
Generating a timing information (1-PPS) from a software defined
radio decoding of GPS signals

D. Rabus1, G. Goavec-Merou1, G. Cabodevila1, F. Meyer3, J.-M Friedt1

1FEMTO-ST Institute, Time and Frequency Department, Besançon, France
2OSU THETA, Besançon, France

e-mail: jmfriedt@femto-st.fr

https://github.com/oscimp/gnss-sdr-1pps

https://github.com/topics/gnss-sdr

May 28, 2021

1 / 11

https://github.com/oscimp/gnss-sdr-1pps
https://github.com/topics/gnss-sdr

Software Defined Radio (SDR) implementation of a GNSS receiver
I SDR: minimize hardware to RF frontend (antenna, amplifier and frequency transposition)
I Process all radiofrequency signal as software on complex values I+jQ
I Gain access to the raw IQ stream for incoming plane wave physical characteristics
I Implement anti-jamming/anti-spoofing processing 1 in the SDR frontend (null-steering)
I Full control of the complete signal processing chain
I Steer local oscillator to match incoming timing information

How to materialize timing information is 1-Pulse Per Second (1-PPS)?
1W. Feng, J.-M Friedt, G. Goavec-Merou, F. Meyer, Software Defined Radio Implemented GPS Spoofing and Its

Computationally Efficient Detection and Suppression, IEEE Aerospace and Electronic Systems Magazine 36 (3), March
2021 and https://github.com/oscimp/gnss-sdr 2 / 11

https://github.com/oscimp/gnss-sdr

Problem statement: SDR reception

ADC

ADCI

Q

F
P
G
A

G
P
-C

P
U

p
os
it
io
n
,
ve
lo
ci
ty

ti
m
e
so
lu
ti
on

(P
V
T
)

interference

gnss-sdr
GNU Radio

90◦

90◦

I Two-channel Ettus Research B210/
AD9361 coherent radiofrequency frontend

I Complex frequency transposition
I = s(t) · cos(ωLOt) ; Q = s(t) · sin(ωLOt)

I ADC samples at fs ≥ 1.023 MS/s both
channels (B ≥ 2.046 MHz)

I FPGA pre-processing and continuous
datastream transfer to general purpose
central processing unit (GP-CPU) running
free, opensource implementation of Global
Navigation Satellite System (GNSS) decoder
gnss-sdr

I compatibility with embedded applications,
e.g. Raspberry Pi4 single board computer2,
1.5 GHz quad-core in performance mode

I output: Position, Velocity, Timing (PVT)
solution

2G. Goavec-Merou, J.-M Friedt, Porting GNU Radio to Buildroot: application to an embedded digital network
analyzer, FOSDEM 2021, and gnss-sdr at https://github.com/oscimp/oscimp_br2_external 3 / 11

https://github.com/oscimp/oscimp_br2_external

Problem statement: sample timing

time interval counter
HP53132A

U−Blox
receiver

hydrogen
maser

(inaccuracy
< 1e−12)

ADC
FPGA

gnss−sdr

AD9361 Raspberry Pi4

GbE

USB3

ADC CK

I, Q

Ettus Research B210

or

CPU CK

top value

B210 external
10 MHz input

PLL
ext 10 MHz steering

R&S SMA100A

1
−

P
P

S

1−PPS

1575.42 MHz 40 MHz

ref clock

genuine GPS constellation

()

40 MHz is 4-times multiplication of reference 10 MHz input of B210

HM always clocks the HP53132A counter and might clock the B210

I All communication between
FPGA and GP-CPU hardware
asynchronous

I Only ADC sampling time is
known assuming continuous
datastream at fs

I Control the clock timing the
AD9361 frontend ADC, which
also clocks the FPGA

I Counter in the FPGA from 0 to
fs − 1

I Characterization: HP53132A
time- interval counter clocked by
Hydrogen Maser (HM) and
reference 1-PPS from U-Blox
NEO-M8P hardware receiver

4 / 11

1-PPS output: open loop

-600

-400

-200

0

200

400

600

800

0 50000 100000 150000

U
B

lo
x
-g

n
s
s
 1

-P
P

S
 (

s
)

time (s)

I 50 hour long measurement
I time difference between a U-Blox NEO-M8P and the 1-PPS counter implemented in the FPGA
I GP-CPU running gnss-sdr and logging the time-difference
I B210 clocked by a free running Rohde & Schwarz SMA100A synthesizer set to nominal 10 MHz,
I +11.1 ns/s=ppb drift removed, only the residue is displayed.

⇒ objective: steer reference clock to keep 1-PPS within ±100 ns boundary
5 / 11

1-PPS output: closed loop

I Control SMA100A frequency with time-offset information from gnss-sdr PVT solution

I comparison between the “single solution” and the PPP solution

I sampling period is 1-chip or 20 ms, control loop every 500 ms

I select a sampling rate fs fractional integer of the 40 MHz clock (1.25 MHz=integer division by 32,
2 MHz=integer division by 20, 1.125 MHz=fractional division by 320/9) to avoid drifting 1-PPS

6 / 11

1-PPS output: closed loop issue
1

-P
P
S
 o

ff
se

t
(u

s)

time (s)

500 ns=1/2 MS/s

I Source → Conditioner →
Acquisition/Tracking/Telemetry
→ Observables → PVT

I Useless resampler from fs to fs :
misses one sample every 232

I Make sure to Pass Through to
avoid 1/fs jumps every
232/fs = 2147.5 s at 2 MS/s

I (sampling rate 1.125 MS/s
⇒ 232/(1.125 · 106) = 3817 s shift
by 1/1.125 = 0.888 µs)

7 / 11

1-PPS output: closed loop result

-600

-400

-200

0

200

400

600

0 20000 40000 60000 80000 100000 120000 140000

1
-P

P
S

 o
ff

se
t

(n
s)

time (s)

free running
gnss-sdr v.s UBlox

10-14
10-13
10-12
10-11
10-10
10-09
10-08
10

-07

100 101 102 103 104 105A
lla

n
 d

e
vi

a
ti
o

n
 (

n
o

 u
n

it
)

integration time (s)

gnss-sdr v.s UBlox

UBlox v.s HM counter

gnss-sdr v.s HM counter
UBlox v.s HM counter

gnss-sdr v.s HM counter

I Long term stability assessment

I Drift of the HM with respect to
1-PPS GNSS visible at ≥ X · 104 s

I Convert time interval x phase-time
fluctuation to3 fractional-frequency
fluctuation y = ẋ
SigmaTheta-4.1/1col2col file

SigmaTheta-4.1/X2Y file_2col

I Allan Time Deviation (MDEV4)
from 10−8 at 1 s (10 ns @ 1 s)
↘ 1/τ
SigmaTheta-4.1/MDev file_2col.ykt

I Control loop time constant visible
τ ∈ [10− 100] s

4E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge Univ. Press (2009), p.8
4F. Vernotte & al., SigmaTheta at https://theta.obs-besancon.fr/spip.php?article103&lang=en

8 / 11

https://theta.obs-besancon.fr/spip.php?article103&lang=en

1-PPS output: OCXO→TCXO

I Replace SMA100A OCXO clocked
synthesizer with TCXO clocked
AD9959 Direct Digital Synthesizer
(DDS)

I Short term performance degraded
by drift

I 32-bit resolution → 18.6 mHz
DDS frequency resolution when
clocked by a 20 MHz TCXO
internally multiplied by 4

I close to SMA100A 10 mHz
frequency resolution

9 / 11

1-PPS output: control loop initialization

0 100 200 300 400 500
-120

-100

-80

-60

-40

-20

0

20

time (s)

0.5

0

-0.5

-1
100 200 300 400

time (s)

1
 P

P
S

 v
.s

 H
M

 (
u
s)

1
 P

P
S

 v
.s

 H
M

 (
u
s)

fr
ee

 r
u
n
n
in

g
lock on GNSS: define setpoint

I Excessive frequency offset between
TCXO frequency and nominal
frequency ...

I ... prevents initial fast convergence
and leads to excessive oscillations.

I Initial coarse estimate of the
frequency offset by observing the
frequency drift once the first PVT
solutions are found before closing
the control loop

10 / 11

Conclusion
I Bridge the virtual output of SDR & application to GNSS decoding with hardware 1-PPS output
I Only the ADC timestamp provides accurate timing propagated to the asynchronous processing

chain
I → need to steer the clock controlling the ADC ...
I ... which also happens to control the FPGA in

which the counter is implemented.
I Demonstrated 1-PPS frequency control to 10−8@1 s &
↘ 1/τ consistent with hardware receiver performance

I Sample loss will hardly affect frequency control

Perspective: 1-PPS phase (time-offset) control even
when ADC samples are lost

Fork of gnss-sdr with 1-PPS support (SMA100A) available
at https://github.com/oscimp/gnss-sdr-1pps

Acknowledgement: the free, opensource soft-
ware/gateware development community:

I gnss-sdr at github.com/gnss-sdr/ by
the Centre Tecnològic Telecomunicacions
Catalunya (CTTC, Spain): C.
Fernández-Prades and J. Arribas are
acknowledged for fruitful discussions

I GNU Radio at github.com/gnuradio/

I Ettus Research FPGA
github.com/ettusresearch/fpga and
USRP Hardware Driver (UHD) Software
at github.com/ettusresearch/uhd

I Buildroot at https://buildroot.org/

11 / 11

https://github.com/oscimp/gnss-sdr-1pps
github.com/gnss-sdr/
github.com/gnuradio/
github.com/ettusresearch/fpga
github.com/ettusresearch/uhd
https://buildroot.org/

	Outline

