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Introduction

High resolution DEM for snow cover and glacier evolution
assesment !

Area ranging from a few 100 m? to a few tens of km?
Snow cover = ~ 10 cm elevation resolution

Multiple-season/year comparison = absolute coordinate positioning
requirement (for point cloud subtraction)

IF. Tolle & al. “Terrestrial laser scanning surveys to describe and quantify slope
dynamics in an Arctic glacier basin (Austre Lovénbreen, Svalbard 79°N)”, The 13th
International Circumpolar Remote Sensing Symposium
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LiDAR

e Historically: photography and ground control point positioning
(photogrammetry)

e More recently: state of the art resolution achieved by light pulse
time of flight measurement (“Light-RADAR" — lidar) and raster
scanning the laser beam over the targeted area

e GPS positioning of the Lidar instrument + georeference targets for
positioning the point cloud in space

e centimeter accuracy in the distance scale, spot size of 30 cm
diameter at 1 km (3 cm at 100 m), footprint 8 cm at 100 m

= fantastic point cloud resolution
but time consuming (multiple hour
measurement), strongly dependent
on weather conditions, heavy/frag-
ile equipment (state of the art tele-
scope) and requires power
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Photogrammetry

Our question: can digital photogrammetry provide the required dataset
(resolution) for our snow/ice accumulation/melt assesment ? high
temporal resolution ?

e Digital photogrammetry:

Structure from Motion (SfM)
strategy uses multiple views of
the same scene for
reconstructing the 3D point
cloud (depth map)

Commercial off the shelf
camera: lightweight, power
autonomous

4000 pixel wide image with an angular width of 60 °© = 1 m-wide
pixel at 4 km
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e MICMAC: Opensource software

e Step by step processing (command line interface): each step is
defined by the user and the result can be assessed before the next
step is considered

E. Bernard & al.

@ Find similar features on multiple images
picturel  picture2 29
; Y. Egels & M. Kasser, Digital Photogram-
\%ﬂ@/ metry, CRC Press (2001), chapter 2.5
. \picture3 (pp.145-158)
m Sub-pixel resolution

e ability to convert the point cloud coordinates to absolute
coordinates either using Ground Control Points or injecting the GPS
position of the camera when the images were taken

’http://logiciels.ign.fr/?-Micmac, 3-
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MICMAC

e Complex algorithm: in our case, two software, MICMAC? from the
French Geographic Institute (IGN) and Photoscan (Agisoft).

e MICMAC: Opensource software

e Step by step processing (command line interface): each step is
defined by the user and the result can be assessed before the next
step is considered

@ Find similar features on multiple images

@® Identify camera lens properties (no preliminary calibration !)

© Identify camera position when pictures were taken

O Assess the result of these computations

@® Dense point cloud computation from the aforementioned
parameters: a complex scene is the fusion of multiple point clouds

e ability to convert the point cloud coordinates to absolute

coordinates either using Ground Control Points or injecting the GPS
position of the camera when the images were taken

’http://logiciels.ign.fr/?-Micmac, 3-
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Point cloud analysis

Huge number of points (>200 ksamples) only handled by dedicated

software

e Point cloud display:
Meshlab (meshlab.

sourceforge. net/)

e Point cloud cropping
and distance analysis:
CloudCompare
(www.danielgm.net/cc/)
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MICMAC: birdcliff site
Cloud dimensions: 45 mx 12 m, including snow covered areas
e 3 point clouds of the same feature were acquired under different
photography conditions within a few minutes

e separate GPS receiver stores the camera position at the time the
picture is taken (<m short term relative position resolution)

e Point cloud error assesment: 90% of the points lie at less than
22 cm error, with typical samples in the 6-10 cm error range

v2541(3:
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(at a distance of 40 m, pixel width is 1 cm)
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e Manual overlap due to inconsistency in the meaning of X, Y and
Z+Lidar point cloud centered on the instrument
e Transform matrix diagonal elements: 0.9926, 0.9997 and 0.9926
= scale consistent to better than 1%
e Point cloud error assesment: 90% of the points lie at less than
32 cm error
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e accurate in-plane model, accurate elevation, but poor absolute
position + tilt
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Left: Google Earth distance estimate . from our DEM model

between Haavimb and Slatoo summits
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o fixed lens properties —
the wider the lens, the better (no tele)

e 80% overlap between images of the same feature
[m] = =
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e sometimes it works ...

= on-site image processing for assessing the quality of the point cloud
and go back to take more pictures if needed
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Issue of snow covered areas

o Lack of reliable features to lock on: result dependent on
illumination/shadow

e Any structure on the surface is usable: rocks, tracks ...

e sometimes it works ... and sometimes not !

= on-site image processing for assessing the quality of the point cloud
and go back to take more pictures if needed

21/23



Assessment of
photogrammetry
Structure-from-
Motion compared

to terrestrial
LiDAR scanning
for generating
Digital Elevation
Models.
Example in a
polar basin,
Spitsbergen
79°N

E. Bernard & al.

Comparison conclusion

| Photogrammetry

[ LiDAR

Lightweight, cheap

Passive, requires visible structures
Sensitive to cast shadows
Opportunistic data acquisition

1 m pixel size at 4 km

Heavy equipment, expensive
Active, functional in low light
Insensitive to shadows
Dedicated experiment

1 m spot size at 4 km

_5‘\»\
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estimate

when the image was taken

SfM requirements
(drone ?)

Educational purpose: detailed tuto-
rial on MICMAC (for GNU/Linux) applied
to daily photography conditions at
http://jmfriedt.free.fr/lm_sfm.pdf
(French) and http://jmfriedt.free.
fr/lm_sfm_en.pdf (English) — enjoy !

Conclusion

Demonstration of the use of COTS camera for SfM application
Cloudpoint resolution in the 30 cm range sufficient for snow depth

Cloudpoint registration based either on GCP or camera position

Actual DEM subtraction (october-april) remains to be demonstrated
Need for aerial photography rather than ground based photography
for large scale DEM, complying with
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