
Software Defined Radio for time & frequency metrology:
demonstration with GNU Radio

J.-M Friedt

FEMTO-ST Time & Frequency department, Besançon, France

jmfriedt@femto-st.fr

slides and references at
jmfriedt.free.fr

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

April 17, 2021

1 / 29

jmfriedt.free.fr

SDR: flexible and stable approach to RF signal processing

Software Defined Radio (SDR): digital radiofrequency (RF) digital 1 signal processing 2

I stable: an algorithm will not drift over time (6= passive component, e.g. capacitor) or with
environmental conditions

I flexible: ability to tune operating conditions without halting operation

I reconfigurable: one hardware, many application only requiring reconfiguration of connections

+ data logging + communication over networks ...

Application to oscillator metrology, (secure) time transfer
and timing (of active/passive RADAR signals)

In the current architecture, carrier (LO) will not matter (re-
moved by RF frontend), only bandwidth (sampling rate fs) will
matter −→

ADC
SDR

ADC
SDR

LO

PLL

LO−FI FI

fs
LO

fs

f

P

1D.A. Mindell, Digital Apollo: Human and Machine in Spaceflight, MIT Press (2011)
2D.A. Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics, Johns Hopkins

University Press (2003)
2 / 29

Red Pitaya/STEMLab (baseband)
I T. Preuschoff & al., Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red

Pitaya), Rev. Sci. Instrum. 91 (8) 083001 (2020)
I A. Tourigny-Plante & al., An open and flexible digital phase-locked loop for optical metrology, Rev. Sci. Instrum. 89

(9) 093103 (2018)
I P. Mahnke, Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM

spectroscopy, Rev. Sci. Instrum. 89 (1) 013113 (2018)
I J.A. Sherman & al., Oscillator metrology with software defined radio, Rev. Sci. Instrum. 87 (5) 054711 (2016)
I C. Hasselwander & al., gr-MRI: A software package for magnetic resonance imaging using software defined radios,

Journal of Magnetic Resonance 270 47–55 (2016)
I F. Balakirev & al., Resonant ultrasound spectroscopy: The essential toolbox, Rev. Sci. Instrum. 90 (12) 121401 (2019)
I G.A. Stimpson & al., An open-source high-frequency lock-in amplifier, Rev. Sci. Instrum., 90 (9) 094701 (2019)
I A. C. Cárdenas & al., Phase Noise and Frequency Stability of the Red-Pitaya Internal PLL, IEEE Trans. Ultrasonics,

Ferroelectrics, and Frequency Control 66 (2) 412–416 (2019)
I S.J. Yu & al., The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics

experiments, Rev. Sci. Instrum. 89 025107 (2018)
Ettus Research B210:

I Paul Meaney & al., A 4-channel, vector network analyzer microwave imaging prototype based on software defined radio
technology, Rev. Sci. Instrum. 90 044708 (2019)

Ettus Research E312:
I S. Prager & al., Ultrawideband Synthesis for High-Range-Resolution Software-Defined Radar IEEE Trans. Instrum. &

Meas. 69(6) 3789–3803 (2019)
I S. Prager & al., Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar

networks, IEEE Trans. Microwave Theory and Techniques 68(11) 4787–4804 (2020)
Ettus Research N210:

I C. Andrich & al., High-precision measurement of sine and pulse reference signals using software-defined radio IEEE
Trans. Instrum. & Meas. 67 (5) 1132–1141 (2018) 3 / 29

SDR in space
“In addition to easing the scheduling and configuration burden, an autonomous radio also will
gracefully handle unpredictable or anomalous events. For example, during entry, descent, and
landing (EDL), a spacecraft can undergo large Doppler swings caused by rocket firings, parachute
openings, backshell ejection, and a bouncing landing on the surface. Even when all scheduled
events occur successfully, there may be Doppler uncertainty due to unpredictable properties of the
atmosphere. Ideally, the communication link should operate whether or not each of the EDL events
is successful, but the uncertainties involved typically lead to liberal link margins—for example, the
Mars Exploration Rovers observed link margins that sometimes exceeded 10 dB. An autonomous
radio could substantially reduce this margin because it would handle any Doppler swing nearly
optimally. Unfortunately, such flexible technology is not available on NASA’s currently flying
missions. In perhaps the most glaring example of this, NASA engineers discovered in 2000 that
a receiver aboard Cassini, launched in 1997, would fail during the Huygens probe descent onto
Titan because it did not properly account for the Doppler profile of the probe. Increasing the
loop bandwidth of the synchronization loops would have easily fixed the problem, but, unfortunately, these loop
bandwidths were hard-wired to fixed values on the spacecraft. With superior engineering and enormous dedication,
NASA and the European Space Agency were still able to save the mission by slightly altering the original trajectory, but
this solution required forming a large and expensive international recovery team to find the appropriate
recommendations on how to overcome the radio’s severe limitations.”

J. Hamkins & al. Autonomous Software-Defined Radio Receivers for Deep Space Applications, Deep Space
Communications and Navigation Series (NASA/JPL, 2006), p.2:
descanso.jpl.nasa.gov/monograph/series9/Descanso9_Full_rev2.pdf

4 / 29

descanso.jpl.nasa.gov/monograph/series9/Descanso9_Full_rev2.pdf

Free Opensource development frameworks
Need to address both the FPGA (fast, massively parallel) and the CPU (flexible, high level language,
networking, user interface ...)

fs c
o
m

m
u
n
ic

a
ti

o
n

C
P

U

RF

frontend

ADC

F
P

G
AI Pyrpl (https://pyrpl.readthedocs.io/)

I Chisel & SpinalHDL (Scala language) at
https://www.chisel-lang.org/ and
https://github.com/SpinalHDL/SpinalHDL

I nMigen & LiteX (https://github.com/enjoy-digital/litex)
I Oscimp Digital (FEMTO-ST: https://github.com/oscimp/oscimpDigital/)
I Edalize (https://github.com/olofk/edalize)
I GNU Radio and RFNoC (for Ettus Research hardware), gr-verilog

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM:
I free opensource signal processing framework
I digital signal processing blocks in C++ (or Python)...
I ... connected through a Python description of datastream.
I Real time processing (� GNU/Octave or Python post-processing)
I Graphical User Interface for generating Python scripts: GNU Radio Companion 5 / 29

https://pyrpl.readthedocs.io/
https://www.chisel-lang.org/
https://github.com/SpinalHDL/SpinalHDL
https://github.com/enjoy-digital/litex
https://github.com/oscimp/oscimpDigital/
https://github.com/olofk/edalize

Fundamental of time transfer

How to demonstrate time transfer with SDR?

I RADAR range resolution: ∆R ≥ c0

2B (c0 = 300 m/µs, bandwidth B)

I spectrum spreading: maximize B by all means (pulse, frequency sweep, frequency steps, noise ...)

I receive time delayed copies of the transmitted signal: matched filter = correlation (search for
delayed copies of the emitted signal)

xcorr(x , y)(τ) =

∫ T/2

−T/2

x(t)y(t + τ)dt ⇒ identify τ maximizing xcorr

I maximize averaging time T to smooth out noise

I maximize B for the correlation peak width 1/B to be as narrow as possible

I Pulse Compression Ratio: B × T

6 / 29

Spectrum spreading numerical experiments

I Carrier frequency and bandwidth are
two unrelated quantities which can be
tuned independently

I Carrier frequency defined by first
frequency transposition stage (RF
frontend) whereas bandwidth defined
by ADC sampling rate

I Binary Phase shift keying: ϕ ∈ [0;π]
for spectrum spreading

0

10000

20000

30000

40000

50000

60000

-1 -0.5 0 0.5 1

p
o

w
e

r
(n

o
 u

n
it
)

normalized frequency (no unit)

0

5000

10000

15000

20000

25000

-1 -0.5 0 0.5 1
p

o
w

e
r

(n
o

 u
n

it
)

normalized frequency (no unit)

0
500

1000
1500
2000
2500
3000
3500
4000

-1 -0.5 0 0.5 1

p
o

w
e

r
(n

o
 u

n
it
)

time=[0:0.02:1023];time=time(1:end-1);

signal=exp(j*2*pi*time);

f=linspace(-1,1,length(time));

plot(f,abs(fftshift(fft(signal))));

indices=[1:100:length(signal)-50]’...

*[ones(1,50)]+[0:49];

signal(indices)=-signal(indices);

c=cacode(11,50)*2;c=c-mean(c);

signal=signal.*c;

pure sine

periodically modulated sine

pseudo randomly modulated sine

normalized frequency (no unit)

200 400 600 800 1000 1200

time (no unit)

200 400 600 800 1000 1200

time (no unit)

200 400 600 800 1000 1200

time (no unit)

7 / 29

Spectrum spreading numerical experiments

I Carrier frequency and bandwidth are
two unrelated quantities which can be
tuned independently

I Carrier frequency defined by first
frequency transposition stage (RF
frontend) whereas bandwidth defined
by ADC sampling rate

I Binary Phase shift keying: ϕ ∈ [0;π]
for spectrum spreading

0.85

0.9

0.95

1

1.05

1.1

1.15

0 20000 40000 60000 80000 100000a
u

to
c
o

rr
 (

n
o

 u
n

it
)

delay (no unit)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20000 40000 60000 80000 100000a
u

to
c
o

rr
 (

n
o

 u
n

it
)

delay (no unit)

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000 100000a
u

to
c
o

rr
 (

n
o

 u
n

it
)

pure sine (xcorr(signal, ’unbiased’))

periodically modulated sine

pseudo randomly modulated sine

delay (no unit)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200

a
u
to

c
o
rr

 (
n
o
 u

n
it
)

delay (no unit)

8 / 29

Spectrum spreading numerical experiments
From convolution to correlation:

I Convolution: conv(s, r)(τ) =

∫
s(t)r(τ − t)dt

I Practical computation of convolution:

FT (conv(s, r)) = FT (s) · FT (r)

I Correlation: corr(s, r)(τ) =

∫
s(t)r(t + τ)dt

I Convolution → correlation: time reversal

I since exp(jωt)∗ = exp(−jωt), we conclude

FT (corr(s, r)) = FT (s) · FT∗(r)

Broadband signal source

Delay

Options

Id: demo

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

QT GUI Range

Id: D

Default Value: 50

Start: 0

Stop: 100

Step: 1

Variable

Id: N

Value: 1.024k

Variable

Id: samp_rate

Value: 320k

out

Noise Source

Id: analog_noise_source_x_0

Noise Type: Gaussian

Amplitude: 1

Seed: 0

out in

Complex to Mag

Id: blocks_complex_to_mag_0

Vec Length: 1.024k

outin

Delay

Id: blocks_delay_0

Delay: 50

out

in0

in1

Multiply Conjugate

Id: blocks_mu...onjugate_cc_0

Vec Length: 1.024k

outin
Stream to Vector

Id: blocks_stream_to_vector_0

outin
Stream to Vector

Id: blocks_st...to_vector_0_0

outin

Throttle

Id: blocks_throttle_0

Sample Rate: 320k

out in
Vector to Stream

Id: blocks_vector_to_stream_0

o
u

t
in

V
e
ct

o
r

to
 S

tr
e
a
m

Id
:

b
lo

ck
s_

v
e
..
.t

o
_s

tr
e
a
m

_0
_0

outin

FFT

Id: fft_vxx_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

outin

FFT

Id: fft_vxx_0_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

out in

FFT

Id: fft_vxx_1

FFT Size: 1.024k

Forward/Reverse: Forward

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

in

QT GUI Time Sink

Id: qtgui_time_sink_x_0

Number of Points: 1.024k

Sample Rate: 320k

Autoscale: Yes

freq

in

freq

bw

QT GUI Waterfall Sink

Id: qtgui_waterfall_sink_x_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 320k
9 / 29

Spectrum spreading numerical experiments
From convolution to correlation:

I Convolution: conv(s, r)(τ) =

∫
s(t)r(τ − t)dt

I Practical computation of convolution:

FT (conv(s, r)) = FT (s) · FT (r)

I Correlation: corr(s, r)(τ) =

∫
s(t)r(t + τ)dt

I Convolution → correlation: time reversal

I since exp(jωt)∗ = exp(−jωt), we conclude

FT (corr(s, r)) = FT (s) · FT∗(r)

Delay 0 generator
Delay 1 generator

Delay 2 generator

Delay 0

Delay 1

Delay 2

QT GUI Range

Id: D

Default Value: 50

Start: 0

Stop: 100

Step: 1

Options

Id: demo

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

Function Probe

Id: D

Block ID: probe0

Function Name: level

Poll Rate (Hz): 10

Function Probe

Id: D1

Block ID: probe1

Function Name: level

Poll Rate (Hz): 10

Function Probe

Id: D2

Block ID: probe2

Function Name: level

Poll Rate (Hz): 10

Variable

Id: N

Value: 1.024k

Variable

Id: samp_rate

Value: 320k

out

Noise Source

Id: analog_noise_source_x_0

Noise Type: Gaussian

Amplitude: 1

Seed: 0

outfreq

Signal Source

Id: analog_sig_source_x_0

Sample Rate: 320k

Waveform: Triangle

Frequency: 100m

Amplitude: 128

Offset: 0

Initial Phase (Radians): 0

outfreq

Signal Source

Id: analog_sig_source_x_0_0

Sample Rate: 320k

Waveform: Square

Frequency: 100m

Amplitude: 128

Offset: 64

Initial Phase (Radians): 0

outfreq

Signal Source

Id: analog_sig_source_x_0_0_0

Sample Rate: 320k

Waveform: Cosine

Frequency: 100m

Amplitude: 128

Offset: 0

Initial Phase (Radians): 0

out

in0

in1

in2

Add

Id: blocks_add_xx_0

Vec Length: 1.024k

out in

Complex to Mag

Id: blocks_complex_to_mag_0

Vec Length: 1.024k

outin

Delay

Id: blocks_delay_0

Delay: 0

outin

Delay

Id: blocks_delay_1

Delay: 0

outin

Delay

Id: blocks_delay_2

Delay: 0

out

in0

in1

Multiply Conjugate

Id: blocks_mu...onjugate_cc_0

Vec Length: 1.024k

out

in0

in1

Multiply Conjugate

Id: blocks_mu...jugate_cc_0_0

Vec Length: 1.024k

out

in0

in1

Multiply Conjugate

Id: blocks_mu...gate_cc_0_0_0

Vec Length: 1.024k

outin
Stream to Vector

Id: blocks_stream_to_vector_0

outin
Stream to Vector

Id: blocks_st...to_vector_0_0

outin
Stream to Vector

Id: blocks_st..._vector_0_0_0

outin
Stream to Vector

Id: blocks_st...ector_0_0_0_0

outin

Throttle

Id: blocks_throttle_0

Sample Rate: 320k

outin

Throttle

Id: blocks_throttle_0_0

Sample Rate: 320k

outin

Throttle

Id: blocks_throttle_0_0_0

Sample Rate: 320k

outin

Throttle

Id: blocks_throttle_0_0_0_0

Sample Rate: 320k

out in
Vector to Stream

Id: blocks_vector_to_stream_0

outin
Vector to Stream

Id: blocks_ve...to_stream_0_0

outin

FFT

Id: fft_vxx_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

outin

FFT

Id: fft_vxx_0_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

outin

FFT

Id: fft_vxx_0_0_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

outin

FFT

Id: fft_vxx_0_0_0_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

outin

FFT

Id: fft_vxx_1

FFT Size: 1.024k

Forward/Reverse: Forward

Window: window.blackmanhar...

Shift: Yes

Num. Threads: 1

in
Probe Signal

Id: probe0
in

Probe Signal

Id: probe1

in
Probe Signal

Id: probe2

in

QT GUI Time Sink

Id: qtgui_time_sink_x_0

Number of Points: 1.024k

Sample Rate: 320k

Autoscale: Yes

freq

in

freq

bw

QT GUI Waterfall Sink

Id: qtgui_waterfall_sink_x_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 320k

10 / 29

Pulse compression basics
I The longer the code (T), the longer the time during which the integral of xcorr accumulates

energy and smoothes noise,
I but long pulse induces loss of time resolution ⇒ cross-correlation is a broad peak
I strong variation of code over time ⇒ increased bandwidth B ⇒ cross correlation peak width 1/B

pulse compression ratio (PCR) = B · T

0 0.0020.0040.0060.0080.01
-1

-0.5

0

0.5

1

0 0.0020.0040.0060.0080.01
-10

-5

0

5

0 0.0020.0040.0060.0080.01

-10

-5

0

5

10

5000 10000 15000 20000

-4000

-2000

0

2000

4000

x
c
o

rr

0 0.0020.0040.0060.0080.01

-0.5

0

0.5

1

0 0.0020.0040.0060.0080.01
-10

-5

0

5

0 0.0020.0040.0060.0080.01

-10

-5

0

5

10

sin

Noise

chirp

Noise

1 kHz sin noise signal+noise

1-5 kHz chirp noise signal+noise

time=[0:1e-6:1e-2]; %samp. rate=1 us

x=chirp(time,1e3,time(end),1e3);

noise=20*rand(length(x),1)’;

noise=noise-mean(noise);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’b-’);hold on;plot(xb,’r-’);

x=chirp(time,1e3,time(end),5e3);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’k-’);hold on;plot(xb,’m-’);

11 / 29

Pulse compression basics
I The longer the code (T), the longer the time during which the integral of xcorr accumulates

energy and smoothes noise,
I but long pulse induces loss of time resolution ⇒ cross-correlation is a broad peak
I strong variation of code over time ⇒ increased bandwidth B ⇒ cross correlation peak width 1/B

pulse compression ratio (PCR) = B · T

5000 10000 15000 20000

-4000

-2000

0

2000

4000

delay

x
c
o
rr

sin 3 kHz

chirp 3-3.5 kHz

chirp 3-10 kHz

time=[0:1e-6:1e-2]; %samp. rate=1 us

x=chirp(time,1e3,time(end),1e3);

noise=20*rand(length(x),1)’;

noise=noise-mean(noise);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’b-’);hold on;plot(xb,’r-’);

x=chirp(time,1e3,time(end),5e3);

xx=xcorr(x,x); xb=xcorr(x,noise);

plot(xx,’k-’);hold on;plot(xb,’m-’);

12 / 29

Why SDR handles complex numbers, ...

I real signal Fourier transform is conjugate symmetric (negative frequency and positive frequency
magnitude equal)

I the spectrum transposed from RF band s = A exp(jωt + ϕ) to baseband need not be symmetric
⇒ complex mixing to create I and Q (Identity and Quadrature)

I I = s · cos(ωRF t) and Q = s · sin(ωRF t) so that A = |I + jQ| and ϕ = arg(I + jQ) if ωRF = ω

I In other words ... imagine a single frequency transposition s(t) · cos(ωRF t): if the modulation is
on the amplitude, then A cosϕ = 0 if ϕ = π/2, ∀A.

I Solution: add a second signal maximized when cosϕ = 0, i.e. using sin

I since sin(x) is cos(x + π/2): quadrature of the local oscillator

hardware soft

cos

sin ADC
Q
I

VGA

fsdetector
I/Q

90
o

LO

13 / 29

... and double frequency transposition: digital IQ vs analog IQ 3

also used in the NanoVNA (https://github.com/ttrftech/NanoVNA)
I real case: I = s(t) cos(ωRF t)

Q = s(t)·(1+ε) sin(ωRF t+δϕ):
analog IQ imbalance

I avoid analog IQ imbalance with
dual transposition step

I digital domain frequency
transposition: Xlating FIR

Filter

NCO

ADC

LO−IF IFfs

Q
I

f

f

f

P

complex real

3http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2016/03/sentinel-1_radar_

mission/15857809-1-eng-GB/Sentinel-1_radar_mission_pillars.jpg 14 / 29

https://github.com/ttrftech/NanoVNA
http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2016/03/sentinel-1_radar_mission/15857809-1-eng-GB/Sentinel-1_radar_mission_pillars.jpg
http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2016/03/sentinel-1_radar_mission/15857809-1-eng-GB/Sentinel-1_radar_mission_pillars.jpg

NanoVNA frequency transposition architecture
Openhardware4/opensource5 vector network analyzer

I main.c: static int32 t

frequency offset = 5000; the
intermediate frequency sampled by the
audio codec, with (si5351.c) CLK0:

frequency + offset and CLK1:

frequency when requesting
si5351 set frequency with offset(uint32 t

freq, int offset, uint8 t

drive strength).
I Audio signal

sam-
pled at 48 kHz⇒
sincos tbl[48][2]

in dsp.c for
transposition by
5 kHz in
dsp process()

of dsp.c).

DUT

DUT

CLK1

CLK0

IN2

IN1

IN3

50

50

50

50

IF

IF

IF

RF

RF

S21

S11

4https://raw.githubusercontent.com/hugen79/NanoVNA-H/master/doc/Schematic_nanovna-H_REV3_4_2.pdf
5https://github.com/ttrftech/NanoVNA

15 / 29

https://raw.githubusercontent.com/hugen79/NanoVNA-H/master/doc/Schematic_nanovna-H_REV3_4_2.pdf
https://github.com/ttrftech/NanoVNA

Benefits of digital: example of distributed passive RADAR (4 antennas)
I aliasing/higher order Nyquist modes (case of CW RADAR receiver) – challenge of synchronizing

RF frontends (random and time varying phase offset at PLL output)
I Doppler shift in RADAR is δfDoppler(Hz) = 2fcarrier

v
c ' vm/s @ fcarrier = 143.05 MHz

D
o
p
p
le

r
s
h
if
t
(H

z
)

time (5.3 s/sampl)

-200

0

200

500 1000 1500 2000
-3

-2

-1

0

1

2

3

ADC

P

f
fs/2

143.05

1
0
0

56.95

fs

ADC clock controlled by 10 MHz + 1 PPS from White
Rabbit for frequency & time synchronization

D
o
p
p
le

r
s
h
if
t
(H

z
)

time (5.3 s/sampl)

-200

0

200

500 1000 1500 2000

-2

-1

0

1

2

White Rabbit synchronized Ettus Research X310 receivers (στ ' 60 ps), 200 MS/s recording of GRAVES 6 143.05 MHz
CW reflected by planes – phase analysis ⇒ avoid LO mixing by sampling 200− 143.05 = 56.95 MHz: DoA analysis.

6W. Feng, J.-M Friedt, G. Cherniak, M. Sato, (Yet another) passive RADAR using DVB-T receiver and SDR,
FOSDEM 2018 16 / 29

1-PPS generation from SDR based GNSS receiver (gnss-sdr)

I distributed timing: only the ADC can timestamp samples, all further processing is asynchronous

time interval counter
HP53132A

U−Blox
receiver

hydrogen
maser

(inaccuracy
< 1e−12)

ADC
FPGA

gnss−sdr

AD9361 Raspberry Pi4

GbE

USB3

ADC CK

I, Q

Ettus Research B210

or

CPU CK

top value

B210 external
10 MHz input

PLL
ext 10 MHz steering

R&S SMA100A

1
−

P
P

S

1−PPS

1575.42 MHz 40 MHz

ref clock

genuine GPS constellation

()

-600

-400

-200

0

200

400

600

0 20000 40000 60000 80000 100000 120000 140000

1
-P

P
S

 o
ff
se

t
(n

s)

time (s)

free running
gnss-sdr v.s UBlox

10-14
10

-13
10-12
10-11
10

-10
10-09
10-08
10

-07

100 101 102 103 104 105A
lla

n
 d

e
v
ia

ti
o
n
 (

n
o
 u

n
it)

integration time (s)

gnss-sdr v.s UBlox

UBlox v.s HM counter

gnss-sdr v.s HM counter
UBlox v.s HM counter

gnss-sdr v.s HM counter

gnss-sdr 7 provides a PVT solution with the time delay between a local copy of the PRN sequence and the received
signals ⇒ control the clock feeding FPGA+ADC accordingly

7https://gnss-sdr.org/ and our fork at https://github.com/oscimp/gnss-sdr-1PPS
17 / 29

https://gnss-sdr.org/
https://github.com/oscimp/gnss-sdr-1PPS

Drawbacks of digital & SDR
I each operations requires many clock cycles: low control bandwidth despite high clock frequencies
I example of the Finite Impulse Response filter:

yn =
N∑
k

bkxn−k

will introduce a delay of N clock cycles Ts and a phase shift ϕ = 2πN
2 · Ts · f at frequency f

⇒ limited closed loop control bandwidth
I low dynamic range (8 bit=48 dB ; 16 bit=96 dB)

Left: 14-bit Red Pitaya (Zynq 7010), right: 16-bit Red Pitaya

(Zynq 7020) ; top: FIR magnitude, bottom: unwrapped phase:

L. Tranchart, FEMTO-ST, Besançon, France

18 / 29

Closed loop control delay

Optical link stabilization control loop:

B. Maréchal (now Mikron) & S. Denis (now CSEM), FEMTO-ST, Besançon, France

https://github.com/oscimp/app/tree/f6e739e13248a8ec5a39b4fede420d57ed3552aa/

redpitaya/double_iq_pid_vco 19 / 29

https://github.com/oscimp/app/tree/f6e739e13248a8ec5a39b4fede420d57ed3552aa/redpitaya/double_iq_pid_vco
https://github.com/oscimp/app/tree/f6e739e13248a8ec5a39b4fede420d57ed3552aa/redpitaya/double_iq_pid_vco

Drawbacks of digital: LO leakage

software super-heterodyne

freq

in

freq

bw

QT GUI Frequency Sink

Id: qtgui_freq_sink_x_0_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 2.016M

Options

Id: top_block

Output Language: Python

Generate Options: QT GUI

QT GUI Range

Id: df

Default Value: 100k

Start: 0

Stop: 100k

Step: 10k

QT GUI Range

Id: frequency

Default Value: 434

Start: 433

Stop: 435

Step: 1m

Variable

Id: samp_rate

Value: 2.016M

freq

in0

in1

freq

bw

QT GUI Frequency Sink

Id: after_translation

Name: After translation

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 252k

outin
Complex to Arg

Id: blocks_complex_to_arg_0

outin
Complex to Arg

Id: blocks_complex_to_arg_0_0

out

in

freq

Frequency Xlating FIR Filter

Id: freq_xlat...ilter_xxx_0_0

Decimation: 1

Taps: 1

Center Frequency: 100k

Sample Rate: 252k

outin

Low Pass Filter

Id: low_pass_filter_0

Decimation: 8

Gain: 1

Sample Rate: 2.016M

Cutoff Freq: 126k

Transition Width: 7.875k

Window: Hamming

Beta: 6.76

outin

Low Pass Filter

Id: low_pass_filter_0_0

Decimation: 1

Gain: 1

Sample Rate: 252k

Cutoff Freq: 50k

Transition Width: 12.5k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Id: osmosdr_source_0

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 2.016M

Ch0: Frequency (Hz): 433.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 30

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

freq

in

freq

bw

QT GUI Frequency Sink

Id: qtgui_freq_sink_x_0

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 252k in0

in1

QT GUI Time Sink

Id: qtgui_time_sink_x_0

Number of Points: 1.024k

Sample Rate: 252k

Autoscale: No

I LO leakage of the homodyne
receiver8: super heterodyne 9solution
by introducting an intermediate
frequency (historically designed to
avoid amplifier oscillation)

I Xlating FIR Filter introduces
intermediate frequency

9A. Mashhour, W. Domino, N. Beamish, On the Direct Conversion Receiver – A Tutorial, Microwave Journal (2001),
at http://www.microwavejournal.com/articles/3226-on-the-direct-conversion-receiver-a-tutorial

9E.H. Armstrong, A new system of short wave amplification, Proc. IRE. 9 (1), 3-–11 (1921)
20 / 29

http://www.microwavejournal.com/articles/3226-on-the-direct-conversion-receiver-a-tutorial

SDR instrumentation: acoustic wave field mapping 10

I LORX ' 2ω0 + ω on both channels CH1 and CH2 – ω0 acousto-optic modulator frequency and ω SAW frequency

I send |CH1|, |CH2|, |CH1/CH2|, arg(CH1/CH2)

I Replace dedicated laboratory hardware with general
purpose SDR receiver (Ettus Research B210)

I Flexibility: 70–6000 MHz RF frontend (AD9361)

I Coherent dual input (get rid of LO contribution
between both channels)

I Software processing with GNU Radio: challenge of
synchronizing positioning table & sampling (0-MQ) D. Teyssieux, FEMTO-ST, Besançon, France

10D. Teyssieux & al., Absolute phase and amplitude mapping of surface acoustic wave fields, Proc. IFCS (2013) 21 / 29

SDR instrumentation: acoustic wave field mapping
← Bulk acoustic resonator overtone out of plane acoustic
field mapping

dual resonator SAW sensor acoustic field mapping ↓

← 434 MHz quartz resonator, 0.4 × 2 mm mapped
6.16 × 105 samples in 15100 s or 24.5 ms/sample limited
by positioning table stabilization

Y
 (

m
m

)

X (mm)

432.443174 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

433.218974 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

434.368974 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

16

18

20

22

24

26

28

30

Y
 (

m
m

)

X (mm)

reflectivity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

22 / 29

Passive RADAR: time & frequency maps
I Benefit from existing radiofrequency signals for detecting (moving) targets

I One reference channel (non-cooperative source) and one surveillance channel (targets)

I Doppler induced frequency shift + time delayed echoes = time-frequency (distance-velocity) maps

I only short-term (ms) phase coherence needed

I multi-DVB-T general purpose SDR demonstration 11 12
I challenge of random

delay between channels
(constant as long as
datastream remains
continuous): UDP
stream

I frequency stacking for
improved range
resolution and surpass
acquisition bandwidth fs
limitation

11W. Feng, J.-M Friedt, G. Cherniak, M. Sato, Passive bistatic radar using digital video broadcasting–terrestrial
receivers as general-purpose software-defined radio receivers, Rev. Sci. Instrum. 89 104701 (2018)

12J.-M Friedt & al., (Yet another) passive RADAR using DVB-T receiver and SDR, FOSDEM 2018 23 / 29

Sound card for time of flight measurement

I Long range time dissemination: very low frequency signals bouncing off the ionosphere

I DCF7713(77.5 kHz), MSF (60 kHz), eLORAN (100 kHz), TDF (162 kHz) ...

I again the broader the signal bandwidth 14, the better the timing accuracy (100 µs
resolution @ VLF)

audio in right

audio in left

active NEO−M8T
U−Blox

antenna

coil
77.5 kHz

1 PPS

GPS receiver

0 10 20 30 40 50 60
-10000

-5000

0

5000

10000

time (s)

a
m

p
lit

u
d
e
 (

a
.u

.)

0 10 20 30 40 50 60
0

200000

400000

600000

800000

1e+06

time (s)

x
c
o
rr

(p
h
,P

R
N

)

0 0.5 1 1.5 2 2.5
-10000

-5000

0

5000

10000

time (s)

a
m

p
lit

u
d
e
 (

a
.u

.)

(c)(a)

(d)(b)

0 0.5 1 1.5 2 2.5
0

200000

400000

600000

800000

time (s)

x
c
o
rr

(p
h
,P

R
N

)

200 400 600 800 1000 1200 1400

-8000

-6000

-4000

-2000

0

2000

4000

6000

sample number (5 kS/s)

a
m

p
lit

u
d
e
 (

a
.u

.)

200 400 600 800 1000 1200 1400

200000

400000

600000

sample number (5 kS/s)

x
c
o
rr

(p
h
a
s
e
,P

R
N

)

(f)

(e)

14J.-M Friedt, C. Eustache, É. Carry, E. Rubiola, Software defined radio decoding of DCF77: time and frequency
dissemination with a sound card, Radio Science 53(1) 48–61 (2018)

14P. Hetzel, Time dissemination via the LF transmitter DCF77 using a pseudo-random phase-shift keying of the
carrier, 2nd EFTF 351-–364 (1988)

24 / 29

Beyond analog ...

I FM demodulation example

25 / 29

Beyond analog ...
Be aware of digital calculation limitations, especially with floating point number representation
I Discrete time: t=[0:∞]’/f s; at sampling rate fs
I Numerically controlled oscillator 15: lo=exp(j*2*pi*f*t);
I Frequency transposition: st=s.*lo;

Example: keep trigonometric arguments in the [−π : π] range where precision is maximized 16

// i n c r e m e n t c u r r e n t phase a n g l e
v o i d s t e p (i n t n = 1)
{

phase += p h a s e i n c ∗ n ;
i f (f a b s (phase) > GR M PI) {

w h i l e (phase > GR M PI)
phase −= 2 ∗ GR M PI ;

w h i l e (phase < −GR M PI)
phase += 2 ∗ GR M PI ;

}
}

v o i d nco<o t y p e , i t y p e >:: s i n (f l o a t ∗ output , i n t n o u t p u t i t e m s , d o u b l e ampl)
{

f o r (i n t i = 0 ; i < n o u t p u t i t e m s ; i ++) {
output [i] = (f l o a t) (s i n () ∗ ampl) ;
s t e p () ;

}
} -1

-0.5

0

0.5

1

0 0.002 0.004 0.006 0.008 0.01

si
g

n
a

l (
a

.u
.)

time (s)

time starting @ 0 s
time starting @ 0.1 s
time starting @ 1 s

48 kS/s sampling rate
floating point numbers

15transpose time to make a vector, or make sure to transpose lo with .’ to avoid using the complex conjugate of lo
16https://github.com/gnuradio/gnuradio/blob/master/gnuradio-runtime/include/gnuradio/nco.h#L50

26 / 29

Hardware

I Open: HackRF, BladeRF, LimeSDR, Ettus Research hardware

I Cost: DVB-T receivers (<10 euros/$), ADi PlutoSDR AD936x
input and output are not coherent ! (different LO)

I VLF: computer sound card

I Size: Fairwaves XTRX (30× 51 mm)

I General purspose: radiofrequency grade oscilloscope!
(discontinuous stream but matches the ideal SDR definition)17

17https://github.com/jmfriedt/gr-oscilloscope38
27 / 29

https://github.com/jmfriedt/gr-oscilloscope38

Conclusion

Software Defined Radio for time& frequency analysis

I benefits of stability, flexibility and reconfigurability

I invest in hardware once, deploy for most
investigations by tuning software

I challenging software combination (FPGA HDL,
GP-CPU C++/Python, user interface & networking)

Not addressed in this presentation: SDR for educational purposes at the intersection between
computer science, radiofrequency and digital signal processing

28 / 29

Selected bibliography
1. T. Collins & al., Software-Defined Radio for Engineers, (2018) at

https://www.analog.com/en/education/education-library/software-defined-radio-for-engineers.html

2. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd Ed (1999) at
https://www.dspguide.com/pdfbook.htm

3. T. McDermott, Wireless Digital Communications : Design and Theory, Tucson Amateur Packet Radio
Corporation – TAPR (1997)

4. J.G. Proakis, D.K. Manolakis, Digital Signal Processing, Prentice Hall (2006)

5. R.G. Lyons, Understanding Digital Signal Processing, Prentice Hall (2004)

6. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (3rd Edition), Prentice-Hall Signal Processing
Series (2009), and videos of his lectures at ocw.mit.edu/resources/

res-6-007-signals-and-systems-spring-2011/video-lectures/lecture-1-introduction/

7. K. Borre, D.M. Akos, N. Bertelsen, A Software-Defined GPS and Galileo Receiver: A Single-Frequency Approach,
Birkhäuser (2007)

8. E.D. Kaplan, C. Hegarty, Understanding GPS: Principles and Applications, 2nd Ed., Artech House (2005)

9. Principles of Digital Communications course at
ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-450-principles-of-digital-communications-i-fall-2006/video-lectures/

10. Yearly conferences: GNU Radio Conference (GRCon) and FOSDEM Free Software devroom

29 / 29

https://www.analog.com/en/education/education-library/software-defined-radio-for-engineers.html
https://www.dspguide.com/pdfbook.htm
ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-lectures/lecture-1-introduction/
ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-lectures/lecture-1-introduction/
ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-principles-of-digital-communications-i-fall-2006/video-lectures/
ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-principles-of-digital-communications-i-fall-2006/video-lectures/

	Outline
	Spectrum spreading

