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Embedded system development aims at optimizing resource usage including stor-
age, processing and energy. Compiling on the target platform meets none of these
constraints. We introduce Buildroot for efficiently cross-compiling a GNU/Linux
system, emphasizing on the performance benefits of the dedicated toolchain.

Platforms currently qualified as embedded – Raspberry Pi, Beagle Bone, Redpitaya, PlutoSDR, STM32MP157 and
others – provide much more computational power than most personal computers from a few years ago. Rather than
promoting the use of these devices as general purpose computers executing binary distributions whose performance are
limited by the least powerful supported platform, we promote the optimization of performances by generating a dedi-
cated cross-compilation toolchain, kerrnel, bootloader and userspace applications using the Buildroot [1, 2] framework.
In order to demonstrate how powerful this approach is, we will execute GNU Radio – digital signal processing libraries
compatible with real time processing of radiofrequency signals requiring compliance with a multitude of dependencies
– on various embedded ARM-core platforms. This document supports the presentation shared during the 2021 FOSDEM
edition [3].

1 Introduction

GNU Radio is part of the signal processing frameworks considered as very challenging to manually compile due to the
many dependencies, and most significantly when targeting a board whose processor is a different architecture than the
host (usually a personal computer fitted with an x86-compatible processor). Several solutions are available, ranging from
a script attempting to automate the compilation process (which became obsolete when GNU Radio shifted to version
3.8 during mid-2019) to PyBOMBS (good luck with cross-compiling). Out of frustration, many users will end up with one
or both of the two solutions conflicting with the principles of embedded system development (Fig. 1): using a binary
distribution such as Raspbian [4] (now called Raspberry Pi OS which seems strange since it appears as a port of Debian
to ARM dedicated to Raspberry boards and not a dedicated “OS”) when it exists, with the performance losses associated
with a unique distribution targeted to a whole range of platforms, or compiling on the target, assuming a sufficient
storage space to hold the compiler and the development libraries (try compiling GNU Radio on the 32 MB storage space
of the PlutoSDR).

Figure 1: Raspberry Pi 4 fitted with communication interfaces (Ethernet, USB) powered through its USB-C connector
from a wall power adapter, receiving the radiofrequency datastream from a R820T2 based DVB-T receiver.

Why claim that a general purpose binary distribution is unsuitable for an embedded system? The answer is obvious
with older versions of Raspbian which were to run on all versions of the Raspberry Pi (RPi) single board computers
and hence had to adapt to the least common denominator, namely the 32-bit cores of the models prior to RPi 3. The
situation is somewhat improving with the test version supporting 64-bit instructions, but the solution remains far
from optimal, most significantly with the lacking support for the SIMD (Single Instruction Multiple Data) instruc-
tion set provided by the NEON extension on ARM processors. Let us consider VOLK (Vector-Optimized Library of
Kernels) which is intensively used by GNU Radio to optimize computations on vectors by using SIMD instructions
(for those to whom vector calculation and SIMD do not mean much: think CRAY[5]). When installing VOLK, an
optimization step aimed at selecting the fastest means of completing various processing sequences is saved with
volk_config. Obviously this tool can only test instructions supported by the compiler. We compare a few results
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Table 1: Execution duration of various VOLK functions depending on the configuration when executing volk_config.
From left to right, a Buildroot image and its libvolk2.0.0 with the processor saving energy (600 MHz), with the processor
in performance mode running at 1500 MHz, a 64-bit Raspbian distribution and Ubuntu 20.10 with libvolk 2.3.0-3.

Buildroot, powersave Buildroot, performance Raspbian, ondemand Ubuntu 20.10, ondemand
volk_64u_popcntpuppet_64uu volk_64u_popcntpuppet_64u volk_64u_popcntpuppet_64u volk_64u_popcntpuppet_64u

generic completed in 7103.62 ms generic completed in 3089.73 ms no architectures to test generic completed in 1256.07 ms
neon completed in 4038.24 ms neon completed in 1897.77 ms neon completed in 1329.41 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic

volk_64u_popcntpuppet_64u volk_64u_popcntpuppet_64u volk_64u_popcntpuppet_64u volk_64u_popcntpuppet_64u
generic completed in 7154.26 ms redgeneric completed in 3157.41 ms no architectures to test generic completed in 1271.43 ms

neon completed in 4106.08 ms neon completed in 2081.84 ms neon completed in 1594.87 ms
Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic

Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic
volk_16ic_deinterleave_real_8i volk_16ic_deinterleave_real_8i volk_16ic_deinterleave_real_8i volk_16ic_deinterleave_real_8i

generic completed in 1745.19 ms generic completed in 697.845 ms generic completed in 420.678ms generic completed in 390.322 ms
neon completed in 254.155 ms neon completed in 105.462 ms u_orc completed in 391.035ms neon completed in 121.945 ms

Best aligned arch: neon Best aligned arch: neon Best aligned arch: u_orc Best aligned arch: neon
Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: u_orc Best unaligned arch: neon

volk_16ic_s32f_deinterleave_32f_x2 volk_16ic_s32f_deinterleave_32f_x2 volk_16ic_s32f_deinterleave_32f_x2 volk_16ic_s32f_deinterleave_32f_x2
generic completed in 2258.27 ms generic completed in 2185.24 ms generic completed in 2211.99ms generic completed in 2125.54 ms

neon completed in 1274.83 ms neon completed in 728.173 ms u_orc completed in 4766.13ms neon completed in 687.01 ms
Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic Best aligned arch: neon

Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic Best unaligned arch: neon
volk_16i_s32f_convert_32f volk_16i_s32f_convert_32f volk_16i_s32f_convert_32f volk_16i_s32f_convert_32f

generic completed in 2181 ms generic completed in 870.3 ms generic completed in 749.928ms generic completed in 530.426 ms
neon completed in 697.446 ms neon completed in 310.137 ms a_generic completed in 750.233ms neon completed in 298.812 ms

a_generic completed in 2181.02 ms a_generic completed in 870.304 ms a_generic completed in 531.097 ms
Best aligned arch: neon Best aligned arch: neon Best aligned arch: generic Best aligned arch: neon

Best unaligned arch: neon Best unaligned arch: neon Best unaligned arch: generic Best unaligned arch: neon
volk_16i_convert_8i volk_16i_convert_8i volk_16i_convert_8i volk_16i_convert_8i

generic completed in 1745.56 ms generic completed in 696.289 ms generic completed in 457.922ms generic completed in 462.959 ms
neon completed in 134.038 ms neon completed in 75.7975 ms a_generic completed in 458.445ms neon completed in 66.5504 ms

a_generic completed in 1745.59 ms a_generic completed in 696.28 ms Best aligned arch: generic Best aligned arch: neon
Best aligned arch: neon Best aligned arch: neon Best unaligned arch: generic Best unaligned arch: neon

volk_32f_cos_32f volk_32f_cos_32f volk_32f_cos_32f volk_32f_cos_32f
generic_fast completed in 51036.2 ms generic_fast completed in 19325.9 ms generic_fast completed in 22240.9ms generic_fast completed in 18609.7 ms

generic completed in 13673.1 ms generic completed in 4678.62 ms generic completed in 5470.72ms generic completed in 4150.04 ms
neon completed in 2637.33 ms

Best aligned arch: generic Best aligned arch: generic Best aligned arch: generic Best aligned arch: neon
Best unaligned arch: generic Best unaligned arch: generic Best unaligned arch: generic Best unaligned arch: neon

provided by volk_config runnong on Raspbian (64 bit version downloaded May 27, 2020), Buildroot (git version
from Aug. 2020 with volk 2.0.0) [6] and Ubuntu 20.10 with volk 2.3.0-3. Notice that both Raspbian and Ubuntu de-
fault selection for the processor mode is ondemand, selecting the slower 600 MHz clock frequency (as stated in
/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq) in sleep mode to speed up to 1500 MHz when
loaded during calculation, whereas Buildroot keeps the processor in powersave mode which keeps the clock at
600 MHz. For a realistic comparison, we set the processor during the Buildroot benchmarking to performance
mode keeping the clock frequency at 1500 MHz. Whereas Ubuntu is doing a fine job in the speed test and might
provide a relevant solution, try fitting a general purpose distribution in the 32 MB non-volatile storage of a Plu-
toSDR !

The table 1, summarizing some of the analysis of the results of VOLK obtained with volk_config on a system gen-
erated with Buildroot with the default powersave energy saving configuration (processor clocked at 600 MHz), then
performance (clocked at 1500 MHz) and with a 64 bit Raspbian system (processor clocked with ondemand rules reach-
ing 1500 MHz when configuring VOLK, binary image named 2020-05-27-raspios-buster-arm64.img) displays the
execution durations of some of the main functions. The chart only emphasizes in bold letters the name of the function,
in green when the SIMD instructions of the NEON processor are used, and in red when the generic ARM instructions of
the processor are used. Even in a mode saving energy when the processor speed is reduced, using NEON instructions
leads to shorter execution durations than the same function executed with generic instructions on a Raspbian system
running the processor at its fastest speed.

We observe on this chart that

1. Raspbian is not aware of NEON instructions and hence cannot benefit obviously (2 top lines),

2. in all cases when the generic method compares with the NEON implementation, the execution duration gain is
unquestionable (4 middle lines) with improvements ranging from 3 to 9
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3. when the generic method is selected (bottom lines), Buildroot performance is comparable to that of Raspbian
within measurement uncertainty

4. Ubuntu 20.10 in which we installed sudo apt-get install libvolk2-dev performs by far best in all speed test
during volk_profile ! Nevertheless, this distribution is 3 GB-large on an SD card providing a Desktop environ-
ment does not meet the requirements of embedded system development (e.g. 32 MB of non-volatile memory of
the PlutoSDR).

For all these reasons, we will address here the use of Buildroot to generate the tools needed to develop on the embedded
target, and illustrate how powerful the framework is with the particular case of GNU Radio which was added as part of
the supported packages.

The obsession with SIMD instruction support simply results from the fact that most problems can be expressed,
possibly under some assumption, as linear algebra problems handling matrix and vector operations, and that handling
vector means applying the same operation (Single Instruction) on each element of the vector (Multiple Data). Hardware
implementation of these operations, by sharing a pointer to the memory area holding the data and applying the same
computation on all adjacent elements of the array, considerably reduces execution time as we have just seen.

Buildroot v.s OpenEmbedded/Yocto
One of the very active members of the GNU Radio developer mailing list – Philip Balister – is also an OpenEmbedded/Y-
octo developer (https://github.com/balister/meta-sdr). The question is thus open as to why promote Buildroot
when GNU Radio is supported by the OpenEmbedded/Yocto framework. The fundamental philosophical difference
between OpenEmbedded/Yocto and Buildroot lies in the concept of distribution. OpenEmbedded/Yocto compiles ev-
erything, wraps the resulting executable as binary packages, holding a significant disk space (80 GB) and requiring a
significant compilation time. The benefit at the end is a set of packages that users clueless of embedded system de-
velopment methods can deploy. On the opposite, Buildroot generates a single binary image including only the needed
applications, requiring for the whole process a much lower storage space of about 8 GB. However, a new image must be
generated again every time the list of software is updated. The two philosophies hence diverge in their objectives, with
Buildroot providing a solution tailored to a well defined application, whereas OpenEmbedded/Yocto generate a general
purpose distribution applicable to a whole range of projects. In the context of teaching embedded system development
to student class, using the Buildroot framework might be questionable considering the heterogeneous requirements of
each student, but for a well defined target the benefit of Buildroot is unquestionable.

Let us emphasize on how general the proposed approach is: we will not develop here for the PlutoSDR which is also
supported with this framework, but will demonstrate the cross-compilation toolchain method on the RPi (3 and 4 with
their 64 bit core supporting the NEON instruction set) and the ST Microelectronics STM32MP157 which, despite much
lower computational resources, is provided with a screen allowing to demonstrate some graphical user interface display
on an embedded system. In the case of RPi, the demonstration will focus on acquiring signals on the embedded board
(e.g. gr-acars to receiver messages transmitted by planes) either for onboard processing or transfer to the host PC
following some pre-processing on the embedded platform as illustrated by sending the audiofrequency signal resulting
from commercial broadcast FM demodulation.

2 Concepts and getting started with Buildroot

Before getting started with Buildroot, understanding the underlying philosophy might be useful. Buildroot is a cross-
compilation framework – so that working on a powerful host, most usually and Intel x86 based PC, to generate binary
files for an embedded target with limited resource, most usually an ARM processor but possibly also PowerPC or RISC-V
– that provides a consistent set of compilers for the host, as well as for the target a bootloader, usually uboot, a kernel
(Linux), libraries and userspace libraries (rootfs).

We use here the common naming convention that will be used throughout this presentation: the host is the powerful
computer we work with, the target is the embedded board with limited resources. As opposed to binary distributions
(Debian or Raspbian on RPi, Suse, Redhat ...) or to the cross-compilation frameworks OpenEmbedded and Yocto which
generate a set of binary packages to be installed, Buildroot only compiles the selected applications and concludes its
compilation with a unique image including all the tools needed to start and execute the embedded platform. Adding
new functionalities is only possible by generating a complete new image.

This consistency avoids difficulties often met when compiling applications or kernel modules on the host for a target
while never compiling on the target with limited resources whos aim is to control an embedded system and not to be
running a compiler as greedy in computational resources and complex as gcc.

The Buildroot tree structure appears impressive at first sight. Let us just briefly describe the architecture by mention-
ing that directories:

• all files produced by Buildroot are located in output. Thus, deleting output brings Buildroot back to its initial
state (except for the .config configuration file),
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• all files to be executed on the host (PC usually) are located in output/host – no need hence to try and execute a
file copied from this directory on the target,

• all files to be executed on the target are stored in output/target – no need hence to try and execute a file from
this directory on the host computer,

• the configs directory holds the default configuration for many platforms, for example
raspberrypi4_64_defconfig for the RPi 4 supporting its 64 bit instruction set, raspberrypi3_64_defconfig
for the RPi 3 supporting its 64 bit instruction set, or stm32mp157c_dk2_defconfig for the STM32MP1. These con-
figurations are used by running make raspberrypi4_64_defconfig in the root directory of Buildroot (obviously
adapt the selected defconfig for the appropriate target),

• the package directory holds the description of all applications supported by Buildroot.

Buildroot is intuitively configurable using a sequence of command line menus launched with make menuconfig.
Having selected the configuration options, make generates in output/images the result of the compilation, namely the
image (sdcard.img) ready to be transfered to the SD card, the kernel Image), the filesystem (rootfs.ext4), the image
of the partition holding the bootloader boot.fat) and the devicetree describing the hardware configuration (*.dtb),
with all these files accessible independently, most useful when executing in qemu as will be discussed in section 10.

Adding packages to Buildroot is the most interesting part but being already very well documented at https://
buildroot.org/downloads/manual/manual.html#adding-packages, let us only mention here that we have met
many problems related to the handling (or lack of ...) dependencies. We postpone to section 12 a detailed descrip-
tion of these issues to only warn here about the risks of incrementally adding functionalities which induce dependencies
in packages already compiled which will not be updated unless the command make mypackage-reconfigure with
mypackage the name, found in output/build, of the dependance to be reconfigured following the addition of the func-
tionality with make menuconfig. This issue is discussed in https://buildroot.org/downloads/manual/manual.
html#full-rebuild: “if this package is a library that can optionally be used by packages that have already been built,
Buildroot will not automatically rebuild those” ...

The case of the Linux kernel
Running make linux-reconfigure will overwrite the configuration selected with make linux-menuconfig and re-
place with the default Buildroot configuration. In this case, make linux-rebuild should be used. This is true for all
meta-packages that can be configured, including Busybox and uBoot.

When first compiled, Buildroot will download all archives and store them in the dl directory. Subsequent compilation
will hence be accelerated by avoiding the data transfer step, or even allow for compiling Buildroot when Internet con-
nection is lacking. If multiple Buildroot are running on the same host, the shell variable BR2_DL_DIR tells all the copies
of Buildroot to store and fetch their archives in this directory: space and speed will benefit from sharing this resource.

Installing Buildroot on a RPi 4, as described athttps://github.com/buildroot/buildroot/tree/master/board/
raspberrypi but this web page documentation is not up to date (?!), requires:

1. git clone https://github.com/buildroot/buildroot

2. cd buildroot

3. make raspberrypi4_64_defconfig

which fetches the Buildroot archive, configures for a 64-bit RPi 4 (for the RPi 3, select
raspberrypi3_64_defconfig). The case of the STM32MP157 is addressed in detail at àhttps://bootlin.com/blog/
building-a-linux-system-for-the-stm32mp1-basic-system/ and will be discussed later.

The ideal teaching approach would have been to progressively add functionalities to Buildroot by starting from a
basic system and adding one by one features. However, when trying this approach we realised that Buildroot is unable to
detect inconsistencies between package dependencies is the configuration is dynamically modified during the generation
of the image. This limitation is introduced by the use of Kconfig for handling configurations, as do Linux, NuttX or
Zephyr. Thus, if GNU Radio has been activated but hardware support (UHD, OsmoSDR) or graphical interfaces (Qt5)
have been forgotten, it is just not possible to activate these functionalities and re-generate a new image. GNU Radio
must be reconfigured (make gnuradio-reconfigure) after activating the new functionalities so that Buildroot decides
to recompile GNU Radio with the new dependances.

We must hence when each new functionality is added remember to make clean prior to make which will recre-
ate the content of output, lengthy and painful operation but mandatory to avoid reaching hardly understandable and
inextricable errors due to missing dependencies. For the impatient, a configuration file activating all the GNU Radio de-
pendencies for activating hardware support of RTL-SDR DVB-T receivers is provided at https://github.com/oscimp/
PlutoSDR/tree/master/configs/raspberrypi4_64_gnuradio_defconfig (RPi 4) orhttps://github.com/oscimp/
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PlutoSDR/tree/master/configs/raspberrypi3_64_gnuradio_defconfig (RPi 3) to be stored in the configs di-
rectory of Buildroot and running the appropriate rule to configure Buildroot. In this case, make should be enough follow-
ing this configuration step to generate a functional image without manually activating all the options described below
since already included in the configuration file.

The remainder of this section describes the manual steps to reach the configuration described above. Since Python
support for GNU Radio is mandatory and requires the glibc library instead of the default uClibc, we modify the initial
configuration with

4. make menuconfig

5. Toolchain → C library (uClibc-ng) → glibc

6. Activer Enable C++ support

7. Exit

Once the appropriate library implementation has been selected

7. make

compiles all the tools. This operations will last about 40 minutes on a 8-core Xeon processor clocked at 2.33 GHz with a
fast Internet connexion, and will use about 7.4 GB storage space.

At the end of the compilation, we find in output/images the file sdcard.img to be transfered to the uSD card in
order to execute its content on the RPi. Here, “transfering” does not mean copying since we must write each and every
byte of the .img file on the mass storage medium. This operation is handled on GNU/Linux with the tool dd.

The following line might definitely damage the hard disk content if the wrong peripheral is selected. Alway check
the name of the peripheral associated with the SD card (dmesg & tail) before running the dd command.

The image resulting from the compilation is transfered to the SD card with

sudo dd if=output/images/sdcard.img of=/dev/sdc
where we have on purpose selected the peripheral name /dev/sdc in this example since it is hardly ever used: most
commonly, the SD card will be called /dev/sdb (second SCSI compatible hard disk on Linux) or /dev/mmcblk0 (if an
internad SD card reader is used.

If a file manager or a desktop window manager is used, make sure that the SD card has not been automagically
handled and mounted by such tools (eject) which might overwise interfere with dd and corrupt the transfer process.

Warning: we repeat that the content of the SD card, or any other storage support pointed to by the last argument
of this command, will be definitely lost. Check twice (no, three times) the name of the target peripheral on which the
Buildroot image will be transfered.

Once the image has been transfered to the SD card, we can find there two partitions: the first one formated as VFAT
(compatible with Microsoft Windows) holding the devicetree, the Linux kernel and the bootloader, while the second one
holds the GNU/Linux (rootfs) filesystem.

Notice that the platform configuration thus generated is saved in the .config file which can be saved by using
make savedefconfig which overwrites the original defconfig in configs (which can obviously be recovered with
git checkout). This method was used to generate the *gnuradio_defconfigs mentioned above. Furthermore, all
the commands we have discussed so far only impact Buildroot, its compilation toolchain and its packages. In order to
configure the Linux kernel and its device drivers, the command make linux-menuconfig opens the kernel configura-
tion menu, found in output/build/linux-*, useful to locate the kernel sources when compiling one’s custom kernel
modules.

3 GNU Radio with Python3 and OsmoSDR

This lengthy description of the concept of packages at the beginning of this text aimed at introducing the fact that will
shall not be able to progressively add functionalities to Buildroot. Adding GNU Radio support implies many steps, which
must all be completed durint this configuration step if we wish to avoid package dependency corruption.

We will at first assume that the user wants to collect radiofrequency samples using a R820T2 frontend and RTL2832
analog to digital converter and USB transceiver digital video broadcast (DVB-T) receiver, but not display the graphical
result in order to make the compilation duration and resulting image size lighter by only executing command line pro-
cessing chains generated with GNU Radio Companion set in No GUI in its Options → Generate Options. We must now
activate the necessary packages. To do so, we execute in the root directory of Buildroot the command make menuconfig
and select Target packages. Remember that searching (“/” as would be done with vi) allows to easily locate the place
where a package is stored, for example for GNU Radio:
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1. make menuconfig

2. /eudev

3. Select the last option indicated withBR2_ROOTFS_DEVICE_CREATION_DYNAMIC_EUDEV and replace/dev management
with Dynamic using devtmpfs + eudev

4. /python3

5. Select option (4) indicated with BR2_PACKAGE_PYTHON3

6. /gnuradio

7. Select option (1) indicated with BR2_PACKAGE_GNURADIO

8. Select additional GNU Radio options depending on the needs (we shall use gr-zeromq support and python
support)

9. /osmosdr

10. Select BR2_PACKAGE_GR_OSMOSDR (with Python support and Osmocom RTLSDR support)

The first option is needed to dynamically generate the entry point to the radiofrequency receiver on the USB bus, the sec-
ond activates Python3 support, the third GNU Radio, and the fourth the DVB-T receiver support. Once this configuration
has been completed, make will generate a functional image. The resulting file will be about 500 MB large, requiring the
increase of the available size in .config with BR2_TARGET_ROOTFS_EXT2_SIZE="520M" or, better, to define with make
menuconfig the option Filesystem Images→ exact size.

At the end of the image generation, proper operation of GNU Radio is validated by connecting to the RPi 4 (ssh) and,
after getting the Python3 prompt, by running import gnuradio which must return the prompt with no error message.

4 Ettus Research B210 support

The DVB-T receiver is a low cost solution for getting started with software defined radio processing but only provides a
restricted sampling bandwidth and working with carrier frequencies up to 1.6 GHz. Ettus Research hardware exhibits
must better performance (but are far more expensive), able to operate up to 6 GHz including the 2.4 GHz Industrial,
Scientific and Medical (ISM) band (and hence most digital communication modes such as Wi-Fi, Bluetooth, Zigbee ...)
and most significantly to fully use the USB3 bandwidth as provided by the RPi 4 to increase the acquisition sampling
rate limited by the communication speed. The various USRP (Universal Software Radio Peripheral) plateforms sold
by Ettus Research are controled by a unique library called USRP Hardware Driver or libuhd. This library is now sup-
ported in Buildroot, but still requires manually downloading the (firmware) images to configure the embedded FPGA.
If the embedded platform is connected to the Internet, then the uhd_images_downloader Python script, provided by
uhd-utils, will download the binary files matching the libuhd version and store them in /usr/share/uhd/images.
Here again if libuhd is added after an image had been generated, any dependency error on mypackage will be solved
by running make mypackage-reconfigure, for example to solve the missing dependencies with boost. If the same
version of libuhd is installed on the host computer, we can execute uhd_images_downloader on the PC connected to
the Internet and copy the binary files to the target. Otherwise a last solution is to manually fetch the files at https:
//files.ettus.com/binaries/cache/ and store the images in the appropriate directory.

5 Adding external packages: BR2_EXTERNAL

Analog Devices is selling the PlutoSDR platform for about one hundred euros with performances close to those found in
the hardware developed by Ettus Research (but communicating over a USB2 bus limiting the data transfer bandwidth).
Support for this platform is not integrated in the official Buildroot version, Analog Devices having selected to fork the
Buildroot repository to integrate its own updates at https://github.com/analogdevicesinc/buildroot. This solu-
tion makes long term maintenance challenging since Analog Devices must regularly synchronize its repository with the
official version and manually handle divergences between the two archives, and on the other hand prevents users from
quickly benefiting from Buildroot upgrades between two re-synchronizations. Adding external functionalities to a given
Buildroot version appears as a better solution as will be described below.

So far we have only workded with “official” Buildroot packages maintained by the Buildroot developer community.
Some of these pacakages are not yet integrated in the official repository but can still be included in the on-going instal-
lation thanks to the BR2_EXTERNAL mechanism. One such example is the PlutoSDR support thanks to gr-iio, which
is provided in the BR2_EXTERNAL repository at https://github.com/oscimp/PlutoSDR and more specifically in the
for_next branch. Hence, after leaving the Buildroot directory to create a new tree structure:
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1. git clone https://github.com/oscimp/PlutoSDR

2. cd PlutoSDR

3. git checkout for_next

4. source sourceme.ggm

The BR2_EXTERNAL approach is an interesting solution as long as the users wish to store their own custom configuration,
whether for a dedicated project or to avoid, as was the case in the beginning of this article, manually copying configu-
ration files, as well as package under development and integration. In the latter case, this solution is not the end of the
story. If a package integration is validated, it is important to share it with the developer community in order to try and
include in the official repository. Indeed, if some users have met the need for this package, it might not be impossible
that this would be the case for others as well. This process is in progress for libuhd and gnss-sdr.

Now that the BR2_EXTERNAL repository has been downloaded, the appropriate branch selected and the environment
variables set (last command), return to the Buildroot root directory andmake menuconfig. Executingmake menuconfig
now opens the access to a new menu External options including gr-iio, libad9361-iio or gnss-sdr.

In order to add the support for transfering data from the PlutoSDR to GNU Radio, select in External options the
gr-iio option. In order to add support for the Ettus Research USRP platforms, select in External options the uhd
package, and for the particular case of the B210, set the b200 support option as well as python API support.

We will furthermore tune the configuration prior to dd the image on the SD card by adding files in the output/target
tree structure, for example the static network configuration inetc/network/interfaces, or copying the USRP firmware
files from the host PC to the usr/share/uhd/images subdirectory of output/target so that these files are later avail-
able on the embedded target. Once the output/target content has been satisfactorily tuned, return to the Buildroot
root directory and run make to regenerate the file
output/images/sdcard.img.

6 GNU Radio on Raspberry Pi 3/4

In order to demonstrate how we shall address using GNU Radio on embedded boards, we use GNU Radio Companion
running on the host PC to generate a command line application (“No GUI”) since obviously no graphical interface should
be available on an embedded target. The resulting Python3 script will be executed on the RPi. The audiofrequency
stream resulting from demodulating commercial broadcast FM band signals will be transmitted to the PC to be played
on its sound card.
Sound on the Raspberry Pi 4
We hesistate as to what the simplest demonstration is, between using the PC sound card after transfering the audiofre-
quency stream resulting from the demodulation on the RPi 4 which assumes a properly configured TCP/IP interface for
transfering data (which is anyway needed to transfer the Python script from the PC to the RPi 4), or emitting the sound
from the 3.5 mm audio jack of the RPi 4 before addressing the network configuration. The reader willing to test the latter
solution can

1. activate the sound on the Buildroot image by editing in the first partition of the SD card the config.txt file to add
the option dtparam=audio=on. During the next boot sequence, the message bcm2835_audio bcm2835_audio:
card created with 8 channels will display,

2. validate proper sound card operation by activating speaker-test of the alsa-utils package in Target
packages→ Audio and video applications and executing speaker-test -t sine -f 440 to play a 440 Hz
tone on the speaker output

3. validate that the sound card is properly selected by GNU Radio with the following trivial processing chain on the
left, noticing that two audio inputs must be connected,

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

outfreq

Signal Source

Sample Rate: 48k

Waveform: Cosine

Frequency: 440

Amplitude: 900m

Offset: 0

Initial Phase (Radians): 0

in0

in1

Audio Sink

Sample Rate: 48k

−→

samp_rate=48000*24

cutoff=samp_rate/12

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4
in0

in1

Audio Sink

Sample Rate: 48k

outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 36k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 40

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

Generating the Python script and transfering to the RPi 4 for executing are described in the text,

4. extend the processung chain on the left with an Osmocom source and FM demodulation after selecting, thanks to
a low pass filter, a single broadcast station and play the resulting sound output.
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On the PC, launch GNU Radio Companion (provided by GNU Radio 3.8) and generate the processing chain of Fig. 2

48000*24

input rate=samp_rate/6

cutoff=samp_rate/12

Adapt IP @ to you embedded
board network configuration

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 48k

Window: Hamming

Beta: 6.76

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

ZMQ PUB Sink

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

Figure 2: Command line processing chain to acquire and demodulate a broadcast commercial FM station in order to
send the audio stream to a PC.

The resulting Python script is tranfered to the RPi. Make sure to adapt the IP address of the TCP link on the 0-MQ
interface to the RPi address: the server is running on the embedded platform and using a Publish-Subscribe communi-
cation link (similar to a UDP broadcast), so that any client connecting to the server running on the embedded target can
fetch the datastream. The IP address is ideally included in the PC subnet address to ease routing configuration, whereas
the port index can be any number above 1024. The only constrain on this processing chain is at the end to reach a sam-
pling rate equal to that of the PC sound card (here 48 kHz) following the successive integer decimation factors of the
inital sampling rate set to 48 kS/s. The first low pass filter selects a single broadcast FM station while still keeping enough
bandwidth (≥200 kHz) for properly demodulating the Wide Band FM signal, and the FM demodulator adds the second
decimation step.

7 Communicating from the Raspberry Pi to the PC

After processing the raw radiofrequency data (I/Q) acquired in the commercial broadcast FM band by the RPi, and having
pre-processed the FM signal on the embedded platform, the audio stream is transfered to the PC through a 0-MQ inter-
face. This layer on top of TCP/IP (https://rfc.zeromq.org/spec/13/) offers two communication modes, connected
as would TCP and non-connected as would UDP. In the former case, data transfer is guaranteed and acknowledged by
the receiver, while in the latter case the server only broadcasts data over the network and a client might grab them for
processing, otherwise they will be lost and acquisition continues on the server independently of the communication
with a client. This second mode is the one used here, called Publish (RPi server) - Subscribe (PC client).

The RPi network interface is configured on the same sub-network than the PC, and we fill the server address to the
IP address of the Ethernet interface of the RPi (and not 127.0.0.1) so as to listen to any incoming connection from the PC,
for example with tcp://192.168.0.42:5555. Thus, the PC will connect its Subscribe client to this same address and
collect the datastream (Fig. 3).

This result may seem trivial, but it shows a fundamental concept of the reception of radiofrequency signals: the suc-
cessive processing steps can only lose information, and as Shannon explained [7] the information content is directly
related to the signal bandwidth. Reducing the information content of the signal as successive demodulations steps are
applied can only remove information (the redundancy introduced by FM modulation for example) and thus reducing
the spectral bandwidth of the signal, thus the datarate needed to transfer. This explains why in a Software Defined Radio
(SDR) receiver we strive to pre-process the acquired signal as much as possible in the FPGA that acquires the radiofre-
quency signal stream following the frequency transposition to baseband to reach a datarate compatible with commu-
nication with the general purpose processor. This general purpose processor performs as many pre-processing steps as
possible – here low-pass filtering to only select a single FM station and signal demodulation – before communicating
to the next destination, here the PC which will be used as sound card and connected by Ethernet through of Zero-MQ
protocol. The subtle tradeoff will always be to process as much as possible upstream in order to reduce the bandwidth
required to transmit to the next unit, and the complexity of implementing this processing or the available resources.
Close to the receiver, we are satisfied with simple processing steps (because challenging to implement in the FPGA such
as the PL of a Zynq) but excessively fast, whose output is transfered to the local processor (for example the Zynq PS) for
further processing limited by the relatively modest computational power of its dual Cortex-A9, before transfer to the PC
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IP is the embedded board
network address

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

Audio Sink

Sample Rate: 48k

ZMQ SUB Source

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

Figure 3: Left: processing chain on the client, which receives a stream in the 0-MQ subscribe format and feeds the PC
sound card. Right: experimental setup, with an RPi 4 connected via a virtual serial port and Ethernet to the laptop. The
RPi 4 samples the I/Q coefficient flow of the DVB-T receiver as a software defined radio source by tuning its frequency to
the broadcast commercial FM band, and transmits the audio-frequency stream after demodulation to the PC, allowing
to listen to the station output using a headset connected to the sound card output. This figure does not illustrate the
excellent audio quality heard at the sound card output, demonstrating how well this setup works.

through the relatively slow communication bus (by the standards of software defined radio) USB2, a PC with a powerful
processor that will finalize the processing. In this example, we start from a signal sampled by the RTL-SDR receiver at
a multiple of 48 kHz, here the 24×48 kHz complex 8 bit samples would require 48000×24×2 ' 2.3 MB/s bandwidth to
be transmitted to the next processing platform. By demodulating the FM signal on the Raspberry Pi, we reduce the data
flow to a few real floating point numbers encoded on 32 bits at a datarate of 48 ksamples/s or 192 kB/s. The benefit in
terms of bandwidth is therefore obvious, and promotes handling as much pre-processing as possible on the embedded
board, depending on the available computing power, prior to communicating.

8 Graphical interface on the Raspberry Pi 3/4: Qt5

It might sometimes be interesting to develop a fully autonomous application that does not require a computer associated
with the RPi. Since the RPi 4 is fitted with a micro-HDMI port, a graphical output can be considered. In order not to
impose the burden of X11, it seems relevant to directly communicate with the video memory through the framebuffer.

Qt5 support requires very large resources and its relevance should be carefuly considered before starting this compi-
lation. Activating Qt5 support is achieved by selecting

1. BR2_PACKAGE_QT5

2. BR2_PACKAGE_PYTHON3

3. BR2_PACKAGE_GNURADIO_PYTHON

4. BR2_PACKAGE_GNURADIO_QTGUI

5. BR2_PACKAGE_LIBERATION

• the package qt5 should be displayed from the beginning since glibc has been selected instead of uClibc.

• considering the modifications to the gnuradio options (activation of python et qtgui), restarting the compilation
procedure with make gnuradio-reconfigure is mandatory
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• the liberation package must be manually activated since no font is present in the default configuration.

Once the resulting image has been transfered to the SD card and executed on the RPi 3 or 4, a Qt5 GNU Radio appli-
cation can be executed (here on an RPi 4) with python3 ./rpi.py -platform linuxfb:fb=/dev/fb0 to output on a
screen the graphical display (Fig. 4).

The screenshot tools provided by Buildroot do not work with the framebuffer of the RPi 4. The various figures of this arti-
cle were acquired by copying directly the content from the framebuffer memory to a file cat /dev/fb0 > screen.raw
and converting the pixel sequence blue, green, red and transparency to a more common compressed format with
convert -size 1280x800 -depth 8 bgra:screen.raw outfile.png by being careful to tune the image resolution
to that of the screen connected to the micro-HDMI port of the RPi 4.

cadencement du flux

filtre à caractériser

Options

Title: Not titled yet

Output Language: Python
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Transition Width: 3.2k
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Figure 4: Qt5 application executed on a RPi 4 illustrating the graphical output resulting from the GNU Radio processing
chain allowing to characterize the transfer function of a low pass filter.

9 Software developments

Thanks to the cross-compilation toolchain provided by Buildroot, generating an executable for our embedded target triv-
ialy requires adding the aarch64-buildroot-linux-gnu-gcc compiler found in output/host/usr/bin of the Build-
root directory to the PATH, and using this compiler as variable of CC in the Makefile. As an example of using PiFM to emit
a radiofrequency signal from the GPIO4 output of an RPi 4, we download https://github.com/ChristopheJacquet/
PiFmRds, update the Makefile in src which assumes being executed on the embedded target (never !) by defining
CC = aarch64-buildroot-linux-gnu-gcc and RPI_VERSION := 4 followed by make to generate pi_fm_rds which
is copied (scp) to the target board in order to execute. It is most entertaining to use a DVB-T receiver running GNU Radio
demodulating the FM signal to receive the signal broadcast from the embedded target running PiFM: both applications
get along perfectly.

Many software is however now provided by a Makefile generator named cmake which makes porting to various dis-
tributions and operating systems easier when compiling free opensource software to many platforms. Whether for mod-
ifying gnss-sdr with custom features or our own ACARS message decoder as transmitted from planes to ground (Fig.
5), understanding how to integrate cmake scripts in Buildroot is mandatory. In order to generate Makefiles able to cross-
compile a program to the target, we use

cmake -DCMAKE_INSTALL_PREFIX:PATH=$BR_RPI/output/target/usr \
-DCMAKE_TOOLCHAIN_FILE=$BR_RPI/output/host/share/buildroot/toolchainfile.cmake ../
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to use the Buildroot toolchain and store the compilation result in the image that will be ready to be transfered to the
microSD card. Alternately, we can compile to any output directory on the PC whose content will be copied (scp) to the
/usr directory of the embedded board if flashing the microSD card with a new image is not desirable.

We aim at updating the capabilities of gnss-sdr. The source code of this software, relying on GNU Radio, has been
downloaded and stored in the output/build directory when selected and installed. The source code in which the soft-
ware will be compiled for the embedded target is output/build/gnss-sdr-0.0.13/buildroot-build/ while a sep-
arate directory output/build/gnss-sdr-0.0.13/build allows for simultaneously testing modifications to the source
code on the host PC. The result of compiling (make), either in buildroot-build (ARM target) or build (x86 target), is
stored in src/main/gnss-sdr.

Figure 5: Executing gr-acars, ACARS message decoder, on RPi 4, and display as a background image the map of the
planes close to the receiver during acquisition.

10 Executing in qemu

Assume that we have not received the appropriate hardware but we still wish to train using Buildroot and the generated
binary files. The RPi 4 is too new to be integrated in QEmu, but the RPi 3 is claimed as functional. We hence install QEmu
emulating a 64 bit ARM processor (qemu-system-arm package for Debian/GNU Linux which is immediately comple-
mented with qemu-system-gui for adding the graphical interface emulation support) available through the executable
qemu-system-aarch64. Thus, with

qemu-system-aarch64 -kernel Image -dtb ./bcm2710-rpi-3-b.dtb \
-drive file=./sdcard.img,format=raw,if=sd,id=hd-root \
-append "rw earlycon=pl011,0x3f201000 console=ttyAMA0 loglevel=8 \
root=/dev/mmcblk0p2 fsck.repair=yes net.ifnames=0 rootwait memtest=1" \
-M raspi3 -m 1024 -serial mon:stdio -no-reboot

we execute the Image kernel which loads the hardware configuration bcm2710-rpi-3-b described in the devicetree,
read the filesystem available on the second partition of sdcard.img, running on an emulation of the RPi 3 (option -M
raspi3) fitted with 1 GB RAM.

In order to demonstrate that even the framebuffer can be emulated, Fig. 6 displays a screenshot of the simulation of
a low-pass filter characterization by GNU Radio.

Incredibly, qemu can even access hardware connected to the host. This aspect is illustrated with a DVB-T receiver
connected to the PC executing qemu emulating the RPi 3 (Fig. 7). Right, lsusb on the host (PC) indicates that the dongle
is detected on the bus X=1, address Y=14 with Vendor ID 0x0BDA and Product ID 0x2838 associated with the Realtek
2832U. Providing these parameters as arguments to the option -usb -device usbhost=X,hostaddr=Y, we observe
(left screen) that lsusb in qemu indeed detects the dongle. Executing a signal processing chain fed from the DVB-T thanks
to the Osmocom Source in GNU Radio (bottom right) in qemu leads to the peripheral being accessed and acquiring some
samples. Honnesty requires that we mention that this screenshot is the unique case, on a few tens of trials, when qemu
did not crash when gathering the datastream, whether attempting to limit the data acquisition to a few samples (head
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Figure 6: Executing in QEmu a GNU Radio signal processing chain with a Qt5 graphical output.

block used here) or by removing the graphical interface output. Transfering a USB stream from the USB bus emulation
is thus functional but unable to handle large datarates (a few Msamples/s), which does not take anything away from the
technical prowess of the RPi 3 emulation.

Figure 7: The qemu emulator collecting the datastream from a DVB-T dongle connected to the host USB port.

11 STM32MP157 graphical interface

The STM32MP1 is a processor designed and manufactured by ST Microelectronics fitted with a powerful ARM A7 proces-
sor able to run GNU/Linux, and small Cortex M4s dedicated to simpler tasks without the burden of running an operating
system. Our interest for this heterogeneous multiprocessor platform (HMP) lies in its capability of off-loading the main
processor by deporting some processing functions to the co-processors, assuming that communication time is not too
long and does not exceed the time saving in execution. Without focusing on raw computing power, this is an opportunity
to explore HMP without the development challenges of working with FPGA as met on a Zynq for example. The evaluation
board provided by ST Microelectronics named STM32MP157-DK2 has a screen and is therefore ideal for showing how
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the concepts presented so far are transposable to any platform supported by Buildroot.
Here again screenshots will be hindered by compatibility issues between the framebuffer implementation since

fbdump works properly (Fig. 8), but fbgrab does not.

USB-
RS232

Eth

souris
USB

alim.
USB C

Figure 8: Left: picture of the STM32MP157-DK2 executing GNU Radio to simulate the transfer function of a low-pass
filter. Right: screenshot of the graphical display of the STM32MP157-DK2 executing this processing chain with a Qt5
output.

12 Adding new packages

This description of packages is the most interesting and the one we focus on when adding support for new applications,
here GNU Radio and associated libraries.

Each package, whether a library or an application, can be considered as a recipe for

• describing the package and its relation to other packages (Config.in);

• describing which packages must be built before for generating a tree of dependencies and configuration options
applied during the compilation depending on the developer selections (.mk file).

The relations between packages are a core topic when generating the dependency tree. Two kinds of relations exist:

• depends on: when pkg1 depends on pkg2, meaning that pkg2 must be manually activated prior to allowing for
the selection of pkg1. For this reason, a user running make menuconfig might not see some of the packages
appear as long as the dependencies are not activated,
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• select: this relation is the easiest to use since activating pkg1 automatically selects pkg3 with no explicit action
to activate the latter.

Why use depends on instead of select? This choice depends on the situation: Python support in GNU Radio is
compatible with either Python2, or with Python3. However, Buildroot cannot decide which version to activate: the user
must select the active version during the configuration step. A second reason is that if pkg2 requires many dependencies
to be met, using select means that the whole set of these dependencies appear in the configuration of pkg1. This fact
hence does not restrict the presence of depends on but makes maintenance harder, since all modifications in pkg2must
be brought to pkg1.

Given the absence of the packages that are not yet visible due to of invalid dependencies, it is important to understand
and master the mechanism for searching that will display all the solutions matching a given keyword and will possibly
provide the solution to make this package appear in the menus. The search is activated, as under vi, by “/” followed by
the keyword.

This mechanism of dependencies is activated during the first compilation, but leads to issues during the evolution of
the configurations. Indeed, starting from the file _defconfig, we get a functional image, but with minimalist function-
alities offering only a few tools from busybox. Let us imagine that we now want to add GNU Radio: make menuconfig
and gnuradio allows to reach this reslut. However, we have forgotten to activate Python3 support and cannot execute
scripts that were generated by GNU Radio Companion. When activating Python3 and its support by GNU Radio, we
must reconfigure the latter through make gnuradio-reconfigure so that Python support is taken into account. In the
same way, this option is incompatible with the uClibc – a minimalist implementation of libc system calls – but need
to use the more complete version provided with glibc. This modification implies to recompile the whole toolchain and
everything that has been compiled with it: to avoid disaster, we might as well start all over again from the beginning by
deleting the content of the output directory with make clean and restart the entire Buildroot build process.

To conclude this discussion:

• if an option from the compilation toolchain is modified, the whole of Buildroot must be compiled again, starting
from a clean output directory,

• when modifying an option of package mypkg impacting its dependencies, this package must be reconfigured man-
uall using make mypkg-reconfigure. Depending on the impact of this update, recompiling the whole of Build-
root is sometimes easier.

We illustrate this procedure by adding a package, following the detailed description at http://buildroot.uclibc.
org/downloads/manual/manual.html#adding-packages [8], on the example cited earlier of gr-acars which de-
pends on GNU Radio. The files we must update to add this support are:

• the package/gr-acars/gr-acars.mk file which holds

GR_ACARS_VERSION=fd70b325906e02b758b89786a6470d05bfee0a67
GR_ACARS_SITE = https://git.code.sf.net/p/gr-acars/code
GR_ACARS_SITE_METHOD = git
GR_ACARS_SUPPORTS_IN_SOURCE_BUILD = NO
GR_ACARS_SUBDIR=3.8ng
GR_ACARS_LICENSE = GPL-3.0+
GR_ACARS_DEPENDENCIES = gnuradio \

$(if $(BR2_PACKAGE_PYTHON3),host-python3,host-python) \
$(eval $(cmake-package))

providing the hash key of the Sourceforge repository of our code, the method used to download source codes, the
licence and dependencies. The subtelty lies here in adapting the dependence to the version of Python (2 or 3)
which was selected when GNU Radio was configured,

• the package/gr-acars/Config.in file which holds the description of the package as will be shown to the user,
with

config BR2_PACKAGE_GR_ACARS
bool "gr-acars"
depends on BR2_PACKAGE_GNURADIO
select BR2_PACKAGE_GNURADIO_BLOCKS
#select BR2_PACKAGE_GNURADIO_FFT
select BR2_PACKAGE_GNURADIO_FILTER
select BR2_PACKAGE_GR_OSMOSDR
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help
GNU Radio block for ACARS decoding

https://sourceforge.net/projects/gr-acars/

We notice two points on this file description:

1. a select is used for gr-osmosdr since the list of dependencies is restricted to gnuradio. Since gr-acars
depends on gnuradio as well, it is not necessary to use depends on

2. the line select BR2_PACKAGE_GNURADIO_FFT is commented (shown for teaching purpose) since this option
is activated by BR2_PACKAGE_GNURADIO_FILTER: activating this option a second time would not be wise
here.

• the package/gr-acars/gr-acars.hash file which holds

# Locally calculated:
sha256 d3e8... gr-acars-fd70b325906e02b758b89786a6470d05bfee0a67.tar.gz

resulting from the command
sha256sum dl/gr-acars/gr-acars-fd70b325906e02b758b89786a6470d05bfee0a67.tar.gz since Buildroot
clones the git repository prior to assembling a compressed archive, the ellipsis representing the long signature
string generated by the command. This signature is used to validate that the downloaded archive is not corrupt
and matches expectations.

• Finally, the package/Config.in file is appended with

menu "Miscellaneous"
source "package/gr-acars/Config.in"

so that the newly added package appears in the associated menu.

Following these modifications, searching the string ACARS in make menuconfig leads to gr-acars appearing, which
will be compiled in the resulting image of selected.

13 Conclusion

We have ported GNU Radio and its dependencies to Buildroot so it runs on the multitude of embedded platforms sup-
ported by this cross-compilation environment, including the Rasperry Pi 3/4. We thus have the basics to then run com-
plex infrastructures such as gnss-sdr. In doing so, we have discovered the limits of Buildroot (lack of detection of
configuration modification of a package) but also the flexibility with which new packages can be added. An infrastruc-
ture as complex as GNU Radio, with multiple dependencies to support a wide range of acquisition and communication
interfaces up to the Qt5 graphical user interface, is now supported by Buildroot. The performance gain of a tailored com-
pilation targeted to a given board is unquestionable with respect to a general purpose binary distribution. The precepts
of embedded system development of getting the most out of available resources and minimizing energy consumption
and memory footprint to achieve the targeted performance are therefore achieved.
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