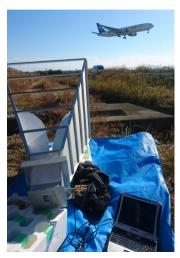
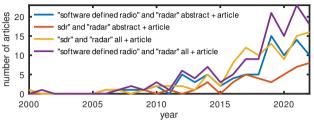
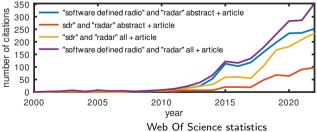
Software Defined Radio (SDR) Passive Radar Implementations


Jean-Michel **Friedt** FEMTO-ST, Besançon, France Email: jmfriedt@femto-st.fr

Web: http://jmfriedt.free.fr

with invaluable support from Weike **Feng** Air Force Engineering University, Xi'an, China


and Pr. Motoyuki **Sato** CNEAS, Tohoku University, Sendai, Japan



Software Defined Radio (SDR) for RADAR applications

SDR architecture:

- SDR provides access to the raw radiofrequency data straight from the antenna (IQ stream)
- flexible: only a single frequency transposition from RF to baseband and sampling
- stable: fully digital signal processing
- reconfigurable: use one radiofrequency frontend to address all signals
- SDR for passive RADAR:
- dual channel receiver
- ideally coherent (common LO), or characterize time delay and make sure it remains constant
- synchronous (common ADC clock)
- N: dynamic range
- post-processing for range (correlation) and velocity (Doppler shift) maps
- opensource framework: GNU Radio
- + multipurpose RF platform (RADAR + communication + direction of arrival + ...)

Software Defined Radio (SDR) for RADAR applications

SDR architecture:

- SDR provides access to the raw radiofrequency data straight from the antenna (IQ stream)
- flexible: only a single frequency transposition from RF to baseband and sampling
- stable: fully digital signal processing
- reconfigurable: use one radiofrequency frontend to address all signals
- SDR for passive RADAR:
- dual channel receiver
- ideally coherent (common LO), or characterize time delay and make sure it remains constant
- synchronous (common ADC clock)
- N: dynamic range
- post-processing for range (correlation) and velocity (Doppler shift) maps
- opensource framework: GNU Radio
- + multipurpose RF platform (RADAR + communication + direction of arrival + ...) GNU Radio: free opensource SDR framework running on PC or embedded board (cross-compiled with Buildroot)

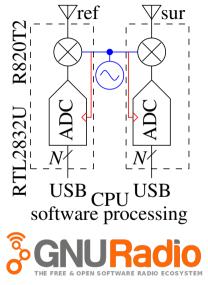
√ref

FPGA

CPU

software processing

sur


Software Defined Radio (SDR) for RADAR applications

SDR architecture:

- SDR provides access to the raw radiofrequency data straight from the antenna (IQ stream)
- flexible: only a single frequency transposition from RF to baseband and sampling
- stable: fully digital signal processing
- reconfigurable: use one radiofrequency frontend to address all signals

SDR for passive RADAR:

- dual channel receiver
- ideally coherent (common LO), or characterize time delay and make sure it remains constant
- synchronous (common ADC clock)
- N: dynamic range
- post-processing for range (correlation) and velocity (Doppler shift) maps
- opensource framework: GNU Radio
- + multipurpose RF platform (RADAR + communication
- + direction of arrival + ...)

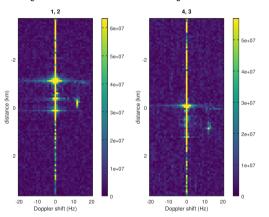
GNU Radio: free opensource SDR framework running on PC or embedded board (cross-compiled with Buildroot)

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) ^{2 3} $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft)dt$

- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

 $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft) dt$ with $\delta f \simeq 2f_0 \frac{v}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$

Bandwidth=2.4 MS/s $\Rightarrow \Delta R \simeq 62.5$ m


¹https://github.com/jmfriedt/gnuradio_communication

²https://github.com/jmfriedt/passive_radar

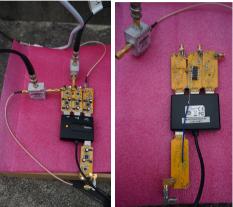
³W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, *Passive bistatic radar using DVB-T receivers as general-purpose software-defined radio receivers*, Rev. Sci. Instrum. **89**, 104701 (Sept. 2018)

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) ² ³ $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft)dt$ with $\delta f \simeq 2f_0 \frac{\nu}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$

- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

Uncalibrated delay between 1-2 and 3-4 (use direct-wave for calibration)

¹https://github.com/jmfriedt/gnuradio_communication

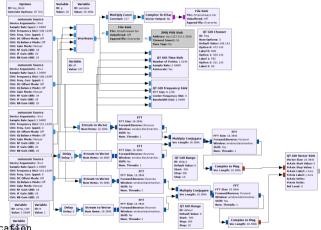

²https://github.com/jmfriedt/passive_radar

³W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, *Passive bistatic radar using DVB-T receivers as general-purpose software-defined radio receivers*, Rev. Sci. Instrum. **89**, 104701 (Sept. 2018)

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) 2 3

- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

 $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft) dt$ with $\delta f \simeq 2f_0 \frac{v}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$

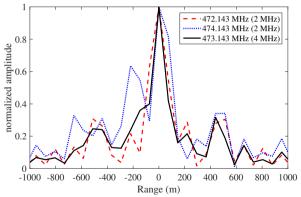

Limited range resolution (limited bandwidth) compensated for by stacking spectra $xcorr(m, s)(\tau) = iFFT(FFT(m) \cdot FFT^*(s))$ with FFT spectra accumulating adjacent carrier frequency measurements

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) 2 3 $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft)dt$ with $\delta f \simeq 2f_0 \frac{\nu}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$

- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

¹https://github.com/jmfriedt/gnuradio_communication ²https://github.com/jmfriedt/passive_radar

³W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, *Passive bistatic radar using DVB-T receivers as general-purpose software-defined radio receivers*, Rev. Sci. Instrum. **89**, 104701 (Sept. 2018)



8/24

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) 2 3

- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

 $Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft) dt$ with $\delta f \simeq 2f_0 \frac{v}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$

¹https://github.com/jmfriedt/gnuradio_communication ²https://github.com/jmfriedt/passive_radar

³W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, *Passive bistatic radar using DVB-T receivers as general-purpose software-defined radio receivers*, Rev. Sci. Instrum. **89**, 104701 (Sept. 2018)

9 / 24

Passive RADAR using RTL-SDR receiver dongles and DVB-T source (Japan) 2 3

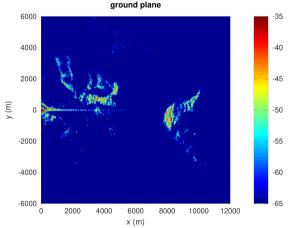
- R820T2 RF frontent: 50–1600 MHz LO, up to 2.4 Msamples/s, 8 bits/sample
- unknown but constant time delay between multiple USB peripherals
- continuous data stream from acquisition (GNU Radio) to processing (GNU/Octave, Matlab): Zero-MQ ¹PUB-SUB (UDP-like)
- periodically grab data for correlation and Doppler compensation
- compensate for limited bandwidth (2.4 MHz/RTL-SDR) by dupplicating the receivers operating at different carrier frequencies

$Map(\tau, \delta f) = \int s(t) \cdot m(t + \tau) \cdot \exp(j2\pi\delta ft) dt$ with $\delta f \simeq 2f_0 \frac{v}{c}$ Doppler shift and $\tau = 2\frac{d}{c}$						
Spectrogram Thumbnail		C Length in Samples	Data Type	Frequency	Sample Rate	Num Annot
 / passive radar 			()			
IO Engine:	171210_seconddataset_ship_ch2 one Yagi-Uda antenna is directed towards the Sendai (Japan) (download: data, meta)	1439.694849 M	complex signed int 8 bits	509 MHz	2.048 MHz	(1 Ca

IQ Engine:

 $\texttt{iqengine.org} \rightarrow \mathsf{GNU} \ \mathsf{Radio} \ \mathsf{SigMF} \rightarrow \mathsf{passive} \ \mathsf{radar}$

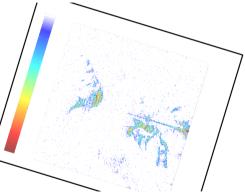
¹https://github.com/jmfriedt/gnuradio_communication


²https://github.com/jmfriedt/passive_radar

³W. Feng, J.-M. Friedt, G. Cherniak, M. Sato, *Passive bistatic radar using DVB-T receivers as general-purpose software-defined radio receivers*, Rev. Sci. Instrum. **89**, 104701 (Sept. 2018)

- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- ▶ 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴

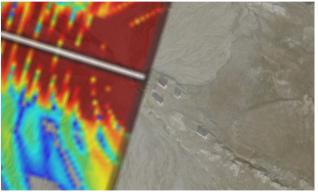
- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴


⁴W. Feng, J.-M. Friedt, P. Wan, *SDR-implemented passive bistatic SAR system using Sentinel-1 signal and itsexperiment results*, MDPI Remote Sensing **14** (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pp_{2/24}

- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴

⁴W. Feng, J.-M. Friedt, P. Wan, *SDR-implemented passive bistatic SAR system using Sentinel-1 signal and itsexperiment results*, MDPI Remote Sensing **14** (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pbr

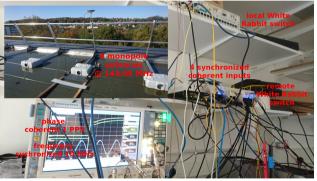
- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴


⁴W. Feng, J.-M. Friedt, P. Wan, *SDR-implemented passive bistatic SAR system using Sentinel-1 signal and itsexperiment results*, MDPI Remote Sensing **14** (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pbr

- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴

⁴W. Feng, J.-M. Friedt, P. Wan, *SDR-implemented passive bistatic SAR system using Sentinel-1 signal and itsexperiment results*, MDPI Remote Sensing **14** (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pbr

- Sentinel1: C-band spaceborne RADAR with predictable and published observation pattern
- 100 MHz wide chirp but only a fraction recorded by B210 SDR (limited by USB bandwidth)
- short (200 ms) illumination duration of a given location
- clock uncertainty: record ±30 s around expected illumination time (60 s @ 8 MS/s for float-complex samples, dual channel is 8 × 4 × 2 × 2 × 60 = 7.68 GB fitting in the RAMdisk of an 8-GB Raspberry Pi 4)
- portable solution using a USB battery pack to power Rasberry Pi 4 + B210, and stream (Ethernet) to laptop: tested in Europe and Arctic regions
- use satellite motion for SAR imaging: only satellite altitude (velocity) is needed for ground based azimuth/range mapping⁴

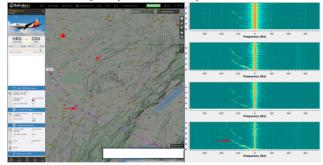


⁴W. Feng, J.-M. Friedt, P. Wan, *SDR-implemented passive bistatic SAR system using Sentinel-1 signal and itsexperiment results*, MDPI Remote Sensing **14** (1) pp.221- (2022) and https://github.com/jmfriedt/sentinel1_pbr

Widely distributed receivers:

- GRAVES: CW space surveillance RADAR emitter located 30 km from our laboratory location in France
- replace ranging (no range resolution from CW) with angle of arrival (phase) measurement on a long baseline for plane detection
- synchronize X310 SDR receivers with White Rabbit 10 MHz and 1-PPS reference signal broadcast over Gb Ethernet
- use aliasing (second Nyquist zone) to sample the 143.05 MHz signal with the 200 MS/s ADC

 $2 \times X310$ SDR: 200 MS/s \Rightarrow use aliasing to record 143.05 MHz signal (@ 56.95 MHz)

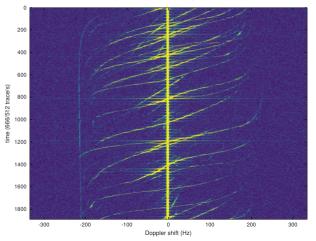


White Rabbit= $\sigma_{\tau} \simeq 60$ ps synchronization over Gb Ethernet network (60 ps = 3° @ 143.05 MHz)

Widely distributed receivers:

- GRAVES: CW space surveillance RADAR emitter located 30 km from our laboratory location in France
- replace ranging (no range resolution from CW) with angle of arrival (phase) measurement on a long baseline for plane detection
- synchronize X310 SDR receivers with White Rabbit 10 MHz and 1-PPS reference signal broadcast over Gb Ethernet
- use aliasing (second Nyquist zone) to sample the 143.05 MHz signal with the 200 MS/s ADC

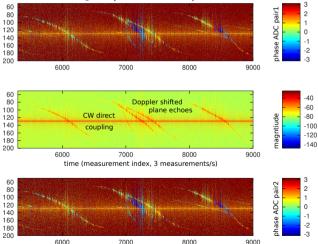
 $2 \times X310$ SDR: 200 MS/s \Rightarrow use aliasing to record 143.05 MHz signal (@ 56.95 MHz)



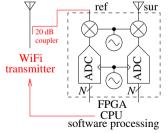
CW RADAR: Doppler shift only, no range information... unless AoA

Widely distributed receivers:

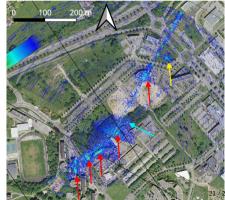
- GRAVES: CW space surveillance RADAR emitter located 30 km from our laboratory location in France
- replace ranging (no range resolution from CW) with angle of arrival (phase) measurement on a long baseline for plane detection
- synchronize X310 SDR receivers with White Rabbit 10 MHz and 1-PPS reference signal broadcast over Gb Ethernet
- use aliasing (second Nyquist zone) to sample the 143.05 MHz signal with the 200 MS/s ADC


2×X310 SDR: 200 MS/s \Rightarrow use aliasing to record 143.05 MHz signal (@ 56.95 MHz)

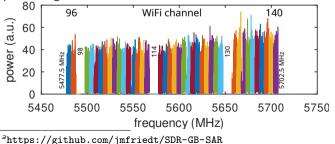
Widely distributed receivers:

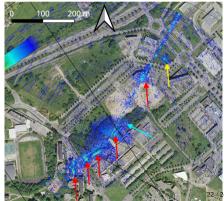

- GRAVES: CW space surveillance RADAR emitter located 30 km from our laboratory location in France
- replace ranging (no range resolution from CW) with angle of arrival (phase) measurement on a long baseline for plane detection
- synchronize X310 SDR receivers with White Rabbit 10 MHz and 1-PPS reference signal broadcast over Gb Ethernet
- use aliasing (second Nyquist zone) to sample the 143.05 MHz signal with the 200 MS/s ADC

 $2 \times X310$ SDR: 200 MS/s \Rightarrow use aliasing to record 143.05 MHz signal (@ 56.95 MHz)


Covert SDR-GB-SAR using WiFi

- Challenge of passive RADAR geometry: help with a non-cooperative emitter colocated with receiver ^a
- record loopback signal and correlate for ranging
- ► limited bandwidth (ADC sampling rate, communication and storage) ⇒ frequency stacking (200 MHz on 5.8 GHz WiFi)
- repeat for each new antenna position, possibly with pseudo-random channel generator instead of linear sweep
- Raspberry Pi4 used for both data acquisition, rail control and processing


^ahttps://github.com/jmfriedt/SDR-GB-SAR



Covert SDR-GB-SAR using WiFi

- Challenge of passive RADAR geometry: help with a non-cooperative emitter colocated with receiver ^a
- record loopback signal and correlate for ranging
- Iimited bandwidth (ADC sampling rate, communication and storage) ⇒ frequency stacking (200 MHz on 5.8 GHz WiFi)
- repeat for each new antenna position, possibly with pseudo-random channel generator instead of linear sweep
- Raspberry Pi4 used for both data acquisition, rail control and processing

Conclusion

- Use of surrounding electromagnetic smog for target mapping
- Add non-cooperative source for controlled but & 55 g covert emissions
- Developing (SAR) passive-RADAR has never been easier and more accessible

Work in progress:

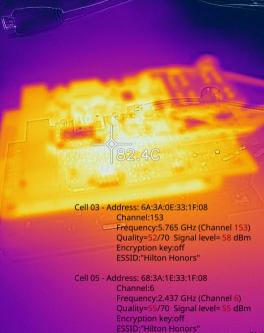
- ► UAV mounted passive RADAR (XTRX SDR receiver) → (heating problems = local oscillator drift !)
- merge 2.45 GHz WiFi with 5.8 GHz WiFi when antenna with sufficient bandwidth is available (A-Info LB-2060-H-SF is 2 to 6 GHz horn antenna with 15 dBi gain)

http://jmfriedt.free.fr

Lime XTRX + Compute Module 4 (OEM version of RPi4): 60 MS/s dual-channel 12-bit IQ in 62.5×40 mm & 55 g

Conclusion

- Use of surrounding electromagnetic smog for target mapping
- Add non-cooperative source for controlled but covert emissions
- Developing (SAR) passive-RADAR has never been easier and more accessible


Work in progress:

► UAV mounted passive RADAR (XTRX SDR receiver) → (heating problems = local oscillator drift !)

merge 2.45 GHz WiFi with 5.8 GHz WiFi when antenna with sufficient bandwidth is available (A-Info LB-2060-H-SF is 2 to 6 GHz horn antenna with 15 dBi gain)

http://jmfriedt.free.fr

