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Software Defined Radio (SDR) for RADAR applications
SDR architecture:

▶ SDR provides access to the raw radiofrequency data
straight from the antenna (IQ stream)

▶ flexible: only a single frequency transposition from
RF to baseband and sampling

▶ stable: fully digital signal processing

▶ reconfigurable: use one radiofrequency frontend to
address all signals

SDR for passive RADAR:

▶ dual channel receiver

▶ ideally coherent (common LO), or characterize time
delay and make sure it remains constant

▶ synchronous (common ADC clock)

▶ N: dynamic range

▶ post-processing for range (correlation) and velocity
(Doppler shift) maps

▶ opensource framework: GNU Radio

+ multipurpose RF platform (RADAR + communication
+ direction of arrival + ...)
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Passive RADAR using RTL-SDR receiver dongles and DVB-T source
(Japan) 2 3

▶ R820T2 RF frontent: 50–1600 MHz LO, up
to 2.4 Msamples/s, 8 bits/sample

▶ unknown but constant time delay between
multiple USB peripherals

▶ continuous data stream from acquisition
(GNU Radio) to processing (GNU/Octave,
Matlab): Zero-MQ 1PUB-SUB (UDP-like)

▶ periodically grab data for correlation and
Doppler compensation

▶ compensate for limited bandwidth
(2.4 MHz/RTL-SDR) by dupplicating the
receivers operating at different carrier
frequencies

Map(τ, δf ) =
∫
s(t) ·m(t + τ) · exp(j2πδft)dt with

δf ≃ 2f0
v
c Doppler shift and τ = 2 d

c

Bandwidth=2.4 MS/s ⇒ ∆R ≃ 62.5 m
1https://github.com/jmfriedt/gnuradio_communication
2https://github.com/jmfriedt/passive_radar
3W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, Passive bistatic radar using DVB-T receivers as general-purpose

software-defined radio receivers, Rev. Sci. Instrum. 89, 104701 (Sept. 2018) 5 / 24
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Limited range resolution (limited bandwidth) compensated for by stacking spectra
xcorr(m, s)(τ) = iFFT (FFT (m) · FFT ∗(s)) with FFT spectra accumulating adjacent carrier
frequency measurements
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IQ Engine:
iqengine.org → GNU Radio SigMF → passive radar
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Passive RADAR using the B210 using Sentinel1 source (worldwide)
▶ Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
▶ 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
▶ short (200 ms) illumination duration of a given location

▶ clock uncertainty: record ±30 s around
expected illumination time (60 s @ 8 MS/s
for float-complex samples, dual channel is
8× 4× 2× 2× 60 = 7.68 GB fitting in the
RAMdisk of an 8-GB Raspberry Pi 4)

▶ portable solution using a USB battery pack to
power Rasberry Pi 4 + B210, and stream
(Ethernet) to laptop: tested in Europe and
Arctic regions

▶ use satellite motion for SAR imaging: only
satellite altitude (velocity) is needed for
ground based azimuth/range mapping4

4W. Feng, J.-M. Friedt, P. Wan, SDR-implemented passive bistatic SAR system using Sentinel-1 signal and
itsexperiment results, MDPI Remote Sensing 14 (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pbr
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Distributed passive RADAR using the X310 synchronized using White
Rabbit (GRAVES)

Widely distributed receivers:

▶ GRAVES: CW space surveillance RADAR
emitter located 30 km from our laboratory
location in France

▶ replace ranging (no range resolution from
CW) with angle of arrival (phase)
measurement on a long baseline for plane
detection

▶ synchronize X310 SDR receivers with White
Rabbit 10 MHz and 1-PPS reference signal
broadcast over Gb Ethernet

▶ use aliasing (second Nyquist zone) to sample
the 143.05 MHz signal with the 200 MS/s
ADC

2×X310 SDR: 200 MS/s ⇒ use aliasing to record
143.05 MHz signal (@ 56.95 MHz)

White Rabbit=στ ≃ 60 ps synchronization over
Gb Ethernet network (60 ps = 3◦ @ 143.05 MHz)
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CW RADAR: Doppler shift only, no range infor-
mation... unless AoA
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Covert SDR-GB-SAR using WiFi
▶ Challenge of passive RADAR geometry: help with a

non-cooperative emitter colocated with receiver a

▶ record loopback signal and correlate for ranging

▶ limited bandwidth (ADC sampling rate, communication and
storage) ⇒ frequency stacking (200 MHz on 5.8 GHz WiFi)

▶ repeat for each new antenna position, possibly with
pseudo-random channel generator instead of linear sweep

▶ Raspberry Pi4 used for both data acquisition, rail control and
processing
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Conclusion
▶ Use of surrounding electromagnetic smog for

target mapping

▶ Add non-cooperative source for controlled but
covert emissions

▶ Developing (SAR) passive-RADAR has never
been easier and more accessible

Work in progress:

▶ UAV mounted passive RADAR (XTRX SDR
receiver) −→
(heating problems = local oscillator drift !)

▶ merge 2.45 GHz WiFi with 5.8 GHz WiFi
when antenna with sufficient bandwidth is
available (A-Info LB-2060-H-SF is 2 to 6 GHz
horn antenna with 15 dBi gain)

http://jmfriedt.free.fr

Lime XTRX + Compute Module 4 (OEM version of
RPi4): 60 MS/s dual-channel 12-bit IQ in 62.5×40 mm
& 55 g
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