Time of flight measurement with sub-sampling period resolution using Software Defined Radio

J.-M Friedt & G. Goavec-Merou

FEMTO-ST Time & Frequency, Besançon, France

jmfriedt@femto-st.fr

GRCon, Sept 5–9, 2023

Introduction

- Software Defined Radio collects a continuous stream of data at a sampling rate f_s
- lacktriangle Time interval between samples is $t_s=1/f_s$
- ightharpoonup Time resolution is t_s

 \Rightarrow RADAR range resolution

$$\Delta R = \frac{c}{2B}$$

with B the available bandwidth in the RF band or sampling rate at baseband.

Question: are we limited in the time of flight measurement capabilty to t_s ?

Introduction

- \triangleright Software Defined Radio collects a continuous stream of data at a sampling rate f_s
- ▶ Time interval between samples is $t_s = 1/f_s$
- Time resolution is $t_s = 1/t_s$

⇒ RADAR range resolution

$$\Delta R = \frac{c}{2B}$$

with B the available bandwidth in the RF band or sampling rate at baseband.

Question: are we limited in the time of flight measurement capability to t_s ?

Sub-sampling period time of flight measurement

- ► Spectrum spreading can be achieved in many ways (short pulse, frequency sweep, **noise**)
- Matched filter = cross-correlation between the received signal and the local copy of the transmitted signal
- Oversampling by polynomial fit of the correlation peak under the assumption that a single echo is searched
- Timing improvement = signal to noise ratio of the recorded data
- Instead of a single transition anywhere between two sampling points, the cross-correlation integrates the delay over a long sequence

Application examples:

- ionospheric propagation time delay
- ▶ time transfer (e.g. DCF77 ¹)
- ▶ DCF77: 645 Hz phase modulation 2 on top of amplitude modulation and yet time resolution $\ll 1000/645 = 1.55$ ms

2https://www.eecis.udel.edu/~mills/ntp/dcf77.html

¹J.-M. Friedt, C. Eustache, É. Carry, E. Rubiola, *Software-Defined Radio Decoding of DCF77: Time and Frequency Dissemination with a Sound Card*, Radio Science **53**(1), Jan 2017.

Sub-sampling period time of flight measurement

- ► Spectrum spreading can be achieved in many ways (short pulse, frequency sweep, **noise**)
- ► Matched filter = cross-correlation between the received signal and the local copy of the transmitted signal
- Oversampling by polynomial fit of the correlation peak under the assumption that a single echo is searched
- ▶ Timing improvement = signal to noise ratio of the recorded data
- ▶ Instead of a single transition anywhere between two sampling points, the cross-correlation

integrates the delay over a long sequence

Application examples:

- ionospheric propagation time delay
- time transfer (e.g. DCF77 1)
- ▶ DCF77: 645 Hz phase modulation 2 on top of amplitude modulation and yet time resolution $\ll 1000/645 = 1.55$ ms

¹J.-M. Friedt, C. Eustache, É. Carry, E. Rubiola, *Software-Defined Radio Decoding of DCF77: Time and Frequency Dissemination with a Sound Card*, Radio Science **53**(1), Jan 2017.

²https://www.eecis.udel.edu/~mills/ntp/dcf77.html

Experimental setup

- ▶ 100 kchip long (40 ms at 2.5 Mchips/s) pseudo random sequence generator (PRN) running on an FPGA, triggered by one PPS and clocked by 10 MHz
- ▶ 1-PPS generated from 10 MHz to start the PRN
- X310=FPGA processing baseband collected data (100 MS/s); B210=AD9361 RF frontend (70-6000 MHz LO, 5 MS/s) & FPGA on USB; XTRX=Lime Microsystems LMS7002 frontend & FPGA on PCIe

Experimental setup

- ▶ 100 kchip long (40 ms at 2.5 Mchips/s) pseudo random sequence generator (PRN) running on an FPGA, triggered by one PPS and clocked by 10 MHz
- 1-PPS generated from 10 MHz to start the PRN
- X310=FPGA processing baseband collected data (100 MS/s); B210=AD9361 RF frontend (70-6000 MHz LO, 5 MS/s) & FPGA on USB; XTRX=Lime Microsystems LMS7002 frontend &

FPGA on PCIe

or QPSK modulator: https://github.com/oscimp/

amaranth_twstft

Single channel analysis (X310, B210, 90 external clock FOMU) B210, 5 measurements 80 Acquisition triggered by 1-PPS generated by 10 MHz clocking 70 the X310 or B210 (and FPGA) 60 Measurement repeated multiple times (up to 1000) 50 Sampling at $T_s = 5$ MS/s (200 ns sampling period) \Rightarrow targeted $\delta T \ll T_s$ 50 250 300 Single channel fluctuation of cross-correlation peak maximum code index (40 ms/code) randomly located within sampling period ▶ B210: $\sigma_{\tau}(1) = \sigma_{\tau}(2) = 6$ ps (high tunable frontend gain) 90 X310, 5 measurements ightharpoonup X310: $\sigma_{\tau}(1) = \sigma_{\tau}(2) = 37$ ps at lower SNR 80 delay (ns) 10 MHz 10 MHz Ext freq FOMU/ X310, B210 **FGPA** 1 PPS Fxt 1PPS Octoclock/ 70 MHz SAW SDR inA 50 PRN. gene HM+stepper -3 dB Enable—

100

code index (40 ms/code)

Differential analysis (B210, external clock FOMU)

Differential analysis (X310, external clock)

- Same length between splitter and inputs
 - $ightharpoonup \langle au_1 au_2
 angle = -0.0156 \; ext{ns}$
 - $\sigma_{\tau_1 \tau_2} = 4.2 \text{ ps}$
 - $max_{\tau_1-\tau_2} min_{\tau_1-\tau_2} = 8.7 \text{ ps}$
- SMA right angle on one channel
 - ho $\langle au_1 au_2
 angle = -0.0898$ ns
 - $\sigma_{\tau_1 \tau_2} = 3.0 \text{ ps}$
 - $ightharpoonup max_{\tau_1-\tau_2} min_{\tau_1-\tau_2} = 6.7 \text{ ps}$
- length difference $0.0742 \times 20 \text{ cm/ns} = 1.484 \text{ cm at } 200 \text{ m}/\mu\text{s}$ CONNECTOR B

 1/4".36UN5-2A

 THREADS

 07.80

 0.315

 15.00

 0.276

 0.331

 7.00

 0.276

X310 platform delays between channels (external clock)

5 MSamples/s SDR measurement or 200 ns sampling period T_s : $5 \cdot 10^{-13} = T_s/(4 \cdot 10^5)$

(1 cm=50 ps @ 20 cm/ns)

Differential analysis (X310, internal clock)

rejection of common mode oscillator with differential analysis? $\frac{\widehat{g}}{g}$ 136550 $\langle \tau_1 - \tau_2 \rangle = -0.1024$

 $\langle \tau_1 - \tau_2 \rangle = -0.1024 \text{ ns}$

code index (40 ms/code)

channel2-10 na

Synchronizing two X310, external clock (Octoclock)

Needed for multiconstellation/multiband GNSS monitoring

Synchronizing B210 and X310, external clock (Octoclock)

▶ $\langle \sigma(X310_{1-2}) \rangle = 0.6$ ps, $\langle \sigma(B210_{1-2}) \rangle = 1.5$ ps, $\langle \sigma(B210_1 - X310_1) \rangle = 2.5$ ps within each trace ▶ $\sigma(\langle X310_{1-2}) = 0.6$ ps, $\sigma(\langle B210_{1-2} \rangle) = 38$ ps, $\sigma(\langle B210_1 - X310_1 \rangle) = 28$ ns within each trace \Rightarrow no synchro between X310 and B210 during successive measurements

Synchronizing X310 and XTRX, external clock (Octoclock)

- $\langle \sigma(X310_{1-2}) \rangle = 0.5$ ps, $\langle \sigma(XTRX_{1-2}) \rangle = 375$ ps, $\langle \sigma(X310_1 XTRX_1) \rangle = 1.5$ ns within each measurement
- $\sigma(\langle X310_{1-2}\rangle) = 0.2$ ps, $\sigma(\langle XTRX_{1-2}\rangle) = 19.8$ ns, $\sigma(\langle X310_1 XTRX_1\rangle) = 18.4$ ns from one measurement to the next, i.e. no synchronization between X310 and XTRX

Synchronizing X310 and XTRX, external clock (Octoclock)

- $\langle \sigma(X310_{1-2}) \rangle = 0.5$ ps, $\langle \sigma(XTRX_{1-2}) \rangle = 375$ ps, $\langle \sigma(X310_1 XTRX_1) \rangle = 1.5$ ns within each measurement
- ▶ $\sigma(\langle X310_{1-2}\rangle) = 0.2$ ps, $\sigma(\langle XTRX_{1-2}\rangle) = 19.8$ ns, $\sigma(\langle X310_1 XTRX_1\rangle) = 18.4$ ns from one measurement to the next, i.e. no synchronization between X310 and XTRX

Conclusion

- Distribution of fine timing information by generating a pseudo-random sequence sampled by one channel of each SDR signal, the other channel sampling the signal of interest
- Sub-ps resolution in agreement with S. Kawamura & al "Water vapor estimation using digital terrestrial broadcasting waves" (2017) ^a and S. Yasuda & al "Horizontal Atmospheric Delay Measurement Using Wireless Two-Way Interferometry (Wi-Wi)" (2018) ^b
- ▶ LMS7002 to be assessed beyond the XTRX.
- X310 and B210 both usable for sub-100 ps time transfer, XTRX more questionable (drift during integration)
- impact for DoA/correlation analysis of XTRX drift? (200 ps=110° angular phase drift at 1575 MHz during 15 s integration duration)

*https://agupubs.onlinelibrary.wiley.com/doi/ 10.1002/2016RS006191

bhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018RS006770

