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SDR: flexible and stable approach to RF signal processing

Software Defined Radio (SDR): digital radiofrequency (RF) digital 1 signal processing 2

I stable: an algorithm will not drift over time (6= passive component, e.g. capacitor) or with
environmental conditions

I flexible: ability to tune operating conditions without halting operation

I reconfigurable: one hardware, many application only requiring reconfiguration of connections

+ data logging + communication over networks ...

Application to oscillator metrology, (secure) time transfer
and timing (of active/passive RADAR signals)

In the current architecture, carrier (LO) will not matter (re-
moved by RF frontend), only bandwidth (sampling rate fs) will
matter −→
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1D.A. Mindell, Digital Apollo: Human and Machine in Spaceflight, MIT Press (2011)
2D.A. Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics, Johns Hopkins

University Press (2003)
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Red Pitaya/STEMLab (baseband)
I T. Preuschoff & al., Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red

Pitaya), Rev. Sci. Instrum. 91 (8) 083001 (2020)
I A. Tourigny-Plante & al., An open and flexible digital phase-locked loop for optical metrology, Rev. Sci. Instrum. 89

(9) 093103 (2018)
I P. Mahnke, Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM

spectroscopy, Rev. Sci. Instrum. 89 (1) 013113 (2018)
I J.A. Sherman & al., Oscillator metrology with software defined radio, Rev. Sci. Instrum. 87 (5) 054711 (2016)
I C. Hasselwander & al., gr-MRI: A software package for magnetic resonance imaging using software defined radios,

Journal of Magnetic Resonance 270 47–55 (2016)
I F. Balakirev & al., Resonant ultrasound spectroscopy: The essential toolbox, Rev. Sci. Instrum. 90 (12) 121401 (2019)
I G.A. Stimpson & al., An open-source high-frequency lock-in amplifier, Rev. Sci. Instrum., 90 (9) 094701 (2019)
I A. C. Cárdenas & al., Phase Noise and Frequency Stability of the Red-Pitaya Internal PLL, IEEE Trans. Ultrasonics,

Ferroelectrics, and Frequency Control 66 (2) 412–416 (2019)
I S.J. Yu & al., The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics

experiments, Rev. Sci. Instrum. 89 025107 (2018)
Ettus Research B210:

I Paul Meaney & al., A 4-channel, vector network analyzer microwave imaging prototype based on software defined radio
technology, Rev. Sci. Instrum. 90 044708 (2019)

Ettus Research E312:
I S. Prager & al., Ultrawideband Synthesis for High-Range-Resolution Software-Defined Radar IEEE Trans. Instrum. &

Meas. 69(6) 3789–3803 (2019)
I S. Prager & al., Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar

networks, IEEE Trans. Microwave Theory and Techniques 68(11) 4787–4804 (2020)
Ettus Research N210:

I C. Andrich & al., High-precision measurement of sine and pulse reference signals using software-defined radio IEEE
Trans. Instrum. & Meas. 67 (5) 1132–1141 (2018) 3 / 29



SDR in space
“In addition to easing the scheduling and configuration burden, an autonomous radio also will
gracefully handle unpredictable or anomalous events. For example, during entry, descent, and
landing (EDL), a spacecraft can undergo large Doppler swings caused by rocket firings, parachute
openings, backshell ejection, and a bouncing landing on the surface. Even when all scheduled
events occur successfully, there may be Doppler uncertainty due to unpredictable properties of the
atmosphere. Ideally, the communication link should operate whether or not each of the EDL events
is successful, but the uncertainties involved typically lead to liberal link margins—for example, the
Mars Exploration Rovers observed link margins that sometimes exceeded 10 dB. An autonomous
radio could substantially reduce this margin because it would handle any Doppler swing nearly
optimally. Unfortunately, such flexible technology is not available on NASA’s currently flying
missions. In perhaps the most glaring example of this, NASA engineers discovered in 2000 that
a receiver aboard Cassini, launched in 1997, would fail during the Huygens probe descent onto
Titan because it did not properly account for the Doppler profile of the probe. Increasing the
loop bandwidth of the synchronization loops would have easily fixed the problem, but, unfortunately, these loop
bandwidths were hard-wired to fixed values on the spacecraft. With superior engineering and enormous dedication,
NASA and the European Space Agency were still able to save the mission by slightly altering the original trajectory, but
this solution required forming a large and expensive international recovery team to find the appropriate
recommendations on how to overcome the radio’s severe limitations.”

J. Hamkins & al. Autonomous Software-Defined Radio Receivers for Deep Space Applications, Deep Space
Communications and Navigation Series (NASA/JPL, 2006), p.2:
descanso.jpl.nasa.gov/monograph/series9/Descanso9_Full_rev2.pdf
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Free Opensource development frameworks
Need to address both the FPGA (fast, massively parallel) and the CPU (flexible, high level language,
networking, user interface ...)
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AI Pyrpl (https://pyrpl.readthedocs.io/)

I Chisel & SpinalHDL (Scala language) at
https://www.chisel-lang.org/ and
https://github.com/SpinalHDL/SpinalHDL

I nMigen & LiteX (https://github.com/enjoy-digital/litex)
I Oscimp Digital (FEMTO-ST: https://github.com/oscimp/oscimpDigital/)
I Edalize (https://github.com/olofk/edalize)
I GNU Radio and RFNoC (for Ettus Research hardware), gr-verilog

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM:
I free opensource signal processing framework
I digital signal processing blocks in C++ (or Python)...
I ... connected through a Python description of datastream.
I Real time processing (� GNU/Octave or Python post-processing)
I Graphical User Interface for generating Python scripts: GNU Radio Companion 5 / 29
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Fundamental of time transfer

How to demonstrate time transfer with SDR?

I RADAR range resolution: ∆R ≥ c0

2B (c0 = 300 m/µs, bandwidth B)

I spectrum spreading: maximize B by all means (pulse, frequency sweep, frequency steps, noise ...)

I receive time delayed copies of the transmitted signal: matched filter = correlation (search for
delayed copies of the emitted signal)

xcorr(x , y)(τ) =

∫ T/2

−T/2

x(t)y(t + τ)dt ⇒ identify τ maximizing xcorr

I maximize averaging time T to smooth out noise

I maximize B for the correlation peak width 1/B to be as narrow as possible

I Pulse Compression Ratio: B × T
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Spectrum spreading numerical experiments

I Carrier frequency and bandwidth are
two unrelated quantities which can be
tuned independently

I Carrier frequency defined by first
frequency transposition stage (RF
frontend) whereas bandwidth defined
by ADC sampling rate

I Binary Phase shift keying: ϕ ∈ [0;π]
for spectrum spreading
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time=[0:0.02:1023];time=time(1:end-1);

signal=exp(j*2*pi*time);

f=linspace(-1,1,length(time));

plot(f,abs(fftshift(fft(signal))));

indices=[1:100:length(signal)-50]’...

*[ones(1,50)]+[0:49];

signal(indices)=-signal(indices);

c=cacode(11,50)*2;c=c-mean(c);

signal=signal.*c;
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Spectrum spreading numerical experiments

I Carrier frequency and bandwidth are
two unrelated quantities which can be
tuned independently

I Carrier frequency defined by first
frequency transposition stage (RF
frontend) whereas bandwidth defined
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I Binary Phase shift keying: ϕ ∈ [0;π]
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Spectrum spreading numerical experiments
From convolution to correlation:

I Convolution: conv(s, r)(τ) =

∫
s(t)r(τ − t)dt

I Practical computation of convolution:

FT (conv(s, r)) = FT (s) · FT (r)

I Correlation: corr(s, r)(τ) =

∫
s(t)r(t + τ)dt

I Convolution → correlation: time reversal

I since exp(jωt)∗ = exp(−jωt), we conclude

FT (corr(s, r)) = FT (s) · FT∗(r)
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Spectrum spreading numerical experiments
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Pulse compression basics
I The longer the code (T ), the longer the time during which the integral of xcorr accumulates

energy and smoothes noise,
I but long pulse induces loss of time resolution ⇒ cross-correlation is a broad peak
I strong variation of code over time ⇒ increased bandwidth B ⇒ cross correlation peak width 1/B

pulse compression ratio (PCR) = B · T
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time=[0:1e-6:1e-2]; %samp. rate=1 us

x=chirp(time,1e3,time(end),1e3);

noise=20*rand(length(x),1)’;

noise=noise-mean(noise);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’b-’);hold on;plot(xb,’r-’);

x=chirp(time,1e3,time(end),5e3);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’k-’);hold on;plot(xb,’m-’);
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Pulse compression basics
I The longer the code (T ), the longer the time during which the integral of xcorr accumulates

energy and smoothes noise,
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Why SDR handles complex numbers, ...

I real signal Fourier transform is conjugate symmetric (negative frequency and positive frequency
magnitude equal)

I the spectrum transposed from RF band s = A exp(jωt + ϕ) to baseband need not be symmetric
⇒ complex mixing to create I and Q (Identity and Quadrature)

I I = s · cos(ωRF t) and Q = s · sin(ωRF t) so that A = |I + jQ| and ϕ = arg(I + jQ) if ωRF = ω

I In other words ... imagine a single frequency transposition s(t) · cos(ωRF t): if the modulation is
on the amplitude, then A cosϕ = 0 if ϕ = π/2, ∀A.

I Solution: add a second signal maximized when cosϕ = 0, i.e. using sin

I since sin(x) is cos(x + π/2): quadrature of the local oscillator

hardware soft
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... and double frequency transposition: digital IQ vs analog IQ 3

also used in the NanoVNA (https://github.com/ttrftech/NanoVNA)
I real case: I = s(t) cos(ωRF t)

Q = s(t)·(1+ε) sin(ωRF t+δϕ):
analog IQ imbalance

I avoid analog IQ imbalance with
dual transposition step

I digital domain frequency
transposition: Xlating FIR
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3http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2016/03/sentinel-1_radar_

mission/15857809-1-eng-GB/Sentinel-1_radar_mission_pillars.jpg 14 / 29
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NanoVNA frequency transposition architecture
Openhardware4/opensource5 vector network analyzer

I main.c: static int32 t

frequency offset = 5000; the
intermediate frequency sampled by the
audio codec, with (si5351.c) CLK0:

frequency + offset and CLK1:

frequency when requesting
si5351 set frequency with offset(uint32 t

freq, int offset, uint8 t

drive strength).
I Audio signal

sam-
pled at 48 kHz⇒
sincos tbl[48][2]

in dsp.c for
transposition by
5 kHz in
dsp process()

of dsp.c).
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4https://raw.githubusercontent.com/hugen79/NanoVNA-H/master/doc/Schematic_nanovna-H_REV3_4_2.pdf
5https://github.com/ttrftech/NanoVNA
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Benefits of digital: example of distributed passive RADAR (4 antennas)
I aliasing/higher order Nyquist modes (case of CW RADAR receiver) – challenge of synchronizing

RF frontends (random and time varying phase offset at PLL output)
I Doppler shift in RADAR is δfDoppler(Hz) = 2fcarrier
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CW reflected by planes – phase analysis ⇒ avoid LO mixing by sampling 200− 143.05 = 56.95 MHz: DoA analysis.

6W. Feng, J.-M Friedt, G. Cherniak, M. Sato, (Yet another) passive RADAR using DVB-T receiver and SDR,
FOSDEM 2018 16 / 29



1-PPS generation from SDR based GNSS receiver (gnss-sdr)

I distributed timing: only the ADC can timestamp samples, all further processing is asynchronous

time interval counter
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gnss-sdr 7 provides a PVT solution with the time delay between a local copy of the PRN sequence and the received
signals ⇒ control the clock feeding FPGA+ADC accordingly

7https://gnss-sdr.org/ and our fork at https://github.com/oscimp/gnss-sdr-1PPS
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Drawbacks of digital & SDR
I each operations requires many clock cycles: low control bandwidth despite high clock frequencies
I example of the Finite Impulse Response filter:

yn =
N∑
k

bkxn−k

will introduce a delay of N clock cycles Ts and a phase shift ϕ = 2πN
2 · Ts · f at frequency f

⇒ limited closed loop control bandwidth
I low dynamic range (8 bit=48 dB ; 16 bit=96 dB)

Left: 14-bit Red Pitaya (Zynq 7010), right: 16-bit Red Pitaya

(Zynq 7020) ; top: FIR magnitude, bottom: unwrapped phase:

L. Tranchart, FEMTO-ST, Besançon, France
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Closed loop control delay

Optical link stabilization control loop:

B. Maréchal (now Mikron) & S. Denis (now CSEM), FEMTO-ST, Besançon, France

https://github.com/oscimp/app/tree/f6e739e13248a8ec5a39b4fede420d57ed3552aa/

redpitaya/double_iq_pid_vco 19 / 29
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Drawbacks of digital: LO leakage

software super-heterodyne

freq

in

freq

bw

QT GUI Frequency Sink

Id: qtgui_freq_sink_x_0_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 2.016M

Options

Id: top_block

Output Language: Python

Generate Options: QT GUI

QT GUI Range

Id: df

Default Value: 100k

Start: 0

Stop: 100k

Step: 10k

QT GUI Range

Id: frequency

Default Value: 434

Start: 433

Stop: 435

Step: 1m

Variable

Id: samp_rate

Value: 2.016M

freq

in0

in1

freq

bw

QT GUI Frequency Sink

Id: after_translation

Name: After translation

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 252k

outin
Complex to Arg

Id: blocks_complex_to_arg_0

outin
Complex to Arg

Id: blocks_complex_to_arg_0_0

out

in

freq

Frequency Xlating FIR Filter

Id: freq_xlat...ilter_xxx_0_0

Decimation: 1

Taps: 1

Center Frequency: 100k

Sample Rate: 252k

outin

Low Pass Filter

Id: low_pass_filter_0

Decimation: 8

Gain: 1

Sample Rate: 2.016M

Cutoff Freq: 126k

Transition Width: 7.875k

Window: Hamming

Beta: 6.76

outin

Low Pass Filter

Id: low_pass_filter_0_0

Decimation: 1

Gain: 1

Sample Rate: 252k

Cutoff Freq: 50k

Transition Width: 12.5k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Id: osmosdr_source_0

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 2.016M

Ch0: Frequency (Hz): 433.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 30

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

freq

in

freq

bw

QT GUI Frequency Sink

Id: qtgui_freq_sink_x_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 252k in0

in1

QT GUI Time Sink

Id: qtgui_time_sink_x_0

Number of Points: 1.024k

Sample Rate: 252k

Autoscale: No

I LO leakage of the homodyne
receiver8: super heterodyne 9solution
by introducting an intermediate
frequency (historically designed to
avoid amplifier oscillation)

I Xlating FIR Filter introduces
intermediate frequency

9A. Mashhour, W. Domino, N. Beamish, On the Direct Conversion Receiver – A Tutorial, Microwave Journal (2001),
at http://www.microwavejournal.com/articles/3226-on-the-direct-conversion-receiver-a-tutorial

9E.H. Armstrong, A new system of short wave amplification, Proc. IRE. 9 (1), 3-–11 (1921)
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SDR instrumentation: acoustic wave field mapping 10

I LORX ' 2ω0 + ω on both channels CH1 and CH2 – ω0 acousto-optic modulator frequency and ω SAW frequency

I send |CH1|, |CH2|, |CH1/CH2|, arg(CH1/CH2)

I Replace dedicated laboratory hardware with general
purpose SDR receiver (Ettus Research B210)

I Flexibility: 70–6000 MHz RF frontend (AD9361)

I Coherent dual input (get rid of LO contribution
between both channels)

I Software processing with GNU Radio: challenge of
synchronizing positioning table & sampling (0-MQ) D. Teyssieux, FEMTO-ST, Besançon, France

10D. Teyssieux & al., Absolute phase and amplitude mapping of surface acoustic wave fields, Proc. IFCS (2013) 21 / 29



SDR instrumentation: acoustic wave field mapping
← Bulk acoustic resonator overtone out of plane acoustic
field mapping

dual resonator SAW sensor acoustic field mapping ↓

← 434 MHz quartz resonator, 0.4 × 2 mm mapped
6.16 × 105 samples in 15100 s or 24.5 ms/sample limited
by positioning table stabilization
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Passive RADAR: time & frequency maps
I Benefit from existing radiofrequency signals for detecting (moving) targets

I One reference channel (non-cooperative source) and one surveillance channel (targets)

I Doppler induced frequency shift + time delayed echoes = time-frequency (distance-velocity) maps

I only short-term (ms) phase coherence needed

I multi-DVB-T general purpose SDR demonstration 11 12
I challenge of random

delay between channels
(constant as long as
datastream remains
continuous): UDP
stream

I frequency stacking for
improved range
resolution and surpass
acquisition bandwidth fs
limitation

11W. Feng, J.-M Friedt, G. Cherniak, M. Sato, Passive bistatic radar using digital video broadcasting–terrestrial
receivers as general-purpose software-defined radio receivers, Rev. Sci. Instrum. 89 104701 (2018)

12J.-M Friedt & al., (Yet another) passive RADAR using DVB-T receiver and SDR, FOSDEM 2018 23 / 29



Sound card for time of flight measurement

I Long range time dissemination: very low frequency signals bouncing off the ionosphere

I DCF7713(77.5 kHz), MSF (60 kHz), eLORAN (100 kHz), TDF (162 kHz) ...

I again the broader the signal bandwidth 14, the better the timing accuracy (100 µs
resolution @ VLF)
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14J.-M Friedt, C. Eustache, É. Carry, E. Rubiola, Software defined radio decoding of DCF77: time and frequency
dissemination with a sound card, Radio Science 53(1) 48–61 (2018)

14P. Hetzel, Time dissemination via the LF transmitter DCF77 using a pseudo-random phase-shift keying of the
carrier, 2nd EFTF 351-–364 (1988)
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Beyond analog ...

I FM demodulation example
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Beyond analog ...
Be aware of digital calculation limitations, especially with floating point number representation
I Discrete time: t=[0:∞]’/f s; at sampling rate fs
I Numerically controlled oscillator 15: lo=exp(j*2*pi*f*t);
I Frequency transposition: st=s.*lo;

Example: keep trigonometric arguments in the [−π : π] range where precision is maximized 16

// i n c r e m e n t c u r r e n t phase a n g l e
v o i d s t e p ( i n t n = 1)
{

phase += p h a s e i n c ∗ n ;
i f ( f a b s ( phase ) > GR M PI ) {

w h i l e ( phase > GR M PI )
phase −= 2 ∗ GR M PI ;

w h i l e ( phase < −GR M PI )
phase += 2 ∗ GR M PI ;

}
}

v o i d nco<o t y p e , i t y p e >:: s i n ( f l o a t ∗ output , i n t n o u t p u t i t e m s , d o u b l e ampl )
{

f o r ( i n t i = 0 ; i < n o u t p u t i t e m s ; i ++) {
output [ i ] = ( f l o a t ) ( s i n ( ) ∗ ampl ) ;
s t e p ( ) ;

}
} -1
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48 kS/s sampling rate
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15transpose time to make a vector, or make sure to transpose lo with .’ to avoid using the complex conjugate of lo
16https://github.com/gnuradio/gnuradio/blob/master/gnuradio-runtime/include/gnuradio/nco.h#L50
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Hardware

I Open: HackRF, BladeRF, LimeSDR, Ettus Research hardware

I Cost: DVB-T receivers (<10 euros/$), ADi PlutoSDR AD936x
input and output are not coherent ! (different LO)

I VLF: computer sound card

I Size: Fairwaves XTRX (30× 51 mm)

I General purspose: radiofrequency grade oscilloscope!
(discontinuous stream but matches the ideal SDR definition)17

17https://github.com/jmfriedt/gr-oscilloscope38
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Conclusion

Software Defined Radio for time& frequency analysis

I benefits of stability, flexibility and reconfigurability

I invest in hardware once, deploy for most
investigations by tuning software

I challenging software combination (FPGA HDL,
GP-CPU C++/Python, user interface & networking)

Not addressed in this presentation: SDR for educational purposes at the intersection between
computer science, radiofrequency and digital signal processing
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