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3 Current affiliation Silmach SA, Besançon, France
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RADAR cooperative target requirements
Objective: delay sensor signal beyond clutter

▶ clutter in the delay τ

τ = distance/(300/
√
εr m/µs)

range: 50–100 ns at 10 m in temperate soils (εr = 5),
up to 1.2 µs at 200 m in ice (εr = 3)

▶ Convert electromagnetic to acoustic wave to shrink
dimensions for a given delay: acoustic wave is 105

slower than electromagnetic wave, so 1.5 µs delay is
achieved with 4.5 mm long acoustic path
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Cooperative target: acoustic delay line architecture and design
▶ Interdigitated transducer (IDT) patterned on a piezoelectric

substrate converts the incoming electromagnetic wave to an
acoustic wave

▶ With proper piezoelectric substrate orientation, the wave is
confined to the surface: Surface Acoustic Wave (SAW)

▶ SAW is reflected on Bragg mirrors patterned on substrate
(velocity mismatch = reflection)

▶ acoustic wave is radiated back as electromagnetic wave to
GPR receiver after a delay

τ =
d

c

with c the acoustic velocity (3000 m/s)

▶ Bandwidth is given by number of electrodes in IDT: must
match spectral characteristics of RADAR pulse

▶ but optimal number of electrodes in IDTs determined by
piezoelectric electromechanical coupling coefficient K2

▶ selection of piezoelectric material: stronger coupling for
broader bandwidth and stronger reflected signal

λ = c/f with c = 3000 m/s and f = 100 MHz: λ =
30 µm ⇒ 3.75 µm wide fingers separated by 3.75 µm for
split-finger IDTs.
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Chemical sensing capability
Physical transducer has no chemical selectivity:

▶ Thin film coating to selectively absorb a given
molecule (+energy confinement of the energy close
to the surface to improve sensitivity)

▶ for example for BTEX: polyisobutene (PIB),
polyepichlorohydrin (PECH) 12

▶ be careful with interference from other chemicals
though...

▶ Cleanroom processing compatibility: homogeneous
spin coating for reproducible thickness 3

IDT

piezo substrate

polymer coating
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Chemical sensing capability in liquid phase

▶ Capacitive short circuit in high permittivity water
must be prevented

C

IDT

piezo substrate
Cpiezo = ε0εr (piezo)

S
d

Cpiezo

Cwater = ε0εr (water)
S
d

Cair = ε0εr (air)
S
d

with Cair = 1 and Cwater ≃ 80 ⇒ maximize Cpiezo

since |ZC | = 1
Cω

▶ Select high permittivity material propagating a pure
shear wave (avoid radiation of energy in liquid)

Measurements on lithium tantalate SAW devices:
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Wireless chemical sensor probed by Ground Penetrating RADAR
▶ Benzene-Toluene-Ethylbenzene-Xylene (BTEX) detection...

▶ in liquid phase...

▶ using a transducer compatible with Ground Penetrating RADAR measurement.

▶ Fine delay measurement as phase of iFFT: δφ = 2π · f · δτ when operating at frequency f

▶ Here: polymer film thin selected from the literature (PECH) and compatible with cleanroom
spincoating deposition
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Conclusion
▶ Complement GPR observations with sub-surface cooperative targets for measuring physical or chemical quantities.
▶ Shrink sensor dimensions by converting electromagnetic

wave to acoutic wave ...

▶ using a dedicated piezoelectric transducer.

▶ Chemical coating for chemical sensitivity ...

▶ and high permittivity piezoelectric substrate to prevent
capacitive short circuit.

For more information (http://jmfriedt.free.fr):

▶ D. Rabus & al., Sampling frequency fluctuations of the
Sensors & Software SPIDAR GPR when probing passive
surface aoustic wave delay lines for pollution sensing
IEEE Geoscience and Remote Sensing Letters 19
3503005 (2021)

▶ D. Rabus & al., Sub-surface H2S detection by a Surface
Acoustic Wave passive wireless sensor interrogated with
a ground penetrating radar, ACS Sensors 5(4)
1075–1081 (2020)

▶ J.-M. Friedt & al., Acoustic transducers as passive
cooperative targets for wireless sensing the sub-surface
world: challenges of probing with Ground Penetrating
RADAR, MDPI Sensors 18(1) 246 (2018)

100 and 200 MHz acoustic sensors to be connected to
antennas for GPR interrogation

Principle demonstrated on a BTEX detector made of lithium tantalate probed by GPR.
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