 80 106 84 81 201 48 42 228 208

105 41 5 65 152 245 135 33 131 208 9

254 104 41 23 193 172 56 197 38 210 28

91 52 20 205 1 233 249 0 62 115 118

which we analyze [17] by following the first column:

1. “68” is the instrument packet identifier onboard the satellite transmitting the information, APID. As the image collected by
one instrument spans multiple successive packets, we expect to find the same APID along multiple successive columns. One
interesting case is APID number 70 in column 8 which indicates a telemetry sentence, which allowed us to identify earlier
the time on board the satellite when the image was grabbed.

2. “13 34” is made of the first two bits indicating whether this is the first packet of a sequence (01) or the followup of a
transmission (00), followed by the packet number counter encoded on 14 bits, which will be used to check whether we have
lost an image thumbnail along a line. We indeed observe that the least significant byte is incremented for each new M PDU.

3. the next two bytes indicate the length of the M PDU packet, here 105 bytes,

4. follows the date encoded on 64 bits, namely a date on two bytes defined as “0 0”, a number of milliseconds within the day
encoded on 32 bits “2 136 181 124” valid for all the packets related to a given image, and finally a date complement in
microsecond encoded on 16 bits and fixed, for Meteor M2, to “0 0” [17].

21

5. The payload description indicates the index of the first MCU (Minimum Code Unit), thumbnails whose assembly will create
the final image. This MCU index is incremented by 14 between two successive packets, here 98 112 126, since thumbnails
are grouped by 14 to improve compression capability [17]

6. finally, the image header includes 16 bits set to 0 [17] (Scan Header followed by the Segment Header including an indicator
of the presence of the quality factor encoded on 16 bits and set to 0xFF 0xF0 or 255 240 [17] followed by the value of this
quality factor which will be used in the quantization levels when decoding the JPEG thumbnail – in our case 77 but can be
variable along a line of the final image.

7. The data of the 14 successive MCUs follow, generating 14 thumbnails each 8×8 pixels, or 64 bytes in the naming convention
of [17] (in the case of the first sentence, this payload starts with 243 197).

This somewhat lengthy description is needed to understand properly the link between the VCDUs and the M PDU which
finally represent two different abstraction layers of the datastream at different levels of the OSI framework. Once this difference is
understood, assembling JPEG thumbnails to create an image is only a matter of rigorous implementation of the standards. With
GNU/Octave, the bytes representing each MCU forming 14 thumbnails are grouped in individual files by the following piece of
software

1 for col=1:23 % column number = VCDU frame number

2 first_head=fin(9,col)*256+fin(10,col) % 70 for column 11

3 fin([1:first_head+1]+9,col)’; % beginning of line 11: 1st header in 70

4 fin([1:22]+first_head+11,col)’; % start of MCU of line 11

5
6 clear l secondary apid m

7 l=fin(first_head+16-1,col)*256+fin(first_head+16,col); % vector of packet lengths

8 secondary=fin(first_head+16-5,col); % initializes header list

9 apid=fin(first_head+16-4,col); % initializes APID list

10 m=fin([first_head+12:first_head+12+P],col);

11 k=1;

12 while ((sum(l)+(k)*7+first_head+12+P)<(1020-128))

13 m=[m fin([first_head+12:first_head+12+P]+sum(l)+(k)*7,col)];

14 secondary(k+1)=fin(first_head+16+sum(l)+(k)*7-5,col);

15 apid(k+1)=fin(first_head+16+sum(l)+(k)*7-4,col);

16 l(k+1)=fin(first_head+16-1+sum(l)+(k)*7,col)*256+fin(first_head+16+sum(l)+(k)*7,col);

17 % 16=offset from VDU beginning

18 k=k+1;

19 end

20 for k=1:length(l)-1 % saves each MCU bytes in a new file

21 jpeg=fin([1:l(k)]+first_head+12+19+sum(l(1:k-1))-1+7*(k-1),col);

22 f=fopen([’jpeg’,num2str(apid(k),’%03d’),’_’,num2str(col,’%03d’),’_’,num2str(k,’%03d’),’.bin’],’w’);

23 fwrite(f,jpeg,’uint8’);

24 fclose(f);

25 end

26
27 k=length(l); % last incomplete packet

28 jpeg=fin([1+first_head+12+19+sum(l(1:k-1))-1+7*(k-1):end],col);

29 first_head=final(9,colonne+1)*256+final(10,col+1); % looks for next VCDU

30 jpeg=[jpeg ; final([1:first_head]+10,col+1)];

31 % we expected 79 bytes in the last packet: 925-892=33 are missing

32 f=fopen([’jpeg’,num2str(apid(k),’%03d’),’_’,num2str(col,’%03d’),’_’,num2str(k,’%03d’),’.bin’],’w’);

33 fwrite(f,jpeg,’uint8’);

34 fclose(f);

35 end

Having saved the content of the MCUs in individual files named jpeg*.bin, we have given on on the task of re-implementing
Huffman decoding, RLE and the discrete cosine transform needed to convert each JPEG compressed thumbnail into a pixel
matrix ready to be displayed. Huffman decoding is especially annoying to implement since it handles data as bit packets whose
size is not necessarily multiple of 8 but depends on the size of each information in the encoding binary tree. Have have just
read and understood the source code of the decoder from meteor decoder, translated to C++ at github.com/infostellarinc/
starcoder/blob/master/gr-starcoder/lib/meteor, and used the small part of the library to validate the content of the bit
packets obtained in the preceding processing steps and that we claim to contain JPEG thumbnails. This time, the encoding
scheme (and hence decoding) is very well described in [20]. The fact that meteor decoder considers the MCUs we feed it as
valid and that the resulting thumbnails are consistent since they can be assembled correctly as pictures prove that our decoding
of VCDUs and then MCUs is correct.

1 #include "meteor_image.h"

2 using namespace gr::starcoder::meteor;

22

github.com/infostellarinc/starcoder/blob/master/gr-starcoder/lib/meteor
github.com/infostellarinc/starcoder/blob/master/gr-starcoder/lib/meteor

3
4 int main(int argc,char **argv)

5 {int fd,len,k,quality=77; // fixed quality ...

6 unsigned char packet[1100]; // will be provided as argument later

7 imager img=imager();

8 if (argc>1) quality=atoi(argv[1]);

9 fd=open("jpeg.bin",O_RDONLY);

10 len=read(fd, packet, 1100);

11 close(fd);

12 img.dec_mcus(packet, len, 65,0,0,quality);

13 }

is linked with meteor image.cc and meteor bit io.cc taken from the github archive cited above. Exploiting this program by
feeding with binary files including the MCU payload, we are provided as output with a 14 × 64 element matrix which we shall
name imag, each 64-byte long line being itself a 8× 8 pixel thumbnail. Reorganizing in GNU/Octave these 64 elements using

m=[];for k=1:size(imag)(1) a=reshape(imag(k,:),8,8); m=[m a’];end

we obtain a 112 × 8 pixel matrix displayed using imagesc(m) in order to visualize the image as shown in Fig. 17 (left). this
procedure is repeated for the 14 MCUs each final image line is made of: Fig. 17 illustrates the concatenation of the first set of
thumbnails (left) with the second series, demonstrating how continuous the patterns are. These processing steps are repeated for
a whole line of the image acquired at one wavelength by a given instrument (and hence a given APID) before a new APID follows
and prompts the processing to restart and so on to create in parallel multiple images acquired at various wavelengths. Notice the
excellent compression ratio brought by JPEG on these homogeneous and feature-free areas: only 60 bytes are needed to encode
these 14× 64 = 896 pixel images. Areas exhibiting more features still require bigger MCUs with a few hundred bytes and up to
700 byte large.

1
2
3
4
5
6
7
8

20 40 60 80 100

→
1
2
3
4
5
6
7
8

50 100 150 200

Figure 17: Decoding one MCU (left) made of 14 successive thumbnails each 8 × 8 pixel large, and concatenation with the next
MCU (right) to create a picture 28× 8 = 224 pixel wide and 8 pixel high. The complete final image is thus assembled with small
MCU parts. This example is demonstrated on APID 68.

The result of assembling uncompressed JPEG thumbnails to generate 8×8 pixel matrices is shown in Fig. 18 for the instrument
with APID 68. We start seeing some consistent feature of an image, but clearly a few thumbnails are missing at the end of each
line since some packets were corrupted and could not be decoded (Fig. 18).

20
40
60
80

100

200 400 600 800 1000 1200 1400

20
40
60
80

100

200 400 600 800 1000 1200 1400

Figure 18: Top: result of decoding JPEG thumbnails and assembling into a complete picture without consider the counter. We
clearly observe that the pattern is shifting from one line to another as packets are missing, resulting in a poor image hardly
usable. Bottom: if the packet counter does not reach the expected threshold of 14 thumbnails/MCU, then some dummy packets
are inserted to compensate for the missing thumbnails: this time the image is properly aligned. Here the APID is 68.

We compensate for the missing thumbnails, at least temporarily, by duplicating each thumbnail for missing information as
indicated by the MCU counter: rather than recover the missing information, we can at least align along the vertical axis of the
picture the adjacent thumbnails and hence achieve a usable picture (Fig. 19). In this example, we have not used the quality
information which modified the quantization coefficients during the JPEG compression depending on the content of the picture,
and some discontinuity in the greyscale pattern remain visible.

23

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400

Figure 19: Result of decoding APID 65 while using the counter to identify missing thumbnails, but without exploiting the quality
information provided in the JPEG header. The main geographical features are visible, but strong contrast variations exist within
the picture, making the result poorly suited.

By integrating the quality factor as an argument provided to the thumbnails decoder of meteor decoder on which our program
is linked, the greyscale values become homogeneous to yield a convincing result (Fig. 20) closely resembling the reference picture
fully decoded by meteor decoder (Fig 21). Notice that the satellite pass was far from optimal for a listening station located in
France since we can clearly see the Istrie region, Austrian Alps as well as the Balaton lake in Hungary (long dark structure around
abscissa 1050 in the middle of the picture), hinting at a pass close to the Eastern horizon.

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400

Figure 20: Result of decoding APID 65 while exploiting the counter to identify missing thumbnails, and the JPEG quality
information. The individual thumbnails become hardly visible and the greyscale evolve continuously along the picture.

Figure 21: Result of decoding APID 65 with medet used as reference picture for comparison with figure 20.

8 Conclusion

This exploration of the LRPT protocol defining digital communications between weather satellites and ground was the opportunity
to address all the OSI layers, from the physical layer (transmission frequency) to the coding (QPSK and convolutional encoding)
to packets (words) and images (sentences) broadcast in the messages. This presentation was aimed at demonstrating how a useful

24

tool software defined radio could be for teaching: each processing step involved a new physical or mathematical principle, each
one incredibly boring if tackled independently from a purely theoretical perspective, but becoming fascinating in the complex
framework of the data transmission concluded with decoding an image.

Hence, we have practically discovered some of the subtleties of QPSK modulation and the various solutions when assigning
to each of the 4 possible phase state a bit pair – problem that had escaped us when investigating a BPSK modulated signal –
and then implementing convolutional code decoding using the Viterbi algorithm. Having demonstrated the consistency of the
bit sequence generated by the convolutional code decoding, we have temporarily skipped the Reed Solomon block code error
correction to unstack the various protocol layers encapsulating the thumbnails which the final image is made of. The motivated
reader might want to implement manually JPEG decoding which we simply implemented here without reviewing the theoretical
background. Finally, the Reed Solomon block error decoding algorithm is implemented and its proper operation validated, despite
a rather minor benefit in this particular demonstration.

These fundamental principles have been described to provide the basics to decode many other space-borne remote sensing
data streams, as demonstrated by the rich list of applications of the blog written by D. Estévez who applies his expertise on a
multitude of amateur and professional satellite links at destevez.net/, and most significantly for example destevez.net/2017/

01/ks-1q-decoded/.

References

[1] Meteor-M 2 satellite, at planet.iitp.ru/english/spacecraft/meteor-m-n2_eng.htm

[2] L. Teske, GOES Satellite Hunt at www.teske.net.br/lucas/satcom-projects/satellite-projects/

[3] G.D. Forney Jr, The Viterbi Algorithm: A Personal History, at https://arxiv.org/abs/cs/0504020v2 (2005)

[4] D. Bodor, Réception de vos premières images satellite, Hackable 25 (Juillet 2018) [in French]

[5] www.nec2.org

[6] J.-M Friedt, Satellite image eavesdropping: a multidisciplinary science education project, European J. of Physics, 26 969–984
(2005)

[7] D. Israel, A Space Mobile Network, WiSEE conference (Dec. 2018), or https://ntrs.nasa.gov/archive/nasa/casi.ntrs.

nasa.gov/20170009966.pdf

[8] G. Kranz, Failure is not an option – Mission Control From Mercury to Apollo 13 and Beyond, Simon & Schuster (2000)

[9] A. Makovsky, A. Barbieri & R. Tung, Odyssey Telecommunications, DESCANSO Design and Performance Summary Series
6 (2002) at descanso.jpl.nasa.gov/DPSummary/odyssey_telecom.pdf: p.34 tells us that “The command format currently
used for deep-space missions, including Odyssey, is defined in the CCSDS standard CCSDS 201.0-B-1.”

[10] J.-M Friedt, Radio Data System (RDS) – analyse du canal numérique transmis par les stations radio FM commerciales,
introduction aux codes correcteurs d’erreur, GNU/Linux Magazine France 204 (Mai 2017) [in French]

[11] J.-M Friedt, G. Cabodevila, Exploitation de signaux des satellites GPS reçus par récepteur de télévision numérique terrestre
DVB-T, OpenSilicium 15, Juillet-Sept. 2015 [in French]

[12] S. Lin & D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice Hall (1983)

[13] A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. on Infor-
mation Theory 13 (2), pp.260–269 (1967)

[14] E. Neri & al., Single space segment – HRPT/LRPT Direct broadcast services specification, doc. MO-DS-ESA-SY-0048 rev.
8, ESA EUMETSAT EPS/METOP (1 Nov. 2000) at mdkenny.customer.netspace.net.au/METOP_HRPT_LRPT.pdf

[15] G.D. Forney, The viterbi algorithm, Proc. IEEE 61 (3), pp.268–278 (1973)

[16] R. Sniffin, Telemetry Data Decoding, Deep Space Network 208, p.12 (2013) at https://deepspace.jpl.nasa.gov/dsndocs/810-
005/208/208B.pdf, or http://www.ka9q.net/amsat/ao40/2002paper/ illusting the many possible declinations from the same
formal definition of the correcting code

[17] Structure of “Meteor-M 2” satellite data transmitted through VHF-band in direct broadcast mode, at planet.iitp.ru/

english/spacecraft/meteor_m_n2_structure_2_eng.htm

[18] W. Fong & al., Low Resolution Picture Transmission (LRPT) Demonstration System – Phase II Report, Version 1.0 (2002),
at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020081350.pdf

25

destevez.net/
destevez.net/2017/01/ks-1q-decoded/
destevez.net/2017/01/ks-1q-decoded/
planet.iitp.ru/english/spacecraft/meteor-m-n2_eng.htm
www.teske.net.br/lucas/satcom-projects/satellite-projects/
https://arxiv.org/abs/cs/0504020v2
www.nec2.org
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009966.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009966.pdf
descanso.jpl.nasa.gov/DPSummary/odyssey_telecom.pdf
mdkenny.customer.netspace.net.au/METOP_HRPT_LRPT.pdf
http://www.ka9q.net/amsat/ao40/2002paper/
planet.iitp.ru/english/spacecraft/meteor_m_n2_structure_2_eng.htm
planet.iitp.ru/english/spacecraft/meteor_m_n2_structure_2_eng.htm
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020081350.pdf

[19] P. Ghivasky & al., MetOp Space to Ground Interface Specification, doc. MO-IF-MMT-SY0001 rev. 07C, EADS/AS-
TRIUM/METOP (29 Mars 2004) at http://web.archive.org/web/20160616220044/http://www.meteor.robonuka.ru/

wp-content/uploads/2014/08/pdf_ten_eps-metop-sp2gr.pdf. The web site www.meteor.robonuka.ru was a source
of inspiration throughout this investigation but has unfortunately disappeared: only archive.org keeps trace of
the documents no longer available elsewhere. A similar information is found at a A. Le Ber, Metop HRPT/L-
RPT User Station Design Specification, EUMETSAT Polar System Core Ground Segment, document EPS-ASPI-DS-
0674 (05/03/03) at www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_ASPI_0674_EPS_

CGS-US-SP&RevisionSelectionMethod=LatestReleased

[20] Information technology – Digital compression and coding of continuous-tone still images – requirements and guidelines, ITU
CCITT recommandation T.81 (1993) at www.w3.org/Graphics/JPEG/itu-t81.pdf

A Reed Solomon block error correcting code

Convolutional coding is designed to compensate for noise distributed along the bits due to radiofrequency communication noise
between the emitted and the receiver, assuming a uniform random noise that might impact each bit independently of its neighbors.
Such a coding scheme would be however unable to correct for a corrupted block of data due to a burst of noise: this type of error
is taken care of by the block error correcting code, as implemented for example by Reed Solomon. This code is similar to the
block correcting strategy we have already discussed when decoding RDS with the BCH encoding [10]. Here, each 255 byte long
packet is made of 223 payload bytes and 32 error correcting code bytes, allowing to identify transmission errors et possible correct
part of them. This type of error correcting code is thus named RS(255,223) since for 255 transmitted bytes, 223 are data and
the last 32 are error correcting code bytes. libfec provides the library needed to correct transmission errors using RS(255,223),
as described in [2]. Since the aim of block error correcting code is to correct for a set of erroneous bits, it is wise to distribute
information along the sentence in order to minimize the impact of an interference affecting multiple adjacent bits. Hence, instead
of splitting a 1020 byte sentence in 4 neighboring sentences each 255 byte long, the data structure interleaves 4 sequences of data
and their error correcting code as illustrated in Fig. 22, with the error correcting code located at the end of the sentences.

D2,223 RS2,1 RS2,2 RS2,3 RS2,32

D1,223 RS1,1 RS1,2 RS1,3 RS1,32

892 1020128 octets/4=32 octets/trame RS

RS2,1 RS3,1RS1,1 RS4,1 RS1,2 RS2,2 RS3,2 RS4,2 RS1,3 ...

0 255 octets=223 données+32 RS

D2,3D2,1

254

D2,2

...

de−interleave

co
rr

ec
ti

o
n

er
re

u
rs

interleave

0 891

D2,1 D3,1D1,1 D4,1 D1,2 D2,2 D3,2 D4,2 D1,3 ...

892 données corrigées

0 255 octets=223 données+32 RS

D1,3D1,1

254

0 891892 octets/4=223 octets/trame données

D2,1 D3,1D1,1 D4,1 D1,2 D2,2 D3,2 D4,2 D1,3 ...

D1,2

Figure 22: Organization of data along a 1020 byte long CVCDU sentence (we have already removed the 4-byte long synchronization
word header). The first 892 bytes include the data payload D considered as interleaved for the 4 sets of 223 byte long sequences
which can be corrected using Reed Solomon RS(255,232), and the last 128 bytes include, still interleaved, the 4 sequences of
32 byte long error correcting code RS. Applying the correction algorithm requires first de-interleaving the data (top → middle),
apply Reed Solomon to identify and correct errors (middle), and re-interleave the data (middle→bottom) to put them back in
their original position, but after correcting some of the bytes possibly corrupted during the radiofrequency link.

We can train first to understand how Reed Solomon is implemented in libfec:

26

http://web.archive.org/web/20160616220044/http://www.meteor.robonuka.ru/wp-content/uploads/2014/08/pdf_ten_eps-metop-sp2gr.pdf
http://web.archive.org/web/20160616220044/http://www.meteor.robonuka.ru/wp-content/uploads/2014/08/pdf_ten_eps-metop-sp2gr.pdf
www.meteor.robonuka.ru
archive.org
www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_ASPI_0674_EPS_CGS-US-SP&RevisionSelectionMethod=LatestReleased
www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_ASPI_0674_EPS_CGS-US-SP&RevisionSelectionMethod=LatestReleased
www.w3.org/Graphics/JPEG/itu-t81.pdf

1 #include <fec.h> // gcc -o jmf_rs jmf_rs.c -I./libfec ./libfec/libfec.a

2
3 int main()

4 {int j;

5 uint8_t rsBuffer[255];

6
7 uint8_t tmppar[32];

8 uint8_t tmpdat[223];

9
10 for (j=0;j<255; j++) rsBuffer[j]=(rand()&0xff); // received data

11 for (j=0;j<223;j++) tmpdat[j]=rsBuffer[j]; // backup data

12 encode_rs_ccsds(tmpdat,tmppar,0); // create RS code

13 for (j=223;j<255;j++) rsBuffer[j]=tmppar[j-223]; // append RS after data

14 rsBuffer[42]=42; tmpdat[42]=42; // introduce errors

15 rsBuffer[43]=42; tmpdat[43]=42; // ... on purpose

16 rsBuffer[44]=42; tmpdat[44]=42; // ... to check correction capability

17 rsBuffer[240]=42;tmppar[240-223]=42;

18 printf("RS:%d\n",decode_rs_ccsds(rsBuffer, NULL, 0, 0)); // check that RS can correct

19 for (j=0;j<223;j++)

20 if (rsBuffer[j]!=tmpdat[j]) {printf("%d: %hhd -> %hhd ; ",j,tmpdat[j],rsBuffer[j]);}

21 for (j=223;j<255;j++)

22 if (rsBuffer[j]!=tmppar[j-223]) {printf("%d: %hhd -> %hhd ; ",j,tmppar[j-223],rsBuffer[j]);}

23 }

in this example we create a (random) dataset which is encoded, then modify 4 bytes of the payload and 1 byte of the error
correcting code, and test how the decoder can correct these errors. The result

RS:4

42: 42 -> 5 ; 43: 42 -> 23 ; 44: 42 -> 88 ; 240: 42 -> 95

is consistent with our expectations: 4 errors were identified and corrected.
Applying this sample program to the 128 bytes at the end of a sentence designed to correct the first 892 bytes at the beginning

of the sentence ... does not work at all ! Yet another trick indicated by Lucas Teske that we had not found in the documentation:
the implemented algorithm is a dual basis Reed Solomon in which the bytes are once again run through a randomization table
as described at github.com/opensatelliteproject/libsathelper/blob/master/src/reedsolomon.cpp. Once this transform
has been applied, the error correcting code operates properly, as demonstrated with the piece of software below which includes
the whole decoding sequence, namely Viterbi algorithm deconvolution, application of the polynomial bijective XOR operation to
remove the randomization of the data, de-interleaving the data to be grouped with their Reed Solomon error correcting code,
applying the transposition polynomial, error correction, removing the transposition polynomial to finally recover the corrected
data:

1 #include <fec.h> // gcc -o demo_rs demo_rs.c -I./libfec ./libfec/libfec.a

2
3 // github.com/opensatelliteproject/libsathelper/blob/master/src/reedsolomon.cpp

4 // dual basis Reed Solomon !

5 #include "dual_basis.h"

6
7 unsigned char pn[255] ={ // randomization polynomial

8 0xff, 0x48, 0x0e, 0xc0, 0x9a, 0x0d, 0x70, 0xbc, \

9 0x8e, 0x2c, 0x93, 0xad, 0xa7, 0xb7, 0x46, 0xce, \

10 [...]

11 0x08, 0x78, 0xc4, 0x4a, 0x66, 0xf5, 0x58 };

12
13 #define MAXBYTES (1024)

14
15 #define VITPOLYA 0x4F

16 #define VITPOLYB 0x6D

17
18 #define RSBLOCKS 4

19
20 #define PARITY_OFFSET 892

21
22 void interleaveRS(uint8_t *idata, uint8_t *outbuff, uint8_t pos, uint8_t I) {

23 for (int i=0; i<223; i++) outbuff[i*I+pos]=idata[i];

24 }

25
26 int viterbiPolynomial[2] = {VITPOLYA, VITPOLYB};

27

27

github.com/opensatelliteproject/libsathelper/blob/master/src/reedsolomon.cpp

28 int main(int argc,char *argv[]){

29 int res,i,j,framebits,fdi,fdo;

30 unsigned char data[MAXBYTES],symbols[8*2*(MAXBYTES+6)]; // *8 for bytes->bits & *2 Viterbi

31 void *vp;

32 int derrors[4] = { 0, 0, 0, 0 };

33 uint8_t rsBuffer[255],*tmp;

34 uint8_t rsCorData[1020];

35
36 fdi=open("./extrait.s",O_RDONLY);

37 fdo=open("./sortie.bin",O_WRONLY|O_CREAT,S_IRWXU|S_IRWXG|S_IRWXO);

38 read(fdi,symbols,4756+8); // offset

39 framebits = MAXBYTES*8;

40
41 do {

42 res=read(fdi,symbols,framebits*2+50); // 50 additional bytes to finish viterbi decoding

43 lseek(fdi,-50,SEEK_CUR); // go back 50 bytes

44 for (i=1;i<2*framebits;i+=2) symbols[i]=-symbols[i]; // I/Q constellation rotation

45 set_viterbi27_polynomial(viterbiPolynomial);

46 vp=create_viterbi27(framebits); // convolution -> Viterbi

47 init_viterbi27(vp,0);

48 update_viterbi27_blk(vp,symbols,framebits+6);

49 chainback_viterbi27(vp,data,framebits,0);

50 tmp=&data[4]; // rm synchronization header

51 for (i=0;i<1020; i++) tmp[i]^=pn[i%255]; // XOR decode (dual basis)

52
53 for (i=0; i<RSBLOCKS; i++)

54 { for (j=0;j<255; j++) rsBuffer[j]=tmp[j*4+i]; // deinterleave

55 for (j=0;j<255; j++) rsBuffer[j]=ToDualBasis[rsBuffer[j]];

56 derrors[i] = decode_rs_ccsds(rsBuffer, NULL, 0, 0); // decode RS

57 for (j=0;j<255; j++) rsBuffer[j]=FromDualBasis[rsBuffer[j]];

58 interleaveRS(rsBuffer, rsCorData, i, RSBLOCKS); // interleave

59 printf(":%d",derrors[i]);

60 }

61 write(fdo,data,4); // header

62 write(fdo,rsCorData,MAXBYTES-4); // corrected frame

63 } while (res==(2*framebits+50));

64 close(fdi);

65 close(fdo);

66 exit(0);

67 }

This code is the culmination of the whole phase conversion process from the I/Q coefficients to bits ready to be assembled
to recover sentences and the JPEG images, including the two convolutional and block error correcting codes. The result of this
additional correction is illustrated in Fig. 23 and demonstrates how adding the block error correcting code allows for extending
the range of the JPEG image analysis as the satellite reaches close to the horizon.

-10

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

e
rr

e
u
rs

 (
u
.a

.)

trame (u.a.)

somme des erreurs dans les 4 blocs

Figure 23: Result of the error correction along the satellite pass. We clearly observe that block correction becomes more efficient
as the satellite gets lower on the horizon, degrading the link budget. -1 indicates that too many errors corrupted the payload
during the reception to allow for correcting the erroneous bits.

Notice that some of the codes have been truncated of the standard input/output library header files to make the sample
listings more compact: the reader will not be challenged in recovering the missing header files (stdio.h, stdlib.h, unistd.h ...)
allowing to open, read, write and close files as well as communicate with the console.

28

	Introduction
	When will the satellite fly overhead ?
	Why such a complex protocol ?
	How to tackle the challenge ?
	From the radiofrequency signal to bits
	Data format
	Decoding data
	Convolutional encoding of the synchronization word
	Convolutional code representation as state machines
	Decoding a convolutional code: Viterbi algorithm
	Constellation rotation
	From bits to sentences: applying the Viterbi algorithm decoding

	From sentences to paragraphs
	So much text ... pictures now
	Conclusion
	Reed Solomon block error correcting code

