
1

Generating a timing information (1-PPS) from a
software defined radio decoding of GPS signals

D. Rabus, G. Goavec-Merou, G. Cabodevila1, F. Meyer2, J.-M Friedt

Abstract—We complement a secure, Software Defined Radio
(SDR) implementation of Global Navigation Satellite System
(GNSS) reception system with the 1-Pulse Per Second (PPS)
output to steer the oscillator driving the analog to digital
converter, the only reliable timing information in a SDR reception
chain. We demonstrate long-term 1-PPS output and the derived
Allan deviation consistent with the 10−8 at 1 s decreasing to
10−12 at 104 s performance met with most single frequency
GNSS receivers.

I. INTRODUCTION

Software Defined Radio aims at replacing as many hardware
parts from a radiofrequency reception chain and replace them
with a software implementation handing the output of the
analog to digital converter. As such, this signal processing ap-
proach blurs the classical abstraction layers between hardware
and software protocols. In the context of Global Navigation
Satellite System (GNSS) secure data reception [1], spoofing
identification and mitigation has been addressed at the plane
wave physical characteristics low level approach by analyzing
the phase of the signal received by multiple antennas, and
possibly steering the null of the controlled radiation pattern
antenna array (CRPA) towards the spoofing or jamming source
(Fig. 1). The application is demonstrated on embedded systems
exhibiting sufficient computational power to run gnss-sdr
thanks to the efficient use of GNU Radio and its VOLK SIMD
instruction set [2], [3]: all data displayed in this document
have been collected either on Raspberry Pi4 or its System on
Module (SoM) version the Compute Module 4, both based on
the Broadcom BCM2711 quad core Cortex-A72 64-bit central
processing unit clocked at 1.5 GHz in “performance” power
settings. Opensource software is a core characteristics of the
development capability throughout this document.

Despite such an approach demonstrating genuine posi-
tioning retrieval even under spoofing and jamming attacks
[4], users of GNSS for timing capability need a hardware
output of the 1-Pulse Per Second (1-PPS) and a typical 10-
MHz frequency output. We demonstrate in this paper how
a useful 1-PPS is generated and steered using the solution
of the free, opensource implementation of GNSS decoder
provided as gnss-sdr [5] supporting multiple constellations
and frequency bands [6]. This solution is compatible with

FEMTO-ST Institute, Time and Frequency Department, Besançon, France.
1 G.C. is currently Délégué Régional adjoint à la Recherche et à la

Technologie but contributed significantly to this work
2 F.M. is with OSU THETA, Besançon, France
Reference author JMF, e-mail: jmfriedt@femto-st.fr. Home page

https://github.com/oscimp/gnss-sdr-1pps.

ADC

ADCI

Q

FP
G

A

G
P-

C
PU

po
si

tio
n,

ve
lo

ci
ty

tim
e

so
lu

tio
n

(P
V

T
)

interference

gnss-sdr
GNU Radio

90◦

90◦

Fig. 1. Top: principle of SDR implementation of a secure GNSS receiver
analyzing Direction of Arrival of the signals from the various satellites. In
the SDR approach, as much hardware as possible is replaced with software
running on the Field Programmable Gate Array (FPGA) or General-Purpose
Central Processing Unit (GP-CPU), here with only the radiofrequency fron-
tend amplification and frequency transposition still implemented as hardware
before the analog to digital conversion. The external bias-T powering the pre-
amplifier in the active antenna are not shown. Bottom: experimental setup,
with a B210 SDR receiver fed by two bias-T-polarized active GNSS antenna
connected to a Raspberry Pi 4 single board computer.

embedded applications since it has been demonstrated to run
on single board computers [7] such as the Raspberry Pi4.

II. TIMING CONSIDERATION

The only known timing information in a SDR imple-
mentation is at the analog to digital converter (ADC) level
under the assumption of a discontinuous datastream sampled
periodically. All subsequent data transfers are asynchronous,
whether between the buffer – most commonly in the FPGA
handling the huge datarate from the ADC – and the general
purpose processing unit, or in our case between the SDR re-
ceiver (Ettus Research B210 and its Analog Devices AD9361
radiofrequency frontend including low noise amplifier, tunable
local oscillator, {I,Q} detector and ADCs) and the computer
running GNU Radio communicating through a USB link. As
such, the clock controlling the ADC will be steered by the
Position, Velocity and Time (PVT) solution from the GNSS

2

processing software, and this same clock must be used to
control the 1-PPS output (Fig. 2).

time interval counter
HP53132A

U−Blox
receiver

hydrogen
maser

(inaccuracy
< 1e−12)

ADC
FPGA

gnss−sdr

AD9361 Raspberry Pi4

GbE

USB3

ADC CK

I, Q

Ettus Research B210

or

CPU CK

top value

B210 external
10 MHz input

PLL
ext 10 MHz steering

R&S SMA100A
1
−

P
P

S

1−PPS

1575.42 MHz 40 MHz

ref clock

genuine GPS constellation

()

Fig. 2. 1-PPS synthesis architecture and analysis in the framework of an SDR
receiver. The only sample timing information known to the user is the analog
to digital converter since all subsequent data transfer is asynchronous. The
aim is to steer the ADC and its FPGA controller clock with the GNSS PVT
solution.

In this figure, the clock feeding the FPGA and the 1-PPS
counter in the FPGA is indicated as controlled by a Hydrogen
Maser (HM): this step is for preliminary assessment of the
proper operation of the counter and its comparison with the
hardware 1-PPS from the NEO-M8P U-Blox receiver, but the
HM-controlled Rohde & Schwarz SMA100A synthesizer (Fig.
3) is later replaced with a Temperature Compensated Crys-
tal Oscillator (TCXO) controlled Direct Digital Synthesizer
(DDS).

The PVT solver analyzes the time offset between the three
local copies of the pseudo-random Gold code sequence of
each satellite – prompt, early and late – and deduces a global
time offset between the local clock and the GNSS clock. This
information is used to steer the clock controlling the FPGA
driving the ADC clock.

-600

-400

-200

0

200

400

600

800

0 50000 100000 150000

U
B

lo
x
-g

n
s
s
 1

-P
P

S
 (

s
)

time (s)

Fig. 3. Evolution over 50 hours of the time difference between a U-Blox NEO-
M8P receiver and the 1-PPS counter implemented in the FPGA acquiring
data to be processed by gnss-sdr, clocked by a free running SMA100A
synthesizer set to a nominal frequency of 10 MHz. A drift of +11.1 ns/s=ppb
has been removed and only the residue is displayed. Horizontal lines indicate
the ±100 ns targeted by controlling the oscillator on the PVT solution.

Since the B210 can be fed by an external 10-MHz reference,
our implementation uses a radiofrequency synthesizer con-
trolled to tune its output frequency used as external reference
and track GNSS frequency. Because the 1-PPS phase is the
integral of the frequency, the resulting 1-PPS counter will be
synchronous with a hardware 1-PPS from a U-Blox receiver,
within a constant offset.

III. IMPLEMENTATION

Thanks to the opensource software used to generate the
FPGA bitstream running in the Ettus Research B210 Universal
Software Radio Peripheral as provided at https://github.com/
EttusResearch/fpga.git, the counter and control logic driving
the 1-PPS generation have been added next to the existing
dataflow handling logic as described at https://github.com/
oscimp/gnss-sdr-1pps. As such, the 1-PPS logic shares the
same clock than the ADC and hence both radiofrequency
samples and 1-PPS front are driven with the same signal,
controlled with the PVT time offset. Thanks to the opensource
software gnss-sdr found at https://github.com/gnss-sdr/
gnss-sdr and documented at https://gnss-sdr.org/ used to pro-
cess the GNSS datastreams, the PVT time offset solution is
acquired and processed in a Proportional, Integral (PI) control
loop generating the signal driving the Rohde & Schwarz
SMA100A synthesizer used to drive the 10-MHz nominal
input of the B210. Notice that this 10 MHz reference signal
is multiplied on the B210 board by 4 to generate the 40 MHz
signal clocking the AD9361: while any sampling rate can
be used to configure the AD9361, only integer divisions to
40 MHz will guarantee that the sampling rate is actually
the expected value. If this condition is not met, gnss-sdr
believes the sampling rate is the nominal value while the
fractional PLL only reaches the closest achievable frequency,
inducing a drift of the 1-PPS. As examples of usable sampling
rates, 1.25 MHz (integer division by 32) or 2 MHz (integer
division by 20) but even 1.125 MHz (fractional division by
320/9) have led to successful 1-PPS implementations as will be
characterized below, while the theoretical 1.023 MHz sampling
rate leads to a drifting 1-PPS output.

Fig. 4. Time offset evolution of the local time error deduced from the PVT
solution with respect to GPS time. The comparison between the “single
solution” and the PPP solution emphasizes the lower fluctuation of the
latter. Notice that gnss-sdr provides the PPP time solution as range (i.e.
multiplied by the speed of light in vacuum) while the Single solution is in
second. The sampling period is 1-chip or 20 ms.

As a demonstration of the preliminary assessment of the
proper operation of the 1-PPS implementation in the FPGA,
the SMA100A synthesizer is clocked by the HM. In this case,
the gnss-sdr generated 1-PPS only drifts over time with
respect to GPS-time by the relative frequency offset of the HM,
here 1.3·10−12, as shown by the PVT solution corrected 1-PPS
interval displayed in Fig. 4 with the drift hardly visible on such
a short (' 2-h) acquisition. The PPP solution exhibits a lower
fluctuation than the single solution. This analysis demonstrates
that clocking the B210 with a high stability 10 MHz reference
leads to a consistent and constant time offset of the local clock

3

with GPS time. We have also verified that the physical 1-PPS
does not drift with respect to the hardware 1-PPS generated
by the U-Blox receiver in this condition (data not shown).

Notice that the gnss-sdr configuration must not include
a resampler step if the input and output frequencies are
equal. Indeed, we have noticed that under such conditions, a
single sample is dropped every 232 samples. At a sampling
rate of 1.125 MS/s, this occurrence happens once every
232/(1.125 · 106) = 3817 s or about 1 h, with a sudden
shift by 1/1.125 = 0.888 µs (Fig. 5, demonstrating the same
argumentation when sampling at 2 MS/s). The solution is to
replace the resampler with a PassThrough processing
block in gnss-sdr.

1
-P

P
S

 o
ff

se
t

(u
s)

time (s)

500 ns=1/2 MS/s

Fig. 5. Evolution of the time offset between a reference U-Blox receiver
and the 1-PPS output deduced from processing gnss-sdr time difference
information when including a resampler with the same input and output
frequency. The time-delay jumps are induced by our erroneous result of the
resampling block when input and output sampling rates are the same, as a
sample is dropped every 232. At a sampling rate of 2 MS/s, this sample drop
occurs every 232/(2 · 106) = 2147.5 s and the 1-PPS jump is equal to the
inverse of the sampling rate or 500 ns in this demonstration.

IV. RESULTS

A 39-hours long record of 1-PPS output delay comparison
with a U-Blox NEO-M8P hardware receiver used as reference
is displayed on Fig. 6. Not only does this chart demonstrate
long term stability of the proposed solution after fine tuning
the gnss-sdr parameters, but the frequency drift classically
observed for even an excellent synthesizer as the Rohde &
Schwarz SMA100A has been cancelled, and the short term
stability in the 10−8 range is consistent with classical figures
from hardware receivers. Here the control loop acts every
PVT.display_rate_ms=500 ms when the PVT solution
is displayed, although the solution itself is updated every
PVT.output_rate_ms=20 ms, but the Hewlett Packard
HP53132A time interval counter is set to integrate on the 1-s
interval of the 1-PPS, hence providing one output every sec-
ond. The HP53132A counter reference clock is a HM known
to exhibit a much lower Allan deviation (below 10−12 over
the integration times considered here) on this time interval.

-600

-400

-200

0

200

400

600

0 20000 40000 60000 80000 100000 120000 140000

1
-P

P
S

 o
ff

s
e

t
(n

s)

time (s)

free running
gnss-sdr v.s UBlox

10
-14

10
-13

10
-12

10
-11

10
-10

10
-09

10
-08

10
-07

100 101 102 103 104 105A
lla

n
 d

e
v
ia

ti
o

n
 (

n
o

 u
n

it
)

integration time (s)

gnss-sdr v.s UBlox

UBlox v.s HM counter

gnss-sdr v.s HM counter
UBlox v.s HM counter

gnss-sdr v.s HM counter

Fig. 6. Top: 39 h long record of the time interval between the 1-PPS output
of a U-Blox Neo-M8P receiver, our SDR implementation of the 1-PPS output
driven by the PVT solution extracted from gnss-sdr and a counter clocked
by a Hydrogen Maser (HM) drifting with respect to GPS time. The free
running oscillator chart is the same as shown on Fig. 3 for comparison
(different scale). Bottom: resulting Modified Allan deviation of the various
1-PPS comparisons.

Improvement on the control implementation is still needed
as the bump on the Allan deviation between 10 and 100 s is
attributed to the local oscillator steering control signal.

V. FROM OCXO TO TXCO DRIVEN CLOCK

The SMA100A is an excellent (short term phase noise
and long term Allan deviation) clock source controlled by an
Oven Controlled Crystal Oscillator (OCXO), well suited for
a laboratory demonstration but hardly usable for a real work
application where power consumption, size and cost are all
issues to be tackled for a use beyond the laboratory.

Replacing the OXCO driven SMA100A with a TCXO
driven 32-bit resolution Analog Devices AD9959 DDS stresses
the control loop and degrades not only the short term perfor-
mance but also the long term stability as shown in Fig. 7.
The 18.6 mHz DDS frequency resolution when clocked by a
20 MHz TCXO internally multiplied by 4 is similar to the
10 mHz frequency resolution of the SMA100A synthesizer,
hence hardly deteriorating the control capability. Clocking the
DDS with the SMA100A allows us to validate that the source
of the frequency fluctuations is indeed the TCXO and not the
DDS since the initial performance is recovered in the latter
case (data not shown).

One of the challenging issues we met was the slow conver-
gence of the frequency control loop when starting too far from
setpoint. Indeed, the TCXO exhibits very poor accuracy at
startup, and only once the GNSS constellation signal has been
locked and the time drift is identified can the DDS control
word be tuned to correct for the TCXO offset. In order to
avoid the slow convergence of the control loop, a preliminary
openloop identification of the frequency offset is performed
during the first few seconds after the GNSS signal has been
decoded and its timing signal is being tracked, before setting
the time offset setpoint and the frequency offset is roughly

4

Fig. 7. Time-evolution of the 1-PPS interval (top) and resulting Allan
deviation when clocking the B210 with the output of an AD9959 DDS clocked
by a 20 MHz TCXO multiplied by 4 by the internal Phase Locked Loop. The
SMA100A reference measurement is reproduced for comparison.

corrected prior to switching on the control loop. This sequence
is experimentally demonstrated on Fig. 8.

0 100 200 300 400 500
-120

-100

-80

-60

-40

-20

0

20

time (s)

0.5

0

-0.5

-1
100 200 300 400

time (s)

1
 P

P
S

 v
.s

 H
M

 (
u
s)

1
 P

P
S

 v
.s

 H
M

 (
u
s)

fr
ee

 r
u
n
n
in

g

lock on GNSS: define setpoint

Fig. 8. TXCO controlled DDS generating the signal driving the B210 SDR
receiver feeding gnss-sdr. Prior to GNSS constellation acquisition, the
TCXO freely drifts until the GNSS signal is tracked: a few seconds of drift
are observed to identify the frequency offset and correct digitally the AD9959
DDS output prior to setting the setpoint time offset to be tracked by the control
loop.

Since the time offset information between the local replica
of the clock and GPS time is provided within a 20 ms interval
– 1-chip length – an uncertainty remains on the phase output
of our 1-PPS multiple of 20 ms. Nevertheless, this output
signal is useful for controlling the frequency output of an
external oscillator despite the random phase of our current
1-PPS output implementation.

VI. CONCLUSION

This contribution bridges the virtual output of SDR and its
application to GNSS decoding with a hardware 1-PPS output

useful for driving external oscillators. Having identified the
clock controlling both the radiofrequency frontend fitted with
the analog to digital converters as well as the FPGA as the
timing information, an external frequency source feeds this
clock signal and is controlled with respect to the GNSS timing
information for steering the frequency. The long term drift
is hence cancelled and the GNSS performance of 10−12 and
10000 s integration time is recovered. This implementation
solves the frequency transfer challenge while an unknown
phase offset remains on the 1-PPS output preventing time
transfer. This issue is now under investigation. The software
implementing the 1-PPS output when fetching GNSS infor-
mation from an Ettus Research B210 SDR receiver clocked
by a Rohde & Schwarz SMA100A synthesizer is available at
https://github.com/oscimp/gnss-sdr-1pps.

ACKNOWLEDGEMENTS

gnss-sdr is free, opensource software provided by
the Centre Tecnològic Telecomunicacions Catalunya (CTTC,
Spain): C. Fernández-Prades and J. Arribas are acknowl-
edged for fruitful discussions. This investigation is moti-
vated by the FAST-LAB joint laboratory between FEMTO-ST,
the Besançon Observatory (OSU THETA) and the company
Gorgy Timing. The infrastructures of the Oscillator Instability
Measurement Platform (OscillatorIMP) provide the reference
signals.

REFERENCES

[1] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A
software-defined GPS and Galileo receiver: a single-frequency approach.
Springer Science & Business Media, 2007.

[2] J.-M. Friedt, D. Rabus, and G. Goavec-Merou, “Software defined radio
based global navigation satellite system real time spoofing detection and
cancellation,” in GNU Radio Conference (GRCon), 2020, https://pubs.
gnuradio.org/index.php/grcon/article/view/73.

[3] G. Goavec-Merou and J.-M. Friedt, “Never compile on the target !
GNURadio on embedded systems using Buildroot,” in Free Open Source
Developer Meeting (FOSDEM), 2021, https://fosdem.org/2021/schedule/
event/fsr gnu radio on embedded using buildroot/.

[4] W. Feng, J.-M. Friedt, G. Goavec-Merou, and F. Meyer, “Software
defined radio implemented GPS spoofing and its computationally efficient
detection and suppression,” IEEE Aerospace and Electronic Systems
Magazine, 2021.

[5] C. Fernández–Prades, J. Arribas, P. Closas, C. Avilés, and L. Esteve,
“GNSS-SDR: An open source tool for researchers and developers,” in
Proc. 24th Intl. Tech. Meeting Sat. Div. Inst. Navig., Portland, Oregon,
Sept. 2011, pp. 780–794.

[6] C. Fernández-Prades, J. Arribas, L. Esteve, D. Pubill, and P. Closas, “An
open source Galileo E1 software receiver,” in 2012 6th ESA Workshop on
Satellite Navigation Technologies (Navitec 2012) & European Workshop
on GNSS Signals and Signal Processing. IEEE, 2012, pp. 1–8.

[7] J.-M. Friedt, W. Feng, D. Rabus, and G. Goavec-Merou, “Real time GNSS
spoofing detection and cancellation on embedded systems using software
defined radio,” in EuCAP, Düsseldorf, Germany, 2021.

