Generating a timing information (1-PPS) from a software defined radio decoding of GPS signals

D. Rabus¹, G. Goavec-Merou¹, G. Cabodevila¹, F. Meyer³, J.-M Friedt¹

¹FEMTO-ST Institute, Time and Frequency Department, Besançon, France ²OSU THETA, Besançon, France

> e-mail: jmfriedt@femto-st.fr https://github.com/oscimp/gnss-sdr-1pps

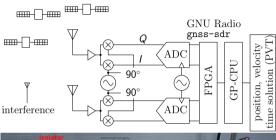
Software Defined Radio (SDR) implementation of a GNSS receiver

- ► SDR: minimize hardware to RF frontend (antenna, amplifier and frequency transposition)
- ▶ Process all radiofrequency signal as software on complex values I+jQ
- ► Gain access to the raw IQ stream for incoming plane wave physical characteristics
- ▶ Implement anti-jamming/anti-spoofing processing ¹ in the SDR frontend (null-steering)
- Full control of the complete signal processing chainSteer local oscillator to match incoming timing information

Velocity: East: 0.289 [m/s]. North: 0.988 [m/s]. Up = 1.087 [m/s]

2021 and https://github.com/oscimp/gnss-sdr

```
Current receiver time: 1 min 52 s
Position at 2001-0ct-12 06:25:15.500000 UTC using 4 observations is Lat = 47.251495868 [deg], Long = 5.993075579 [deg], Height = 360.117 [m]
init offset: 0.015487310819 [s]init LO frequ: 12.346229542937 [Hz]
Velocity: East: -0.282 [m/s], North: -1.510 [m/s], Up = -1.480 [m/s]
Position at 2001-0ct-12 06:25:16.000000 UTC using 4 observations is Lat = 47.251542192 [deg], Long = 5.993097609 [deg], Height = 377.010 [m]
Velocity: East: 0.249 [m/s], North: 0.922 [m/s], Up = 0.651 [m/s]
Current receiver time: 1 min 53 s
Position at 2001-0ct-12 06:25:16.500000 UTC using 4 observations is Lat = 47.251576137 [deg], Long = 5.993169968 [deg], Height = 373.085 [m]
```

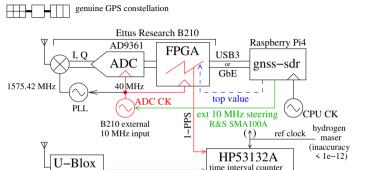

New GPS NAV message received in channel 4: subframe 5 from satellite GPS PRN 19 (Block IIR)
New GPS NAV message received in channel 5: subframe 5 from satellite GPS PRN 32 (Block IIF)
Position at 2001-0t-12 06:25:17.000000 UIC using 4 observations is Lat = 47.251548923 [deg], Long = 5.993130850 [deg], Height = 363.682 [m]
Velocity: East: -0.154 [m/s], North: 0.483 [m/s], Up = 0.803 [m/s]
Current receiver time: 1 min 54 s

New GPS NAV message received in channel 0: subframe 5 from satellite GPS PRN 12 (Block IIR-M) New GPS NAV message received in channel 2: subframe 5 from satellite GPS PRN 24 (Block IIF) New GPS NAV message received in channel 3: subframe 5 from satellite <u>GPS PRN 02 (Block IIR)</u>

How to materialize timing information is 1-Pulse Per Second (1-PPS)?

¹W. Feng, J.-M Friedt, G. Goavec-Merou, F. Meyer, *Software Defined Radio Implemented GPS Spoofing and Its Computationally Efficient Detection and Suppression*, IEEE Aerospace and Electronic Systems Magazine **36** (3), March

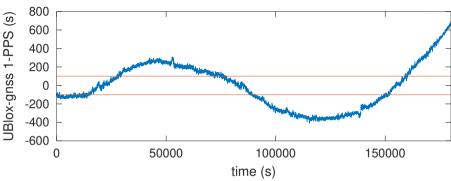
Problem statement: SDR reception



- ► Two-channel Ettus Research B210/ AD9361 coherent radiofrequency frontend
- Complex frequency transposition $I = s(t) \cdot \cos(\omega_{LO} t)$; $Q = s(t) \cdot \sin(\omega_{LO} t)$
- ADC samples at $f_s \ge 1.023$ MS/s both channels ($B \ge 2.046$ MHz)
- ► FPGA pre-processing and continuous datastream transfer to general purpose central processing unit (GP-CPU) running free, opensource implementation of Global Navigation Satellite System (GNSS) decoder gnss-sdr
- compatibility with embedded applications,
 e.g. Raspberry Pi4 single board computer²,
 1.5 GHz quad-core in performance mode
- output: Position, Velocity, Timing (PVT) solution

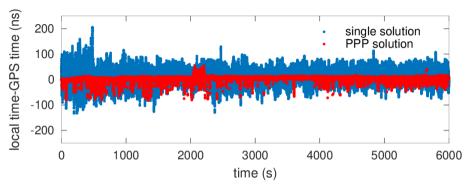
²G. Goavec-Merou, J.-M Friedt, *Porting GNU Radio to Buildroot: application to an embedded digital network analyzer*, FOSDEM 2021, and gnss-sdr at https://github.com/oscimp/oscimp_br2_external

Problem statement: sample timing

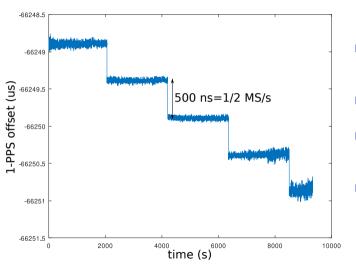

40 MHz is 4-times multiplication of reference 10 MHz input of B210 HM always clocks the HP53132A counter and might clock the B210 $\,$

1-PPS

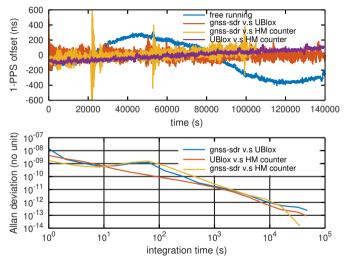
receiver


- All communication between FPGA and GP-CPU hardware asynchronous
- Only ADC sampling time is known assuming continuous datastream at f_s
- Control the clock timing the AD9361 frontend ADC, which also clocks the FPGA
- Counter in the FPGA from 0 to $f_s 1$
- Characterization: HP53132A time- interval counter clocked by Hydrogen Maser (HM) and reference 1-PPS from U-Blox NEO-M8P hardware receiver

1-PPS output: open loop


- 50 hour long measurement
- ▶ time difference between a U-Blox NEO-M8P and the 1-PPS counter implemented in the FPGA
- ► GP-CPU running gnss-sdr and logging the time-difference
- ▶ B210 clocked by a *free running* Rohde & Schwarz SMA100A synthesizer set to nominal 10 MHz,
- ► +11.1 ns/s=ppb drift removed, only the residue is displayed.
- \Rightarrow objective: steer reference clock to keep 1-PPS within ± 100 ns boundary

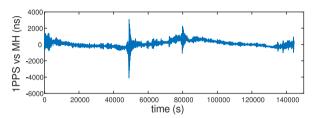
1-PPS output: closed loop

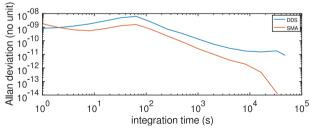

- Control SMA100A frequency with time-offset information from gnss-sdr PVT solution
- comparison between the "single solution" and the PPP solution
- ▶ sampling period is 1-chip or 20 ms, control loop every 500 ms
- select a sampling rate f_s fractional integer of the 40 MHz clock (1.25 MHz=integer division by 32, 2 MHz=integer division by 20, 1.125 MHz=fractional division by 320/9) to avoid drifting 1-PPS

1-PPS output: closed loop issue

- Source → Conditioner →
 Acquisition/Tracking/Telemetry
 → Observables → PVT
- Useless resampler from f_s to f_s : misses one sample every 2^{32}
- Make sure to Pass_Through to avoid $1/f_s$ jumps every $2^{32}/f_s = 2147.5$ s at 2 MS/s
- ▶ (sampling rate 1.125 MS/s⇒ $2^{32}/(1.125 \cdot 10^6) = 3817 \text{ s shift}$ by $1/1.125 = 0.888 \ \mu\text{s}$)

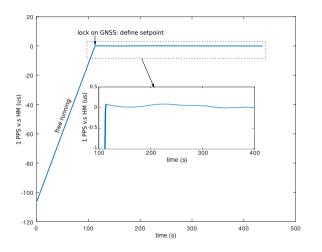
1-PPS output: closed loop result




- Long term stability assessment
- ▶ Drift of the HM with respect to 1-PPS GNSS visible at $\geq X \cdot 10^4$ s
- Convert time interval x phase-time fluctuation to³ fractional-frequency fluctuation y = x
 SigmaTheta-4.1/1col2col file
 SigmaTheta-4.1/X2Y file_2col
- Allan Time Deviation (MDEV⁴) from 10^{-8} at 1 s (10 ns @ 1 s) $1/\tau$
 - SigmaTheta-4.1/MDev file_2col.ykt
- Control loop time constant visible $\tau \in [10-100]$ s

⁴E. Rubiola, *Phase Noise and Frequency Stability in Oscillators*, Cambridge Univ. Press (2009), p.8

⁴F. Vernotte & al., SigmaTheta at https://theta.obs-besancon.fr/spip.php?article103&lang=en


1-PPS output: OCXO→TCXO

- Replace SMA100A OCXO clocked synthesizer with TCXO clocked AD9959 Direct Digital Synthesizer (DDS)
- Short term performance degraded by drift
- ▶ 32-bit resolution → 18.6 mHz DDS frequency resolution when clocked by a 20 MHz TCXO internally multiplied by 4
- close to SMA100A 10 mHz frequency resolution

1-PPS output: control loop initialization

- Excessive frequency offset between TCXO frequency and nominal frequency ...
- prevents initial fast convergence and leads to excessive oscillations.
- Initial coarse estimate of the frequency offset by observing the frequency drift once the first PVT solutions are found before closing the control loop

Conclusion

- ▶ Bridge the virtual output of SDR & application to GNSS decoding with hardware 1-PPS output
- Only the ADC timestamp provides accurate timing propagated to the asynchronous processing
- ightharpoonup need to steer the clock controlling the ADC ...
- ... which also happens to control the FPGA in which the counter is implemented.
- ▶ Demonstrated 1-PPS frequency control to 10^{-8} @1 s & $\searrow 1/\tau$ consistent with hardware receiver performance
- ► Sample loss will hardly affect *frequency control*

Perspective: 1-PPS phase (time-offset) control even when ADC samples are lost

Fork of gnss-sdr with 1-PPS support (SMA100A) available at https://github.com/oscimp/gnss-sdr-1pps

Acknowledgement: the free, opensource software/gateware development community:

- gnss-sdr at github.com/gnss-sdr/ by the Centre Tecnològic Telecomunicacions Catalunya (CTTC, Spain): C. Fernández-Prades and J. Arribas are acknowledged for fruitful discussions
- GNU Radio at github.com/gnuradio/
- Ettus Research FPGA github.com/ettusresearch/fpga and USRP Hardware Driver (UHD) Software at github.com/ettusresearch/uhd
- Buildroot at https://buildroot.org/

