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Software Defined Radio (SDR) implementation of a GNSS receiver
I SDR: minimize hardware to RF frontend (antenna, amplifier and frequency transposition)
I Process all radiofrequency signal as software on complex values I+jQ
I Gain access to the raw IQ stream for incoming plane wave physical characteristics
I Implement anti-jamming/anti-spoofing processing 1 in the SDR frontend (null-steering)
I Full control of the complete signal processing chain
I Steer local oscillator to match incoming timing information

How to materialize timing information is 1-Pulse Per Second (1-PPS)?
1W. Feng, J.-M Friedt, G. Goavec-Merou, F. Meyer, Software Defined Radio Implemented GPS Spoofing and Its

Computationally Efficient Detection and Suppression, IEEE Aerospace and Electronic Systems Magazine 36 (3), March
2021 and https://github.com/oscimp/gnss-sdr 2 / 11
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Problem statement: SDR reception
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I Two-channel Ettus Research B210/
AD9361 coherent radiofrequency frontend

I Complex frequency transposition
I = s(t) · cos(ωLOt) ; Q = s(t) · sin(ωLOt)

I ADC samples at fs ≥ 1.023 MS/s both
channels (B ≥ 2.046 MHz)

I FPGA pre-processing and continuous
datastream transfer to general purpose
central processing unit (GP-CPU) running
free, opensource implementation of Global
Navigation Satellite System (GNSS) decoder
gnss-sdr

I compatibility with embedded applications,
e.g. Raspberry Pi4 single board computer2,
1.5 GHz quad-core in performance mode

I output: Position, Velocity, Timing (PVT)
solution

2G. Goavec-Merou, J.-M Friedt, Porting GNU Radio to Buildroot: application to an embedded digital network
analyzer, FOSDEM 2021, and gnss-sdr at https://github.com/oscimp/oscimp_br2_external 3 / 11

https://github.com/oscimp/oscimp_br2_external


Problem statement: sample timing
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40 MHz is 4-times multiplication of reference 10 MHz input of B210

HM always clocks the HP53132A counter and might clock the B210

I All communication between
FPGA and GP-CPU hardware
asynchronous

I Only ADC sampling time is
known assuming continuous
datastream at fs

I Control the clock timing the
AD9361 frontend ADC, which
also clocks the FPGA

I Counter in the FPGA from 0 to
fs − 1

I Characterization: HP53132A
time- interval counter clocked by
Hydrogen Maser (HM) and
reference 1-PPS from U-Blox
NEO-M8P hardware receiver
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1-PPS output: open loop
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I 50 hour long measurement
I time difference between a U-Blox NEO-M8P and the 1-PPS counter implemented in the FPGA
I GP-CPU running gnss-sdr and logging the time-difference
I B210 clocked by a free running Rohde & Schwarz SMA100A synthesizer set to nominal 10 MHz,
I +11.1 ns/s=ppb drift removed, only the residue is displayed.

⇒ objective: steer reference clock to keep 1-PPS within ±100 ns boundary
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1-PPS output: closed loop

I Control SMA100A frequency with time-offset information from gnss-sdr PVT solution

I comparison between the “single solution” and the PPP solution

I sampling period is 1-chip or 20 ms, control loop every 500 ms

I select a sampling rate fs fractional integer of the 40 MHz clock (1.25 MHz=integer division by 32,
2 MHz=integer division by 20, 1.125 MHz=fractional division by 320/9) to avoid drifting 1-PPS
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1-PPS output: closed loop issue
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500 ns=1/2 MS/s

I Source → Conditioner →
Acquisition/Tracking/Telemetry
→ Observables → PVT

I Useless resampler from fs to fs :
misses one sample every 232

I Make sure to Pass Through to
avoid 1/fs jumps every
232/fs = 2147.5 s at 2 MS/s

I (sampling rate 1.125 MS/s
⇒ 232/(1.125 · 106) = 3817 s shift
by 1/1.125 = 0.888 µs)
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1-PPS output: closed loop result
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I Long term stability assessment

I Drift of the HM with respect to
1-PPS GNSS visible at ≥ X · 104 s

I Convert time interval x phase-time
fluctuation to3 fractional-frequency
fluctuation y = ẋ
SigmaTheta-4.1/1col2col file

SigmaTheta-4.1/X2Y file_2col

I Allan Time Deviation (MDEV4)
from 10−8 at 1 s (10 ns @ 1 s)
↘ 1/τ
SigmaTheta-4.1/MDev file_2col.ykt

I Control loop time constant visible
τ ∈ [10− 100] s

4E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge Univ. Press (2009), p.8
4F. Vernotte & al., SigmaTheta at https://theta.obs-besancon.fr/spip.php?article103&lang=en
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1-PPS output: OCXO→TCXO

I Replace SMA100A OCXO clocked
synthesizer with TCXO clocked
AD9959 Direct Digital Synthesizer
(DDS)

I Short term performance degraded
by drift

I 32-bit resolution → 18.6 mHz
DDS frequency resolution when
clocked by a 20 MHz TCXO
internally multiplied by 4

I close to SMA100A 10 mHz
frequency resolution
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1-PPS output: control loop initialization
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I Excessive frequency offset between
TCXO frequency and nominal
frequency ...

I ... prevents initial fast convergence
and leads to excessive oscillations.

I Initial coarse estimate of the
frequency offset by observing the
frequency drift once the first PVT
solutions are found before closing
the control loop
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Conclusion
I Bridge the virtual output of SDR & application to GNSS decoding with hardware 1-PPS output
I Only the ADC timestamp provides accurate timing propagated to the asynchronous processing

chain
I → need to steer the clock controlling the ADC ...
I ... which also happens to control the FPGA in

which the counter is implemented.
I Demonstrated 1-PPS frequency control to 10−8@1 s &
↘ 1/τ consistent with hardware receiver performance

I Sample loss will hardly affect frequency control

Perspective: 1-PPS phase (time-offset) control even
when ADC samples are lost

Fork of gnss-sdr with 1-PPS support (SMA100A) available
at https://github.com/oscimp/gnss-sdr-1pps
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