
A portable implementation of the FAT16 filesystem to TinyOS-2.x:
non-volatile mass storage for low power sensor network nodes

anonymous

Abstract
As part of a strategy aimed at reducing the overall power

consumption of a node associated with data acquisition in
a sensor network while improving the safety of data avail-
ability through its storage on non-volatile media, we demon-
strate a portable implementation of the FAT filesystem for the
TinyOS-2.x executive environment for storing large amount
of data on Secure Digital non-volatile mass storage media.
Thanks to this tool, a user can store an amount of data in-
compatible with a radiofrequency link (excessive power con-
sumption and communication duration) using a format still
compatible with most modern operating systems so as to be
usable by non-technical users, yet compatible with the lim-
ited resources of low power embedded sensor nodes. Fur-
thermore, data of different origins or representing various
physical quantities are stored in different files.
Keywords

sensor node, TinyOS-2.x, file system, mass storage,
portability
1 Introduction

In the context of the deployment of a large number of
sensors monitoring the spatial variations of a physical quan-
tity (sensor network [1, 2]), radiofrequency transmissions of
the data is often the main source of power consumption and
hence battery life expectancy reduction. The emphasis in the
development of sensor nodes is commonly towards provid-
ing a self-reconfigurable wireless link for transferring data
over a network [3]. Reduced power consumption induces
limited bandwidth (typically of the order of a few tens of
kilobits per second) and reduced communication range (a
few meters to a few hundred meters). Some applications re-
quire larger amounts than a few tens of kilobytes to be stored
[4] during each measurement session, while these data are
not necessarily needed immediately. The application fields

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

we are interested in are temporary storage of large amount
of data (up to 1 MB/hour), with sensor nodes located too
far from any power supply or network access to route data
towards the user: in these conditions, the data are stored lo-
cally until a user manually fetches the stored information.
One such practical context is the Ny Alesund area in Sval-
bard (79oN, Norway) where, beyond the isolation of an arc-
tic environment when the area under investigation is beyond
high-frequency radio communication range (a few kilome-
ters at best), the use of the 2.4 GHz ISM band is forbidden
due to the interferences induced to a radio-telescope running
in this area. However, severe climatic conditions for both
the user and the hardware prompts the use of a mass storage
format widely available on any computer the end-user might
bring to quickly fetch data: the FAT filesystem (File Allo-
cation Table based filesystem) is selected as a compromise
between a complexity compatible with an implementation of
low power consumption microcontrollers, while still avail-
able on most modern operating systems.

Indeed, our purpose in implementing a filesystem on
TinyOS is to store data on a low-power embedded sensor
node in a format allowing the user to recover these infor-
mations on a general purpose computer without requiring a
dedicated function for reading the information.

The reasons for this project are
1. reducing the duration the sensor node is stopped during

data recovery, since the memory card can be quickly re-
moved and exchanged with a new one. Such a strategy
is more robust than RS232 data transfer, an important
aspect especially in hostile environments.

2. although the memory card might be used without
filesystem in raw write mode or custom formats [4, 5],
such a solution induces
• a post-processing step before the data are available

• some technical knowledge from the user in order
to recover data,

• a poor data organization when storing data of dif-
ferent quantities due to the lack of different files
for different kinds of data.

The selection of the filesystem answers several needs:
1. due to the minimal resources available, all journaled

filesystems are unsuitable due to the excessive read-
/write access to the non-volatile mass-storage medium,

2. portability to any platform and operating system so that
any user might be able to recover data.

One application example where we have used such a con-
figuration in is storing GPS data for double differences post-
processing: a Thales AC12 GPS receiver providing phase
information generates about 1.5 MB per hour of measure-
ment, and such measurements performed at various locations
allows for a post-processing yielding sub-centimetric accu-
racy [6]. Here we propose the use of the well known Mul-
tiMediaCard (MMC) and Secure Digital (SD) non-volatile
mass media storage support for saving these data on the sen-
sor node until a human operator physically reaches the node
for retrieving the data. However, raw storage of data on the
non-volatile memory induces some technical retrieval pro-
cedure such as the use of the Disk Dump (dd utility) under
unix systems, unavailable to MS-Windows users. In order
to provide a wider audience of users with a format compat-
ible with any operating system running on the data retrieval
computer, we have selected a file storage format compatible
with most modern operating systems (unix – including Ap-
ple’s MacOS X – and MS-Windows [7]) yet running on the
reduced resources available on sensor nodes. Our selection
of a file format has thus been limited to those available when
the resources of computers were about those of today’s sen-
sor nodes. Amongst the available selection including Minix,
CP/M and FAT16, the latter is the only system still widely
available on most modern operating systems yet developed
about 30 years ago [7], when the memory available in per-
sonal computers was a few tens of kilobytes as found in sen-
sor nodes.

Many autonomous FAT-based filesystems implementa-
tions [8] exist for various microcontrollers [9], and some
ports comply with the TinyOS-1.x executive environment
and have been adapted to TinyOS-2.x. However, we wish
to provide a hardware independent, portable implementation
of FAT for TinyOS-2.x with a minimal memory footprint
mostly defined by the user application. Our objective is thus
to demonstrate the implementation of a FAT filesystem sup-
port in an executive environment widely used for developing
software running on sensor nodes, and more specifically on
Crossbow’s (San Jose, USA) TelosB [10] and MicaZ com-
mercial sensor nodes: TinyOS-2.x [11]. We emphasize on
the portability aspect by using the low level SPI bus access
functions provided by TinyOS, and demonstrate that the use
of an executive environment makes porting this tool from one
platform to another painless, even across different processor
and hardware architectures. We demonstrate the use of this
software for the storage of several tens of megabytes of data
retrieved from OEM GPS receivers, and the simultaneous
storage of data of a different kind (temperature of the sensor
node) in a different file, hence providing data organization
structures compatible with the need of most users.
2 FAT for TinyOS-2.x

The nesC language on which TinyOS-2.x is based pro-
vides an abstraction layer which clearly separates the hard-
ware interfaces, the needed resources and the methods as-
sociated with each use of these resources. Thanks to this
abstraction, the port of the methods from one platform to
another is mostly a matter of configuring the hardware re-

sources needed. However, beyond the framework provided
by TinyOS-2.x for developing portable applications, the de-
veloper must separate the hardware dependent platform from
the SD-card and filesystem drivers. Such a rule seems
not to be followed by the port of the shimmer [9] FAT-
filesystem port from TinyOS-1.x to TinyOS-2.x: as an ex-
ample of CPU-dependent code within the SD-access part
of this code, tos/platform/shimmer/chips/sd/SDP.nc
mostly reproduces msp430/usart/Msp430SpiNoDmaP.nc
(SpiByte.write function). Hence, working on another plat-
form requires copying most of the FAT filesystem access
functions and porting the low level functionalities to the new
CPU. Our implementation of the FAT filesystem and low
level SPI access to the SD card focuses on portability by
removing all CPU-specific code. As will be seen in the de-
scription of the implementation, the relationship between the
SD card and the platform is done through the platform con-
figuration file, which defines which clock source to use, what
pin performs as chip select (CS), while the hardware inde-
pendent functions SpiByte and GeneralIO have been used
otherwise throughout the driver so that it can be used on any
CPU supported by TinyOS-2.x.
2.1 Accessing the mass storage medium

The hardware interface we will be interested in for storing
data is the MultiMediaCard (MMC) format, now often re-
placed by the compatible Secure Digital (SD) format. Both
memory cards support a slower, 3-wire synchronous com-
munication protocol: SPI 1. This bus is either available as
an hardware interface in most microcontrollers, or is easily
emulated using general purpose input-output pins (GPIO).
In our implementation, we assume that low level SPI initial-
ization functions (start() and stop() methods), as well as
writing (write() method) and the associated reading func-
tion over this bus (reading over SPI requires writing dummy
data and recording the signals on the input (MISO) pin as
the bus is clocked by the microcontroller), are provided by
the executive environment through the SplitControl and
SpiByte interfaces respectively. An additional Chip Select
digital signal must be defined for the driver to activate or de-
activate the SD card sharing the SPI bus with other periph-
erals (such as a radiofrequency transceiver, as seen on the
MicaZ platform).

Having defined which hardware resources are needed on
the platform – in all our discussion we shall need access to
3 data lines (Master In Slave Out MISO, Mater Out Slave In
MOSI, Clock CK) and one Chip Select digital signal – the
low level SD card access routines are used to initialize the
communication mode (SPI) and data block size (512 bytes).

These low level communication functions (Fig. 1) pro-
vide the basic means for implementing the SD-card SPI-
mode initialization functions as well as low level memory

1The SD card, used in SPI mode, is connected as follows to
the MSP430F1611: Chip Select is P3.0 on pin 28, MOSI is P3.1
on pin 30, MISO is P3.2 on pin 30 and the clock on P3.3 on pin
31. For the MicaZ, we connect the SD to the 51-pin connector,
with the Chip Select connected to LED1 on pin 10 (PA2), MISO to
USART1 RXD on pin 19 (PD2), MOSI to USART1 TXD on pin
20 (PD3) and the Clock is generated by USART CLK on pin 15
(PD5).

stopDonestartDone

stopstart

FAT

fsDescriptor file fsDescriptor file

fsDescriptor fsDescriptor

SdIO

read write

startDone stopDone

SplitControl

stopstart

writeread

mbr

MBR

SD

SplitControl

APPLICATION

FILE FILE

Figure 1. FAT16 drivers organization: the layer closest
to the hardware uses the SPI-access functions provided
by the executive environment to initialize the non-volatile
mass-storage medium, and provides low level memory
block writing and reading functions. Above this layer,
the various abstraction layers associated with handling
the Master Boot Record (MBR), defining the starting
point of the File Allocation Table (FAT), which includes
the first cluster address of each file stored in the SD-
card, have been implemented as hardware-independent
drivers. These layers are used by the user Application
when writing data to a file.

block writing and reading. Indeed, all transactions with the
SD card are performed with 512-byte chunks of data, defin-
ing the minimum volatile memory (RAM) needed by the
driver. This block size defines the minimum memory re-
quirement for exchanging data with the SD card: in raw
write mode, the user must provide a 512-byte large array as a
buffer of data to be written. At this stage of the development,
raw-writing data on a non-formatted medium is possible, but
does not answer our needs for a storage format widely avail-
able on most modern operating systems, hence our need to
add the FAT format layer.

2.2 Formatted data storage
Once the communication in SPI mode is acknowledged

by the memory card, the actual FAT filesystem layer is acti-
vated (Fig. 3). A file is either created by the application, or

data are appended to existing files. The file size is updated
after each writing step. Cache handling is not implemented
by the driver because of the excessive memory requirement
associated with caching: we have selected to implement a
driver with minimal memory requirement, and leave the se-
lection of caching data (with the risk of loosing the data
which have not yet been stored on the non-volatile medium)
to the user depending on his application and the data storage
rate.

Since the basic block size for accessing an SD or MMC
card is 512 bytes large, we need at any time at least two such
buffers to hold the data manipulated for file storage, typically
the data to be written next in the file and a copy of the FAT to
be updated. Thanks to memory use optimizations, our cur-
rent implementation of the FAT16 filesystem has been vali-
dated on the MSP430F149 (2 kB RAM), the MSP430F1611
(10 kB RAM) and ATMega128 (4 kB RAM). As opposed to
the raw write mode in which the user has to provide a 512-
byte buffer, in the formatted data storage the user provides a
buffer the size of the data to be written, and the driver man-
ages its own 512-byte large internal buffer to append the user
data to the existing information in the file used.
3 Implementation

The filesystem implementation is split in four mostly in-
dependent modules (Fig. 1):
• access to the SD card through the TinyOS-2.x config-

uration file is independent of the Master Boot Record
(MBR) decoding, allowing a RawWrite (no organiza-
tion of the data compatible with multiple files or filesys-
tem) access to the non-volatile mass storage medium

• access to the MBR is independent from the SD and
FAT filesystem layers, and can be hence used for other
filesystems than FAT

• files are accessed atop the FAT filesystem layer
The separation is actually more defined between func-

tional blocks:
• storage from a hardware point of view (accessing the

SD card). This part provides the low level raw-write
and read functions through a portable SPI interface to
the SD card.

• storage in terms of partitioning the medium

• storage in terms of formatting and hence the filesys-
tem, compatible with an access from personal comput-
ers running most common operating systems.

The SD card is configured through the platform definition
file which must be updated for each new board or CPU ar-
chitecture. This configuration part includes assigning hard-
ware or software USART pins to the communication with
the SPI-compatible pins of the SD card, and in case of hard-
ware USART configuring the data transmission parameters
(bits/sentence, communication speed, phase ...).

The file descriptor receives as parameters the name of the
file to be opened, so that multiple files can be opened at a
same time in order to store data in various files depending on
the various sources of these data.

The steps for writing data on the filesystem follow these
steps:

• check the available space is the current cluster and sec-
tor, and if necessary allocate a new cluster and update
of both FATs

• write the data with, if necessary, a concatenation step
with the older data already written in the sector being
accessed

• once the data have been written in the filesystem, the
file size is updated.

In order to reduce the amount of memory used and
chances of data loss, any request to write data on the non-
volatile (SD) mass storage medium is immediately executed
(no data cache is performed).

Since each writing step is independent of the previous one
and performed only if the previous one succeeded, the risks
of data loss are only associated with the following cases:
• power supply loss between two writing sequences,

yielding the loss of the last block which was assumed to
be written on the non-volatile storage medium (at most
512 bytes)

• power supply loss while writing data: the data loss is
the same as mentioned in the previous case

• power supply loss while updating the FAT and its
backup copy. Since two copies of the FAT are defined
at any time, data retrieval is always possible.

In the worst case, the maximum amount of data lost is
512 bytes.

Here we will describe in details the implementation of the
communication protocol with the SD card, but more signifi-
cantly the FAT filesystem and its use.

3.1 Synchronous bus for communicating with
the SD card

A synchronous bus shares a common clock signal be-
tween the master (processor) and the slave (SD card), pro-
viding improved communication bandwidth with respect to
asynchronous busses. SPI is one implementation of a syn-
chronous protocol, provided as a hardware peripheral on
most modern microcontrollers, and especially on all plat-
forms supported by TinyOS-2.x. Such a bus requires three
signals – Master to Slave and Slave to Master communica-
tion, bus Clock – and an additional Chip Select signal for
enabling a given peripheral connected to the bus. The com-
munication bandwidth of this bus as implemented in low-
power microcontrollers is in the Mb/s range. In the case of
the MSP430 series, the hardware peripheral is shared with
the asynchronous communication peripheral (USART).

The hardware implementation of the synchronous bus on
MSP430 processors only provides a single byte buffer [12,
chap.14]. However, as opposed to the asynchronous bus
communication, all transactions on the synchronous are trig-
gered by the Master and hence no data loss can occur due
to significant data processing delays on slower microcon-
trollers.

SPI bus communication is a standard part of TinyOS and
no dedicated development is needed: we will focus on using
the standard functions for portability compliance: the only
requirement is the definitions of the configuration parameters
(clock source and prescaler, phase sign ...) and activating the

peripheral. In the case of the MSP430 based platforms, this
hardware dependent configuration step is taken care of by the
Msp430SpiConfigure interface.

Since no portable SD-card support is available for
TinyOS-2.x – only TinyOS-1.x ports are available, with
hardly any compliance with the newer hierarchy and porta-
bility model, we decided to write our own implementation
of the communication protocol in full compliance with the
portability rules defined by TinyOS-2.x, and most signifi-
cantly using the low-level access function provided by the
executive environment platform implementation. In order to
reach this target, we will use the SPI-compatible mode of the
SD-card communication protocol (as opposed to the hardly
documented native protocol).

SD card communication requires the compliance with the
following requirements:
• reading and writing is performed on data blocks 1 to

512 bytes large, with a default value of 512 which will
be user throughout our implementation,

• when accessing data blocks 512 bytes large, the ad-
dresses must be multiples of this value,

• an arbitrary number of blocks can be erased
3.1.1 SPI communication

The first layer (listing 1), closest to the hardware, is the
low level SPI driver based on a the MSP430 functionalities
provided by TinyOS-2.x (Msp430Spi0C) and its SpiByte in-
terface providing a single function command uint8 t write (→
↪→ uint8 t tx) ; . This unique function both sends a byte on
the bus and returns the value read during the same clock cy-
cles.
i n c l u d e ” ha rdware . h ”
c o n f i g u r a t i o n Pla t fo rmSdC {

p r o v i d e s {
i n t e r f a c e S p l i t C o n t r o l ;
i n t e r f a c e Sp iBy te ;

}
}
i m p l e m e n t a t i o n {

components p r o j e t S d P ;
S p l i t C o n t r o l = p r o j e t S d P . C o n t r o l ;

components new Msp430Spi0C () a s SpiC ;
p r o j e t S d P . Msp430SpiConf igure <− SpiC .→

↪→Msp430SpiConf igure ;
p r o j e t S d P . Resource −> SpiC . Resource ;
Sp iBy te = SpiC ;

}
Listing 1. PlatformSdC

3.1.2 Interface usage
The second step aims at defining the interaction between

the SD driver and the higher abstraction layers. Beyond the
rawrite functionality in which the user must provide a 512-
byte data array, the driver handling more complex functions
will have to allocate one local 512-byte buffer for manag-
ing temporary data (storing informations from partially filled
data blocks for example).

Since such a memory allocation significantly impacts the
memory usage of the application, a blocking function model
was selected with the function returning only once all op-

erations associated with storing on the SD card have been
completed. The user application provides a buffer including
the data to be written, which is not copied at the driver level:
cache handling is managed at the user application level and
not at the driver level in order to minimize the memory usage
impact at 512 bytes.

The interface is as follows:
i n t e r f a c e SdIO {

/∗∗
∗ Command f o r w r i t i n g a d a t a b l o c k
∗ B l o c k in g f u n c t i o n
∗
∗ @param addr : a d r e s s a t which d a t a a r e→

↪→ w r i t t e n
∗ @param buf : d a t a a r r a y
∗
∗ @return SUCCESS i f t h e command has →

↪→comple t ed
∗ /

command e r r o r t w r i t e (u i n t 3 2 t addr , →
↪→ u i n t 8 t ∗ buf) ;

/∗∗
∗ Data b l o c k r e a d r e q u e s t
∗ B l o c k i n g f u n c t i o n
∗
∗ @param addr : a d r e s s a t which d a t a a r e→

↪→ r e a d
∗ @param buf : d a t a a r r a y
∗ @param c o u n t : a r r a y l e n g t h
∗
∗ @return SUCCESS i f t h e command has →

↪→comple t ed
∗ /

command e r r o r t r e a d (u i n t 3 2 t addr , →
↪→ u i n t 8 t ∗buf , u i n t 1 6 t ∗ c o u n t) ;

}
Listing 2. SD module usage interface

Both functions use as argument the address (in bytes) at
which data are accessed, a buffer in which data are stored
(either for writing or reading), and in case of a read request,
the data length to be read.
3.1.3 Bandwidth measurement

A dedicated application was developed for measuring the
data transfer rate in the raw write mode: a 512-byte buffer
is written 2048 times. We have observed that 113 seconds
are needed to write 1 MB, resulting in a data transfer rate of
9 KB/s or 32 MB/hour.
3.2 Storage medium and partition

A physical storage medium appears as a large array seg-
mented in smaller blocks – sectors – each 512-bytes large in
the case of the SD card.

MBR

0 512 Partition1 : Fat16

BS BS

Partition2 : Fat16

Figure 2. Partitioning example of a mass storage medium

Partitioning (Fig. 2) a large storage medium creates at the

beginning of the array (address 0) a data structure called the
Master Boot Record (MBR), used to
• provide informations concerning the mass storage

medium,

• store, if needed, an executable file for booting from this
mass storage medium,

• provide informations such as the size and address of the
partitions.

This last part is most significant for us since these infor-
mations are needed to access the partition. The MBR in-
cludes four 16-bytes fields which each defines the properties
of a partition: the only part of interest to us is the address of
the beginning of the partition, at offset 0x1C6 in the case of
the first partition.

3.3 Structure
Before getting into the details of the filesystem itself, we

must define what a cluster is. A cluster is the basic block unit
as seen from the filesystem, and defined as multiple sectors.
The number of sectors in each cluster is defined in the area
defining the partition.

The FAT16 filesystem is structured as illustrated in Fig.
3.

3.3.1 Boot Sector
At the beginning of a partition is the Boot Sector (BS).

It performs at the partition level a role similar to that of the
MBR at the physical storage medium level. It includes all
the informations needed to use the partition.

Amongst other data, the BS provides the sizes of:
• the partition,

• various areas within the partition,

• a cluster,

• ...
The only part of fixed size is the BS as defined in the

standards, while accessing all the other areas of the partition
is based on the values read there.

3.3.2 FAT (File Allocation Table)
From now on, to avoid confusion, the filesystem will be

named FAT16 while the linked lists will be called FAT.
The filesystem includes two FATs. The second is used as

a backup copy and should be, if all performs well, a copy of
the first one.

FAT Root Data
Boot

Sector

FAT

(copy)

512 bytes

Figure 3. FAT filesystem organization on the mass stor-
age medium.

The FAT filesystem requires the following steps to access
data ordered in different files (Fig. 3):
• the Boot Sector, always located at the beginning of a

partition and of fixed size, provides the address to the

FAT and its backup copy, as well as to a Root Direc-
tory. The medium can be divided into multiple parti-
tions, which are defined by their starting address pro-
vided in the Master Boot Record (MBR). The MBR is
always located at the beginning of the medium.

• the Root Directory provides the starting point of each
file created on the filesystem. It includes as many en-
tries as there are files or directories.

• the FAT provides a linked list of addresses where to find
the successive data included in each file

• this linked list provides the addresses in the Data area
where to retrieve the informations.

This structure is a linked list of cluster. The content of a
file being stored as blocks of several non-contiguous sectors,
the relation from one to the other is provided by the FAT.
The cluster defining the beginning of a file is indicated as an
entry in the RootDirSector area.

The first 16 bits of a FAT provides an information con-
cerning the kind of medium, the next two are the status of
the partition. The first usable cluster in this area is indexed
by number 2, the last is dependent on the partition size. Each
cluster index is coded as 16-bit values, the index being of
three types (Fig. 4):
• 0x0000 to mention that a cluster is not used and hence

can be reserved,

• 0xFFFF to mention that the cluster is used and addition-
ally defines the end of a file,

• a value between 0x0000 and 0xFFFF is the index of the
next cluster in the list.

Fig.4 exhibits a simple example, in which two files are
defined in the FAT:
• the first file starts at the second cluster (information ob-

tained at the beginning of the file),

• continues at cluster 3 (value found in cluster 2),

• finishes at cluster 9 (since it starts with value 0xffff).
The same analysis shows that the second file starts at the

6th cluster.
3.3.3 Root directory

The root directory of a partition (RootDirSector) defines
all the files and directories available from the top-most di-
rectory, with each file entry defining all the data needed to
access the informations stored there. The most important in-
formations are the location of the first cluster, and the file
size.

For each file entry, the first byte exhibits a particular value
amongst:
• 0x00, the sequence is complete, there is no more file

• 0xE5, the file has been deleted

• 0x4n, for the beginning of a long name, with n the num-
ber of lines needed to store the long name (n ∈ [1 : 9]),

• in all other cases, this character is the first letter of the
file name.

Finding a file requires reading all entries in this area and
analyzing the properties of each field one after the other. If
only the short (DOS-like) name is of interest, the search is

2

3

6

FAT

0x0003

0x0009

9 0xFFFF

...

8

0x0201

0xFFFF512

0x0000

0x0000

0x0000

...

0x0000

0x0000

...

0x0000

Fich_1

Fich_2

0xF8FF

0xFF7F

Figure 4. FAT example

performed as follows: in the beginning, we might expect ei-
ther a deleted file, or a long filename.
• in the former case, we jump 32 bytes to analyze the next

entry,

• in the latter case one must jump n ∗ 32 bytes to access
the short DOS (8.3 format) filename.

3.3.4 Data area
The rest of the partition includes the data organized as

cluster blocks, each divided in sectors. Accessing the data
requires the use of the FAT for moving along the linked list,
as mentioned earlier.
3.4 Power consumption issue: suspend mode

Accessing data in a FAT structure requires following
linked lists. Hence, when opening a file or when accessing
a new partition, one must find the last used cluster of a file
or the first unused cluster free for writing new data. Jump-
ing from one cluster to another requires many read access to
the physical medium, even reading all entries when search-
ing for the first empty cluster. For an application waking
up periodically for storing environmental data, this overhead
is hardly acceptable since it greatly increases the initializa-
tion duration, and thus the energy consumption associated
with data storage. One possible solution is to store some
of the informations concerning the filesystem in memory to

avoid re-initiating the whole filesystem analysis during each
wakeup step, under the assumption that the microcontroler is
the sole source of data on this filesystem and provided that
a reinitalization sequence is performed when a new card is
inserted during data retrieval. Thus, a sleep state associated
with the file descriptor and the partition is provided for stor-
ing in memory (RAM) the cluster allocation table. As op-
posed to shutting down the filesystem during each data stor-
age completion, this strategy reduces the initialization over-
head when used with application that periodically wake up.
When data coherence is the priority, the most reliable solu-
tion is shutting down the filesystem once the data have been
stored on the non-volatile medium, and only relying on the
FAT filesystem for retrieving cluster allocation informations.

The second issues is concerned with writing the acquired
data, since the SD card requires data to be written as 512-
bytes blocks and hence appending new data to partially filled
clusters. The issue arises when the amount of data is smaller
than the block size, a case often met when monitoring scalar
quantities (temperature, rain level, wind speed ...): append-
ing new data requires knowing how filled the last block al-
ready is. Rather than reading the content of the last block
and analyzing the resulting data to identify the position of
the last data, we store a variable at the file descriptor level
which indicates how filled the last block is. This variable is
initialized at a default value of bytesUsed = fileLength & 0→
↪→x1FF;, and provides the following information:
• the last block can be directly written if the variable is

equal to 0 (empty block)

• go to the next cluster if the variable is equal to 512 (last
block is filled)

• read the content of the last block and append the new
data to the existing ones using the memcpy function.

Having developed the issues and solutions we have
adopted, we will describe the actual implementation of these
concepts under TinyOS-2.x.

3.5 Implementation
3.5.1 MBR

Managing the MBR is limited to
• transmitting the startup or shutdown commands to the

storage medium

• finding the starting position of the partition during the
initialization step

[. . .]
i f (c a l l SdIO . r e a d (0 , buf , 5 1 2) == →

↪→SUCCESS) {
d e b P a r t i t i o n = (∗ (u i n t 3 2 t ∗)&buf [→

↪→pos + 8])<<9;
m b r S t a t e = MBR IDLE ;
e r r o r = SUCCESS ;

}
[. . .]

• adding this offset during the data writing or reading
steps:

command e r r o r t mbr . r e a d (u i n t 3 2 t →
↪→ o f f s e t , u i n t 8 t ∗ b u f f e r) {

[. . .]

e r r o r = c a l l SdIO . r e a d (d e b P a r t i t i o n→
↪→+ o f f s e t , b u f f e r , 5 1 2) ;

[. . .]
}
command e r r o r t mbr . w r i t e (u i n t 3 2 t →

↪→ o f f s e t , u i n t 8 t ∗ b u f f e r) {
[. . .]
e r r o r = c a l l SdIO . w r i t e (→

↪→ d e b P a r t i t i o n + o f f s e t , b u f f e r→
↪→ , 5 1 2) ;

[. . .]
}

3.5.2 FAT16
Above the MBR layer, the FAT module performs the most

significant processing steps: when initializing the storage, it
calls the MBR driver and analyzes the BS in order to retrieve
all the needed informations:
[. . .]
i f (c a l l mbr . r e a d (0 , buf) == SUCCESS) {

B y t s P e r S e c = (buf [12]<<8)+ buf [1 1] ;
S e c P e r C l u s = buf [1 3] ;
RsvdSecCnt = (buf [15]<<8)+ buf [1 4] ;
NumFATs= buf [1 6] ;
RootEntCnt = (buf [18]<<8)+ buf [1 7] ;
FATSz = (buf [23]<<8)+ buf [2 2] ;
F i r s t F a t B y t s = RsvdSecCnt∗B y t s P e r S e c ;
/ / r o o t d i r e c t o r y
Roo tDi rBy t s = (RsvdSecCnt + NumFATs∗→

↪→FATSz) ∗B y t s P e r S e c ;
/ / f i r s t d a t a s e c t o r p o s i t i o n
F i r s t D a t a S e c t o r = Roo tDi rBy t s +

f a t A l i g n S u p (RootEntCnt , B y t s P e r S e c) ∗→
↪→B y t s P e r S e c ;

C o u n t O f C l u s t e r s = FATSz ∗ ((B y t s P e r S e c / 2)→
↪→−2) ;

i f (f a t S t a t e != FAT SUSPEND)
l a s t F r e e C l u s t e r = 3 ; / / s t a r t a t →

↪→b e g i n n i n g
[. . .]

It performs cluster allocation by first finding the offset and
sector position of the last used area (i.e. position of the first
available cluster). The offset provides the position with re-
spect to the beginning of the sector being used and defines
whether all cluster entries, within this sector, have been ana-
lyzed.
[. . .]
g e t O f f s e t A n d S e c t o r (l a s t F r e e C l u s t e r ,& f a t S e c→

↪→,& o f f) ;
i f (o f f < 512) {

c u r r e n t F a t S e c = (5 1 2∗ (f a t S e c −1)) +→
↪→ F i r s t F a t B y t s ;

i f (c a l l mbr . r e a d (c u r r e n t F a t S e c , buf) ==→
↪→ FAIL)

go to end ;
}

Next, the sector is analyzed until a free cluster is found,
or the search follows on the next sector:
do {

i f (o f f >= 512) {
f a t S e c ++; / / n e x t s e c t o r
c u r r e n t F a t S e c = (5 1 2∗ (f a t S e c −1)) +→

↪→ F i r s t F a t B y t s ;
o f f = 0 ; / / o f f s e t r e s e t

/ / r e a d a new d a t a s e c t o r
i f (c a l l mbr . r e a d (c u r r e n t F a t S e c , buf) →

↪→== FAIL)
go to end ;

}
/ / s e c t o r found
i f ((∗ (u i n t 1 6 t ∗)&buf [o f f]) == 0x00) {

e r r o r = SUCCESS ;
b r e a k ;

}
l a s t F r e e C l u s t e r ++; / / go to n e x t c l u s t e r
o f f +=2; / / n e x t p o s i t i o n t o r e a d

} w h i l e (l a s t F r e e C l u s t e r < C o u n t O f C l u s t e r s)→
↪→ ;

[. . .]
This loop iterates as long as no free cluster has been found

and as long as the whole FAT has not been analyzed. Once
a free cluster is identified, it is tagged as used and end of the
file:
(∗ (u i n t 1 6 t ∗)&buf [o f f]) =0 x f f f f ;
[. . .]

The two FATs are updated so that the previous final cluster
indexes the newly allocated cluster, while the new cluster
is tagged as the final file position. During this update, two
conditions are possible:
• both clusters are located in the same sector of the FAT,

and in this case one writing step to the FAT is needed:
i f (∗ c l u s t e r != 0)

(∗ (u i n t 1 6 t ∗) &(buf [o f f O r])) =→
↪→ l a s t F r e e C l u s t e r ;

i f (c a l l mbr . w r i t e (c u r r e n t F a t S e c , buf→
↪→) == FAIL | |

c a l l mbr . w r i t e (c u r r e n t F a t S e c +(FATSz→
↪→∗512) , buf) ==FAIL)

go to end ;
}
[. . .]

• both clusters are in different sectors: in this case, two
successive writing steps are needed during the update

i f (f a t S e c != secOr) {
i f (c a l l mbr . w r i t e (c u r r e n t F a t S e c , →

↪→buf) == FAIL | |
c a l l mbr . w r i t e (c u r r e n t F a t S e c +(→

↪→FATSz∗512) , buf) == FAIL)
go to end ;

i f (∗ c l u s t e r != 0) {
tmp = (5 1 2∗ (secOr −1)) +→

↪→ F i r s t F a t B y t s ;
i f (c a l l mbr . r e a d (tmp , buf) == →

↪→FAIL) go to end ;
(∗ (u i n t 1 6 t ∗) &(buf [o f f O r])) =→

↪→ l a s t F r e e C l u s t e r ;
i f (c a l l mbr . w r i t e (tmp , buf) == →

↪→FAIL | |
c a l l mbr . w r i t e (tmp +(FATSz∗512) ,→

↪→buf) ==FAIL)
go to end ;

}
Once the FATs are updated, the variables associated with

the file descriptor are updated:
∗ c l u s t e r = l a s t F r e e C l u s t e r ;
l a s t F r e e C l u s t e r ++; / / n e x t s i n c e t h e →

↪→ c u r r e n t i s used

The final step is performed while writing the data: if the
sector to be used is beyond the number of sectors within the
current cluster, a new cluster reservation is performed:
[. . .]
i f (∗ s e c t e u r >= S e c P e r C l u s | | ∗ c l u s t e r == →

↪→0) {
/ / u p d a t e c l u s t e r v a l u e
i f (f a t R e s e r v e C l u s t e r (buf , c l u s t e r) == →

↪→FAIL)
go to end ;

∗ by te sUsed = 0 ; / / new c l u s t e r
∗ s e c t e u r = 0 ;

}
and the absolute position (with respect to the beginning of
the SD card) of the current sector (in bytes) is computed:
s e c t o r = computeSecFromClus t e r (∗ c l u s t e r)→

↪→+ ((∗ s e c t e u r) ∗512) ;
memset (buf , ’\0 ’ , 5 1 2) ;

If the sector under investigation is not empty, its content
is recovered so the new data can be appended:
/∗ r e a d on ly o f d a t a a l r e a d y t h e r e ∗ /
i f (∗ by te sUsed != 0) {

i f (c a l l mbr . r e a d (s e c t o r , buf) == FAIL)
go to end ;

}
The amount of data already stored is checked in order to

assess whether all the additional data will fit within the sec-
tor:
i f (∗ by te sUsed + s > 512) {

(∗ s e c t e u r) ++; / / n e x t s e c t o r
s i z e = 512 − ∗ by te sUsed ;

} e l s e {
i f (∗ by te sUsed + s == 512) (∗ s e c t e u r) ++;
s i z e = s ;

}
Finally, the sector is filled, the sector number updated and

the amount of bytes stored:
memcpy (buf +∗ bytesUsed , c , s i z e) ;
i f (c a l l mbr . w r i t e (s e c t o r , buf) == FAIL)

go to end ;
s−=s i z e ;
∗ by te sUsed = (∗ by te sUsed + s i z e) & 0x1FF ;
c += s i z e ;
[. . .]
These steps are iterated until all the informations to be writ-
ten are stored on the card.
3.5.3 file

The file driver performs similarly to the file descriptor in
most modern operating systems: it manages all the methods
associated to a file.

During the initialization step, the entry for a file is
searched:
[. . .]
/ / f i r s t r o o t s e c t o r
i f (c a l l f a t . f a t R e a d R o o t (0 , buf) == FAIL)

r e t u r n r e t ;
do {

c = buf + o f f s e t ;
i f (c [0] == 0x00) { / / end of f i l e

b r e a k ;
/ / l ong f i l e name : s k i p
} e l s e i f ((u i n t 8 t) c [0] == 229 | | c [1 1]→

↪→ == 15) {

} e l s e i f (c [1 1] == 0x20) { / / f i l e →
↪→ found

s t r n c p y (f i leName , c , 7) ;
f i l eName [8] = ’\0 ’ ;
i f (! s t rncmp (f i leName , name , s t r l e n (name→

↪→))) {
r e t = SUCCESS ;
b r e a k ;

}
}
/ / n e x t e n t r y
o f f s e t += 3 2 ;
/ / i f s e c t o r ove r f low , go to n e x t
i f (o f f s e t >= 512) {

s e c t o r ++;
o f f s e t −= 512 ;
c a l l f a t . f a t R e a d R o o t (s e c t o r , buf) ;

}
}w h i l e (c [0] != 0x00) ; / / r e t u r n d a t a
∗ o f f = o f f s e t ;
∗ s e c t = s e c t o r ;
[. . .]

All variables associated with a file are filled: in case of an
empty file (cluster number equals 0), a new allocation re-
quest is performed. If the file descriptor is in sleep mode
(suspend() command), the search for the cluster describing
the end of file is not needed since a variable already contains
this informations:
/∗ r e c o r d f i l e name ∗ /
c = (buf + o f f s e t) ;
/ / f i r s t c l u s t e r p o s i t i o n
d a t a L o c a t i o n = c [2 6] ;
/ / f i l e l e n g t h
f i l e L e n g t h = (∗ (u i n t 3 2 t ∗) &(c+ s e c) [2 8]) ;
/ / p o s i t i o n w i t h i n r o o t d i r e c t o r y s e c t o r
r o o t S e c t o r = s e c ;
r o o t O f f s e t = o f f s e t ;
/ / C l u s t e r o f end of f i l e
/ / i f f i l e i s empty
i f (d a t a L o c a t i o n < 2) {

/ / c l u s t e r r e s e r v a t i o n
i f (c a l l f a t . r e s e r v e C l u s t e r (&→

↪→d a t a L o c a t i o n , buf) == FAIL) {
r e t u r n FAIL ;

}

l a s t C l u s t e r = d a t a L o c a t i o n ;
l a s t S e c t e u r = 0 ;
by t e sUsed = 0 ;
c a l l f a t . f a t R e a d R o o t (r o o t S e c t o r , buf) ;
(∗ (u i n t 1 6 t ∗) &(buf + r o o t O f f s e t) [2 6]) = →

↪→ d a t a L o c a t i o n ;
c a l l f a t . f a t W r i t e R o o t (r o o t S e c t o r , buf) ;

} e l s e {
i f (f i l e S t a t e == FILE NOINIT) {

i f ((l a s t C l u s t e r = c a l l f a t .→
↪→ f a t L a s t C l u s t e r (d a t a L o c a t i o n , buf))

== −1)
r e t u r n FAIL ;

i f ((l a s t S e c t e u r = c a l l f a t .→
↪→ f a t L a s t S e c t e u r (l a s t C l u s t e r , buf))

== −1)
r e t u r n FAIL ;

}

by te sUsed = f i l e L e n g t h & 0x1FF ;
}

During a write request, the buffer including the data is
provided to the filesystem, as well as the number of bytes
to be written. Once the data have been written, the file
size is updated. This behavior, although requiring an ad-
ditional writing step, provides additional safety concerning
the data storage even under power failure during the writing
step, since the previous data stored can always be recovered
thanks to the filesystem consistency.

4 Usage example
As a basic example of FAT16 use, the first program initial-

izes the filesystem, opens a file in which a string is written,
and the file is closed before shutting down the filesystem.
The second example illustrates the use of the suspend and
wakeup modes for storing periodic temperature readings.

4.1 Using FAT16
The various modules are connected together and the file

name is defined in the configuration file (listing 3):
c o n f i g u r a t i o n fa tTes tAppC {}
i m p l e m e n t a t i o n {

components f a t T e s t C as App , MainC , f a t C ;
components new TimerMi l l iC () a s Timer0 ;
components new f i l e C (” t o t o . t x t ”) ;
App . Boot −> MainC . Boot ;
App . Timer0 −> Timer0 ;
App . f a t C o n t r o l −> f a t C ;
App . f i l e −> f i l e C ;
App . f i l e C o n t r o l −> f i l e C . f i l e C o n t r o l ;
f i l e C . f a t −> f a t C . f a t ;

}
Listing 3. Application configuration file

The actual application (listing 4)
• mounts the partition when a timer condition is met

• upon partition initialization success, the file is opened

• once the file is opened, a string is appended

• the file is closed and the partition unmounted.
module f a t T e s t C {

u s e s {
i n t e r f a c e Boot ;
i n t e r f a c e Timer<TMi l l i > as Timer0 ;
i n t e r f a c e S p l i t C o n t r o l a s f a t C o n t r o l ;
i n t e r f a c e S p l i t C o n t r o l a s f i l e C o n t r o l ;
i n t e r f a c e f a t ;
i n t e r f a c e f i l e ;
}

}
i m p l e m e n t a t i o n {

e v e n t vo id Boot . boo t e d () {
c a l l Timer0 . s t a r t O n e S h o t (5 0 0) ;

}
e v e n t vo id Timer0 . f i r e d () {

c a l l f a t C o n t r o l . s t a r t () ;
}
e v e n t vo id f a t C o n t r o l . s t a r t D o n e (e r r o r t →

↪→ e r r) {
i f (e r r == SUCCESS) c a l l f i l e C o n t r o l .→

↪→ s t a r t () ;
}

e v e n t vo id f i l e C o n t r o l . s t a r t D o n e (e r r o r t→
↪→ e r r) {

i f (e r r == SUCCESS)
c a l l f i l e . w r i t e (” h e l l o wor ld ” , 1 1)

}
e v e n t vo id f i l e . wr i t eDone (e r r o r t e r r) {

i f (e r r == SUCCESS) c a l l f i l e C o n t r o l .→
↪→ s t o p () ;

}
e v e n t vo id f i l e C o n t r o l . s topDone (e r r o r t →

↪→ e r r) {
i f (e r r == SUCCESS) c a l l f a t C o n t r o l .→

↪→ s t o p () ;
}

e v e n t vo id f a t C o n t r o l . s topDone (e r r o r t →
↪→ e r r) {}

[. . .]
}

Listing 4. Application file.
4.2 Temperature storage and suspend mode

The application configuration file (Fig. 5) is similar to the
previous one, with the additional use of DemoSensorC for
temperature monitoring.

c o n f i g u r a t i o n storeTempAppC {}
i m p l e m e n t a t i o n {

components storeTempC as App , LedsC , →
↪→MainC ;

App . Boot −> MainC . Boot ;
App . Leds −> LedsC ;
components new TimerMi l l iC () a s Timer0 ;
App . Timer0 −> Timer0 ;
components f a t C ;
App . f a t D e s c r i p t o r −> f a t C ;
components new f i l e C (” temp . t x t ”) a s →

↪→f i leADC ;
App . fi leADC −> f i leADC ;
App . f i l e A D C D e s c r i p t o r −> f i leADC .→

↪→ f i l e D e s c r i p t o r ;
f i leADC . f a t −> f a t C . f a t ;
components new DemoSensorC () a s Sen so r ;
App . readADC −> Se ns o r ;

}
Figure 5. Periodic temperature acquisition configuration
file.

The actual application adds the use of the ADC12 periph-
eral:
i n c l u d e ” Timer . h ”
d e f i n e TIMER SLEEP 3600000
d e f i n e SHOW ERROR do { \

c a l l Leds . l e d 1 O f f () ; \
c a l l Leds . led0On () ; } w h i l e (0)

module storeTempC {
u s e s {

i n t e r f a c e Leds ;
i n t e r f a c e Boot ;
i n t e r f a c e Timer<TMi l l i > as Timer0 ;

i n t e r f a c e Read<u i n t 1 6 t > as readADC ;
i n t e r f a c e f a t ;

i n t e r f a c e f s D e s c r i p t o r a s →
↪→ f a t D e s c r i p t o r ;

i n t e r f a c e f i l e a s fi leADC ;

i n t e r f a c e f s D e s c r i p t o r a s →
↪→ f i l e A D C D e s c r i p t o r ;

}
}

and the implementation part is divided in four functional
blocks:
i m p l e m e n t a t i o n {

enum {
APP NOINIT ,
APP STOP ,
APP SLEEP ,
APP ADC

} ;
u i n t 8 t a p p S t a t e = APP NOINIT ;
u i n t 8 t ∗ tampon=NULL;

e v e n t vo id Boot . boo t e d () {
tampon = (u i n t 8 t ∗) ma l l oc (8∗→

↪→ s i z e o f (u i n t 8 t ∗)) ;
a p p S t a t e = APP NOINIT ;
c a l l Timer0 . s t a r t P e r i o d i c (TIMER SLEEP)→

↪→ ;
}
e v e n t vo id Timer0 . f i r e d () {

e r r o r t e r r o r = FAIL ;
c a l l Leds . l e d 1 O f f () ;
c a l l Leds . l e d 0 O f f () ;
i f (a p p S t a t e == APP NOINIT | | a p p S t a t e→

↪→ == APP STOP)
e r r o r = c a l l f a t D e s c r i p t o r . open () ;

e l s e i f (a p p S t a t e == APP SLEEP)
e r r o r = c a l l f a t D e s c r i p t o r . resume () ;

i f (e r r o r == FAIL)
SHOW ERROR;

}
with at first the definition of the variables needed to store
the status of the application over time and the array needed
to collect the data to be written on the card. The filesystem
states are defined lines 2 to 7 and a variable stores this sta-
tus so that when the timer triggers an alarm, the filesystem is
initialized (call fatDescriptor.open()) or awaken (call fatDe-
scriptor.resume()) .

The other parts of the application are concerned with
timer handling for periodic data acquisition:

e v e n t vo id f a t D e s c r i p t o r . openDone (→
↪→ e r r o r t e r r o r) {

i f (e r r o r == SUCCESS) e r r o r = c a l l →
↪→ f i l e A D C D e s c r i p t o r . open () ;

i f (e r r o r == FAIL) SHOW ERROR;
}
e v e n t vo id f i l e A D C D e s c r i p t o r . openDone (→

↪→ e r r o r t e r r o r) {
i f (e r r o r == SUCCESS) {

a t om ic { a p p S t a t e = APP ADC ;}
e r r o r = c a l l readADC . r e a d () ;

}
i f (e r r o r == FAIL) {

c a l l f a t D e s c r i p t o r . c l o s e () ;
SHOW ERROR;

}
}
e v e n t vo id f a t D e s c r i p t o r . resumeDone (→

↪→ e r r o r t e r r o r) {

i f (e r r o r == SUCCESS) e r r o r = c a l l →
↪→ f i l e A D C D e s c r i p t o r . resume () ;

i f (e r r o r == FAIL) SHOW ERROR;
}
e v e n t vo id f i l e A D C D e s c r i p t o r . resumeDone (→

↪→ e r r o r t e r r o r) {
i f (e r r o r == SUCCESS) {

a t om ic { a p p S t a t e = APP ADC ;}
e r r o r = c a l l readADC . r e a d () ;

}
i f (e r r o r == FAIL) {

c a l l f i l e A D C D e s c r i p t o r . c l o s e () ;
SHOW ERROR;

}
}
The second block is concerned with initializing or waking

up the filesystem: a successful filesystem operation induces
the same task on the file itself. Upon completion, data acqui-
sition is performed:

e v e n t vo id f i l e A D C D e s c r i p t o r . c loseDone (→
↪→ e r r o r t e r r o r) {

i f (e r r o r == SUCCESS) e r r o r = c a l l →
↪→ f a t D e s c r i p t o r . c l o s e () ;

i f (e r r o r ==FAIL) SHOW ERROR;
}
e v e n t vo id f a t D e s c r i p t o r . c loseDone (→

↪→ e r r o r t e r r o r) {
i f (e r r o r == FAIL) SHOW ERROR;
e l s e a to mi c { a p p S t a t e = →

↪→APP STOP ;}
}
e v e n t vo id f i l e A D C D e s c r i p t o r . suspendDone→

↪→ (e r r o r t e r r o r) {
i f (e r r o r == SUCCESS) e r r o r = c a l l →

↪→ f a t D e s c r i p t o r . su spend () ;
i f (e r r o r == FAIL) SHOW ERROR;

}
e v e n t vo id f a t D e s c r i p t o r . suspendDone (→

↪→ e r r o r t e r r o r) {
c a l l Leds . l e d 1 O f f () ;
i f (e r r o r == FAIL) SHOW ERROR;
e l s e a to mi c { a p p S t a t e = →

↪→APP SLEEP ;}
}

}
The third block, similar to the previous, handles shutdown

or suspending of the file and filesystem:
e v e n t vo id readADC . readDone (e r r o r t →

↪→ r e s u l t , u i n t 1 6 t d a t a) {
u i n t 1 6 t i n t e r , i , z ;
f l o a t v a l = (((d a t a / 4 0 9 6 . 0) ∗ 1 . 5)→

↪→−0.986) / 0 . 0 0 3 5 5 ;
memset (tampon , ’\0 ’ , 8∗ s i z e o f (u i n t 8 t)) ;
f o r (i =0 , z =100; i <3; i ++ , z / = 1 0) {

i n t e r = v a l / z ;
tampon [i] = i n t e r + ’0 ’ ;
v a l −= i n t e r ∗z ;

}
tampon [3] = ’\n ’ ;
a p p S t a t e = APP SLEEP ;
i f (c a l l f i leADC . w r i t e (tampon , 4) == →

↪→FAIL)
SHOW ERROR;

}

e v e n t vo id fi leADC . wr i t eDone (e r r o r t →
↪→ e r r o r) {

i f (e r r o r == SUCCESS)
e r r o r = c a l l f i l e A D C D e s c r i p t o r .→

↪→ suspend () ;
i f (e r r o r == FAIL) {

c a l l f i l e A D C D e s c r i p t o r . c l o s e () ;
SHOW ERROR;

}
}
Finally, the last part is concerned with data process-

ing and handling. Although the shortest part in this par-
ticular example, it is the core aspect of the program.
readADC.readDone(...) is executed when the microcontroler
completes the temperature measurement. Following a con-
version to a string format, a write request is performed: upon
completion, the file system is suspended, until the next alarm
due to the periodic timer.

5 Speed and portability assessment
5.1 Bandwidth

In order to assess the writing speed, a dedicated applica-
tion similar to the one previously described for raw writing
on the medium has been developed. A test duration of 341 s
provides a bandwidth estimate of 3.2 kB/s, or 11.5 MB/hour.
This result, three times slower than the raw write bandwidth,
is consistent with the overhead associated with formatted
data storage.
5.2 Portability and practical use assessment

One application for the storage of large amount of data
on non-volatile media is for the periodic measurement of
GPS position. Whether short period (one measurement ev-
ery second) or long periodic measurements (several min-
utes every day), the amount of data generated this way is
in the megabyte range every day. The typical data trans-
fer rate of GPS receivers is 4800 bauds on an asynchronous,
RS232 compatible link. Hence, our assessment of the speed
at which the FAT filesystem stores data has focused on the
integrity of the data stream continuously transfered at the
rate of 4800 bauds. Experiments were performed on a cus-
tom MSP430F1611-based board clocked with both 32 kHz
LFXT and a 4 MHz high frequency clocks. We have also val-
idated that this software runs on the standard (MSP430F611
based) TelosB platform and (ATmega 128 based) MicaZ
OEM boards (Fig. 7). Working on these two platforms,
based on different processor architectures, demonstrates the
portability of the software used for running TinyOS-2.x. In
the former cases (MSP430) we have used the hardware US-
ART SPI port, while on the MicaZ we have connected the
SD card to the USART1 port also used for communicating
with the on-board flash memory [13]. The GPIO LED1 pin
of the MicaZ was used as Chip Select pin.

Our experimental assessment of data integrity when
stored on our implementation of the FAT filesystem includes
sending through an RS232 link a know file, and search-
ing differences between the original and stored files, and
on the other hand storing GPS NMEA sentences and post-
processing these data in search of inconsistencies (notice
that each NMEA sentence is terminated with a checksum).
In both cases, and with data files up to 11 MB large, no

inconsistency was detected when data transfer rates up to
9600 bauds were used.

We have performed current consumption measurements
on a custom board including a direct (3.3 V) power sup-
ply to all the circuits, an MSP430F1611 processor, a 4066
analog multiplexer, an unpowered FT232RL USB to RS232
converter (although unpowered, we have observed a leak-
age current from the MSP430 UART to the FT232RL) and
an LTC1157 FET transistor driver for switching the power
supply to peripherals such as a GPS receiver or remote con-
trolled instruments. The baseline is measured at 8 mA when
no access to the SD card is needed. Waking up the SD card
and writing to its cache RAM rises the power consumption
to 38 mA (125 mW). Brief bursts of current are observed
at 60 mA (200 mW), probably associated with the transfer
of the data cached in the SD RAM to its flash memory [14]
(Fig. 6). As a reminder, the software running on the cus-
tom MSP430F1611 based board we ran these measurements
on clocks the SPI bus on the 4 MHz high frequency clock
source.

search

cluster

write write write write

20 mA

40 mA

60 mA

2 s

Figure 6. 512-bytes data blocks are stored on an SD
card every 2 seconds. Every four writing operations, the
search for a new available cluster requires additional ac-
cesses to the mass-storage medium, as seen here during
the second access. Here the voltage drop over a 1 Ω re-
sistor is displayed, so that the ordinal voltage reading
(20 mV/division) also provides a current consumption in
A, under a constant power supply of 3.3 V.

These short term current consumption seem to indicate
that in terms of power management, storing data on non-
volatile media yields power consumption of the same order
of magnitude than low data-rate radiofrequency communi-
cation (bluetooth, or 802.15.4 and the often associated Zig-
bee protocol), but with wakeup times closer to those found
in 802.15.4 (a few tens of milliseconds) than bluetooth (a
few seconds). The bandwidth available for storing data is
much greater (a few tens of kilobytes per second) than for
radiofrequency data transmission, yielding shorter wakeup
time and hence energy consumption. Obviously, the draw-
back of safely storing data on a non-volatile memory is that

the data are not retrieved until a human operator actually
fetches the memory task, a task sometime difficult depending
on environmental/climatic conditions.

Figure 7. Experimental setup for validating the FAT16-
formatted data storage on an SD card non-volatile mass
storage medium connected to the USART1 port of a Mi-
caZ OEM board.

In order to confirm these short term measurements, we
performed a comparison of the evolution of battery level of
5 MicaZ and 2 TelosB motes used in the following way:

1. 5 motes communicate environmental data and battery
voltage through the 802.15.4 link every two minute:
two MicaZ motes are located about 10 m away from
the sink, two MicaZ motes are close to the sink (about
50 cm) to assess the influence of the transmission range,
one TelosB located close to the sink sends its battery
voltage. Amongst the two sets of MicaZ motes located
close and far from the sink, one continuously activates
the wireless link peripheral (as would be needed to re-
ceive messages as well as send data) while the other
releases the resource after sensing the data. The lat-
ter algorithm, allowing the processor to go into sleep
mode, significantly extends the life expectancy of the
node, while the two nodes continuously activating the
wireless link die after 5 days of activity (Fig. 8).

2. two motes, one MicaZ and one TelosB, store environ-
mental data and battery voltage on an SD card every
2 minutes, and transmit through the wireless link the
battery voltage every hour. In all cases, the resources
are released after completing their task. The SD card
storage yields an increased power consumption with re-
spect to the direct data transmission, but significantly
saves energy compared to the strategy requiring con-
stant radiofrequency peripheral activity.

Although the evolution of the battery voltage is an indirect
indicator of the current consumption, it is nevertheless the
actual quantity of interest to the final user. One observes that
after 5 days the motes which keep the radiofrequency mod-
ule continuously active die since the supply voltage reaches
the threshold voltage of 2 V below which the mote no longer

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 2000 4000 6000 8000 10000 12000

vo
lta

ge
 (

V
)

point number (2 min/point)

V4
V5
V6
V7

SD (1)
TelosB (2)

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000

lu
m

in
os

ity
 (

bi
ts

)

time (a.u.)

zigbee (2)
SD (3)

3.1

3.15

3.2

3.25

3.3

3.35

0 2000 4000 6000 8000 10000 12000

vo
lta

ge
 (

V
)

point number (2 min/point)

V4
V5

SD (1)

Figure 8. Top: comparison of the evolution of the battery
voltage of one TelosB and five MicaZ motes: two of each
platform were transmitting battery voltage and physi-
cal parameter measurements ever 2 minutes through a
wireless link without releasing the peripherals after use
(hence the excessive power consumption: sensor nodes 6
and 7), two of each platform were running the same pro-
gram while releasing the resources (sensor nodes 4 and
5), and one of the MicaZ is storing data on an SD card ev-
ery 2 minutes while transmitting its battery voltage every
hour (sensor node 1). Middle: luminosity measurement
on the TelosB node, providing an intuitive marker of time
evolution (each luminosity maximum is reached around
noon). Bottom: zoom on the power consumption of nodes
4, 5 and the MicaZ platform storing data on the SD-card.
An energy saving strategy induces less power consump-
tion on a 802.15.4 network: the SD-card equipped node
exhibits and increased power supply voltage drop with
respect to the nodes using wireless transmission.

runs. The mote storing data on the SD card still runs fine
after' 20 days, but consumes significantly more power than
the motes transmitting data through the 802.15.4 link and re-
leasing the resource after sending the data. Finally, distance
(and hence transmitted power) does not seem to significantly
alter the global power consumption, and environmental con-
ditions (temperature due to heating from the sun illuminat-

ing the mote) seem to be a more significant factor defining
battery life. This last conclusion induces significant design
constraints when developing sensor nodes for cool regions:
keeping the battery in ice or in dark packages for improved
heating by the sun might significantly extend the sensor node
life expectancy.

We have demonstrated storage of large amount of data
(>1.5 MB/hour) which would otherwise require, beyond the
data acquisition time, another 20 minutes (at a constant emis-
sion rate of 9600 bauds as often found on 802.15.4 or blue-
tooth interfaces, assuming no additional delay due to wire-
less protocol management) to transmit through a wireless
link. Hence, we believe that many applications in which
the data are not needed in real time, but are to be recovered
by non-technically oriented operators using mobile (lap-
top) personal computers running commonly found operat-
ing systems, would benefit from using a FAT16 filesystem as
demonstrated here. The practical demonstration of long term
data storage in an application incompatible with short range
wireless data transmission is illustrated in Fig. 9, with the
logging over 11 hours of the GPS position of a moving ve-
hicle, recorded every second (continuous NMEA sentences
transmitted by an ET312 GPS receiver), yielding a 9.2 MB
file which does not exhibit visible data storage error.

All necessary software – platform and application files for
TinyOS-2.x as well as some basic sample programs includ-
ing recording data streams acquired from the asynchronous
RS232 port and analog to digital converters, stored in dif-
ferent files on a FAT filesystem, is available for download at
http://www.trabucayre.com/ and to the link associated
with this manuscript at http://jmfriedt.free.fr.

6 Conclusion
We have presented and characterized the use of a com-

monly available filesystem – FAT16 – for the storage of large
amount of data recorded by a sensor node. Data integrity was
assessed for transfer rates up to 9600 bauds. The implemeted
driver emphaseized portability, low memory footprint and
provides a sleep mode in which some variable store the state
of the storage medium, saving initialization time upon re-
sum, as often needed in periodic data sampling applications.

While power consumption during storage on non volatile
Secure Digital (SD) card media is of the same order of mag-
nitude than real time transmission over a low-power wire-
less communication protocol, we propose that local storage
is safer and requires less time (and hence global energy con-
sumption for data retrieval and storage) than real time wire-
less transfer. We consider this strategy as a safe alternative
to a wireless link in remote areas where the closest base-
station is further than the communication range of the wire-
less network hardware used, as long as a human operator has
access to the network node. Furthermore, using a filesystem
compatible with most operating systems running on personal
computers widens the audience of operators on the field able
to retrieve the data stored on the non-volatile medium.

Acknowledgment
J.-MF wishes to acknowledge the French National

Research Agency (ANR) funded program HydroSensor-
FLOWS, under the direction of M. Griselin and C. Marlin,

Figure 9. Example of storing a GPS track onboard a
moving vehicle – incompatible with low-power radiofre-
quency data transmission – driving from the west to east
of France – a total of 9.2 MB stored during the 11 hour
trip. The red track is an overlay over the satellite view of
the path followed during the trip.

for motivating this work on non-volatile mass storage. Al-
though the software and hardware described in this presenta-
tion were not used during this program aimed at monitoring
the behavior of a polar glacier, the working conditions close
to Ny Alesund (Norway) and its radio-telescope preventing
the use of radiotransmitters (including the ones running in
the 2.45 GHz ISM band, used by 802.15.4 and bluetooth)
prompted this study. The interaction with end-users work-
ing in the fields of hydrology and geography emphasized the
need for user-friendly interfaces compatible with standard
widely available on most personal computers.
7 References
[1] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,

M. Flanigan, N. Kushalnagar, L. Nachman & M. Yarvis,
Design and deployment of industrial sensor networks:

experiences from a semiconductor plant and the north
sea, Proc. of the 3rd international conference on embed-
ded networked sensor systems, pp.64-75, (2005)

[2] T. Liu, C.M Sadler, P. Zhang & M. Martonosi, Im-
plementing software on resource-constrained mobile
sensors: experiences with impala and zebranet, Mo-
biSYS’04 Proceedings (6-9 Juin 2004)

[3] M. Ilyas, The handbook of Ad Hoc Wireless Networks,
CRC Press, 2003.

[4] G. Marthur, P. Desnoyers, D. Ganesan, and P. Shenoy,
Capsule: an energy-optimized object storage system for
memory-constrained sensor devices, Proc. of the Fourth
ACM Conference on Embedded Networked Sensor Sys-
tems (Sensys), 2006

[5] N. Tsiftes, A. Dunkels, Z. He & T. Voigt, Enabling
Large-Scale Storage in Sensor Networks with the Coffee
File System, Proceedings of the 2009 International Con-
ference on Information Processing in Sensor Networks
(2009)

[6] American Society of Civil Engineers, NAVSTAR Gobal
Positioning System Surveying, American Society of Civil
Engineers Press, 2000

[7] FAT File System: The Story Behind Innovation,
available at http://web.archive.org/web/
20040214211109/http://www.microsoft.com/
mscorp/ip/tech/fathist.asp

[8] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A.
Srinivasan, Y. Wu, W. Kang, J. Stankovic, D. Young &
J. Porter, LUSTER: wireless sensor network for environ-
mental research, Sensys (2007)

[9] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J.-H.
Growdon, M. Welsh, P. Bonato, Analysis of Feature
Space for Monitoring Persons with Parkinson’s Disease
With Application to a Wireless Wearable Sensor Sys-
tem,Engineering in Medicine and Biology Society, 2007.
EMBS 2007. 29th Annual International Conference of
the IEEE, pp.6290-6293, 22-26 Aug. 2007.

[10] J. Polastre, R. Szewczyk, and D. Culler Telos: Enabling
Ultra-Low Power Wireless Research, IPSN 2005.

[11] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer, and D. Culler, . TinyOS: An Operating System
for wireless Sensor networks. In Ambient Intelligence,
Springer-Verlag, 2005.

[12] MSP430x1xx Family User’s Guide (2006), focus.ti.
com/lit/ug/slau049f/slau049f.pdf

[13] L. Selavo, G. Zhou, and J.A. Stankovic, SeeMote: In-
Situ Visualization and Logging Device for Wireless Sen-
sor Networks, Broadnets, 2006.

[14] SanDisk Secure Digital Card, Product Manual, Version
1.9, Document No. 80-13-00169, December 2003 avail-
able at http://www.cs.ucr.edu/˜amitra/sdcard/
ProdManualSDCardv1.9.pdf

