J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

Subsurface wireless chemical sensing strategy compatible with Ground Penetrating RADAR

Digital is good, analog is bad (TM): timing generator for RADAR systems

J.-M Friedt^{1,3}, A. Hugeat¹, S. Lamare², F. Chérioux², D. Rabus³, G. Goavec-Mérou³, L. Arapan³, S. Alzuaga³

jmfriedt@femto-st.fr, slides at jmfriedt.free.fr/#jmf16n

¹ FEMTO-ST/Time & Frequency, Besançon, France
 ² FEMTO-ST/Micro-Nano Sciences & Systems, Besançon, France
 ³ SENSeOR SAS, Besançon, France

WAGPR 2017 28-30 JUNE, EDINBURGH, SCOTLAND

J.-M Friedt & al

Outline

Subsurface chemical sensing system:

Outline

- transducer
- Chemical functionalization
- Sensor measurement
- Timebase stability
- Digital ramp synthesis
- Conclusion

?[H₂S]

- acoustic transducer acting as cooperative target (separate sensor echo from clutter)
- transducer functionalization for chemical sensing: polymer formulation
- 3 sensor measurement using Groung Penetrating Radar (GPR)
- **4** sampling rate stability issue and solution for the Malå ProEx

Outline

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

- acoustic transducer acting as cooperative target (separate sensor echo from clutter)
- 2 transducer functionalization for chemical sensing: polymer formulation
- **3** sensor measurement using Groung Penetrating Radar (GPR)
- **4** sampling rate stability issue and solution for the Malå ProEx

J.-M Friedt & al

Outline

Acoustic transducer

- Chemical functionalization
- Sensor measuremen
- Timebase stability
- Digital ramp synthesis
- Conclusion

transducers as cooperative targets

Surface Acoustic Wave

- A RADAR emits an electromagnetic pulse,
- the cooperative target delays the pulse beyond clutter delay for identifying the transducer response (TDMA)
- the transducer becomes a sensor if the time delay is dependent on a known quantity (temperature, chemical compound concentration)

 shrink delay line dimensions by converting the electromagnetic wave to a surface acoustic wave by using a piezoelectric substrate (acoustic velocity 10⁵ times slower than electromagnetic velocity)

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization
- Sensor measurement
- Timebase stability
- Digital ramp synthesis
- Conclusion

Chemical functionalization

- **Physical** transducer: conversion of adsorbed mass to velocity variation to time of flight variation \Rightarrow **no selectivity**
- Chemical sensor: adlayer selective to a single compound
- Amongst the quantities inducing acoustic velocity variation (temperature, stress), boundary conditions will define the acoustic velocity
- "Microbalance" application of acoustic transducers: the thicker the loading layer, the slower the wave – sensitivity S $S = \frac{\Delta f}{f} \frac{A}{\Delta m} = \frac{\Delta v}{v} \frac{A}{\Delta m} = \frac{\Delta v}{v} \frac{1}{\rho dt}$ $S \simeq 200 \text{ cm}^2/\text{g} \Rightarrow \frac{\Delta v}{v} \simeq 200 \text{ ppm if}$ $\frac{\Delta m}{A} = 1 \ \mu \text{g/cm}^2$
- well known technique for biosensor applications, but can it be used for **subsurface wireless sensing** ?

 $8\times 6~\text{mm}^2$ lithium niobate chip, 20 μm wavelength @ 200 MHz = 5 μm electrodes

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization
- Sensor measuremen
- Timebase stability
- Digital ramp synthesis
- Conclusion

Chemical functionalization

- **Physical** transducer: conversion of adsorbed mass to velocity variation to time of flight variation ⇒ **no selectivity**
- Chemical sensor: adlayer selective to a single compound
- Amongst the quantities inducing acoustic velocity variation (temperature, stress), boundary conditions will define the acoustic velocity
- "Microbalance" application of acoustic transducers: the thicker the loading layer, the slower the wave – sensitivity S $S = \frac{\Delta f}{f} \frac{A}{\Delta m} = \frac{\Delta v}{v} \frac{A}{\Delta m} = \frac{\Delta v}{v} \frac{1}{\rho dt}$ $S \simeq 200 \text{ cm}^2/\text{g} \Rightarrow \frac{\Delta v}{v} \simeq 200 \text{ ppm if}$ $\frac{\Delta m}{d} = 1 \ \mu \text{g/cm}^2$
- well known technique for biosensor applications, but can it be used for subsurface wireless sensing ?

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization
- Sensor measurement
- Timebase stability
- Digital ramp synthesis
- Conclusion

Chemical functionalization

- **Physical** transducer: conversion of adsorbed mass to velocity variation to time of flight variation ⇒ **no selectivity**
- Chemical sensor: adlayer selective to a single compound
- Amongst the quantities inducing acoustic velocity variation (temperature, stress), boundary conditions will define the acoustic velocity

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremen

Timebase stability

Digital ramp synthesis

Conclusion

Based on a well known chemical reaction, **design a polymer** whose formulation

Chemical functionalization

- 1 allows for spreading a homogeneous layer with thicknesses of the order of the wavelength ($\simeq \mu m$)
- ... with deposition technique compatible with wafer-scale processing (cleanroom),
- includes as many sensing sites as possible (low weight polymer matrix),
- is selective to the targeted compound and rejects interfering molecules.

In this case, hydrogen sulfide (H₂S) looks like water (H₂O), but includes a sulfur reacting with heavy metals (thiolation)

 \Rightarrow introduce a **reactive heavy metal** ion in the polymer matrix

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

Sensor measurement

Chemical sensing induces a time delay variation of a few tens of ps:

 $(R-COO)_2Pb+H_2S
ightarrow 2RCOOH+PbS\;$ R: functional alkyl chain

PbS nanoparticles (black): $\ensuremath{\textit{visual}}$ indicator of reaction

Wafer scale functionalization by spincoating the synthesized polymer dedicated to H_2S detection: challenge of uniform spreading sub- μ m thick polymer wafer.

- Sensitivity $S = \frac{df}{f} \frac{A}{dm} \simeq 200 \text{ cm}^2/\text{g}$ (wave property)
- $\rho_{polymer} \simeq 1 \text{ g/cm}^3 \& M_{polymer} = (131 \times 2 + 207) \text{ g/mol } \& t \simeq 0.2 \ \mu\text{m} \Rightarrow R = \rho/M_{polymer} \cdot t = 43 \text{ nmol/cm}^2 \text{ receptor density}$
- $M_{H2S} = 34 \text{ g/mol} \Rightarrow$ absorbed mass per unit area: $R \times M_{H2S} = dm/A \simeq 1500 \text{ ng/cm}^2$

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

- Periodic signal delay measurement as a phase shift
- One period au (5 ns @ 200 MHz) is one full phase rotation 360°

• $\frac{d\varphi}{\varphi} = \frac{df}{f} \Rightarrow d\varphi = \varphi \cdot S \cdot \frac{dm}{A} = 2\pi f \tau \cdot S \cdot \frac{dm}{A} = 20^{\circ} \text{ or } 280 \text{ ps}$ @ 200 MHz (1.5 μ g/cm², 1 μ s)

Sensor measurement

Velocity variation = phase variation through $\varphi = 2\pi fd/c$ with c varying Need to measure time delays with sub-100 ps long term accuracy

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

- Periodic signal delay measurement as a phase shift
- One period au (5 ns @ 200 MHz) is one full phase rotation 360°

• $\frac{d\varphi}{\varphi} = \frac{df}{f} \Rightarrow d\varphi = \varphi \cdot S \cdot \frac{dm}{A} = 2\pi f \tau \cdot S \cdot \frac{dm}{A} = 20^{\circ} \text{ or } 280 \text{ ps}$ @ 200 MHz (1.5 μ g/cm², 1 μ s)

Sensor measurement

Velocity variation = phase variation through $\varphi = 2\pi fd/c$ with c varying Need to measure time delays with sub-100 ps long term accuracy

Timebase stability

Outline

Stroboscopic signal generation and cause of drift **Static** environment, **controlled** temperature and **fixed** sensor – time delay as cross correlation between two echo signals:

- Two echoes (differential measurement) separated by 300 ns, at 1.3 and 1.6 μs
 - measure time delay (cross correlation)
 between echoes in a stable environment

5 ns drift at 300 ns delay = 1.5 %=15000 ppm \gg 200 ppm mass sensitivity or 70 ppm/K T sensitivity

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremen

Timebase stability

Digital ramp synthesis

Conclusion

Temperature dependence of the timebase

Stroboscpic signal generator 1 with an integrator of a constant voltage: voltage to time converter

¹B.A.T. Johansson, *Ground Penetrating RADAR array and timing circuit*, Patent US 6496137 (2002)

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremen

Timebase stability

Digital ramp synthesis

Conclusion

Temperature dependence of the timebase

Stroboscpic signal generator 1 with an integrator of a constant voltage: voltage to time converter

¹B.A.T. Johansson, *Ground Penetrating RADAR array and timing circuit*, Patent US 6496137 (2002)

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremen

Timebase stability

Digital ramp synthesis

Conclusion

Temperature dependence of the timebase

Stroboscpic signal generator 1 with an integrator of a constant voltage: voltage to time converter

¹B.A.T. Johansson, *Ground Penetrating RADAR array and timing circuit*, Patent US 6496137 (2002)

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization Solution: replace analog timebase with digital timebase

Solution: replace analog timing generator (drifting integrator capacitor) with digital ramp generator \Rightarrow 100-fold improvement (4 ns \rightarrow 34 ps)

Sensor measurement Timebase stability Digital ramp synthesis Conclusion g 2 0 500 1000 1500 2000 time (s)

Tektronic arbitrary waveform generator configured for a ramp ranging ± 5 V in 3.5 μ s, triggered by integrator reset signal.

Lab-based, not compatible with field operation \Rightarrow embedded solution ?

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremen

Timebase stability

Digital ramp synthesis

Conclusion

Solution: replace analog timebase with digital timebase

- Replace laboratory equipment with embedded electronics: FPGA or microcontroller triggers on reset signal and generates ramp
- not so obvious ... 8-bit (256 steps) within 5 μ s=50 MHz DAC
- R-2R network on FPGA output
- different clocks for FPGA and GPR \Rightarrow jitter in reset detection

Analog is asynchronous, digital **must** be synchronous

 ± 20 ns when FPGA is clocked with 50 MHz oscillator

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremer

Timebase stability

Digital ramp synthesis

Conclusion

Solution: replace analog timebase with digital timebase

- Replace laboratory equipment with embedded electronics: FPGA or microcontroller triggers on reset signal and generates ramp
 - not so obvious ... 8-bit (256 steps) within 5 μ s=50 MHz DAC
- R-2R network on FPGA output
- clock synchronization on reset signal: use the GPR 16 MHz reference signal (quartz referenced = \pm ppm/K)

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measuremer

Timebase stability

Digital ramp synthesis

Conclusion

Solution: replace analog timebase with digital timebase

- Replace laboratory equipment with embedded electronics: FPGA or microcontroller triggers on reset signal and generates ramp
 - not so obvious ... 8-bit (256 steps) within 5 μ s=50 MHz DAC
- R-2R network on FPGA output
- clock synchronization on reset signal: use the GPR 16 MHz reference signal (quartz referenced = $\pm \text{ ppm/K}$)

J.-M Friedt & al

Outline

- Acoustic transducer
- Chemical functionalization
- Sensor measurement
- Timebase stability
- Digital ramp synthesis
- Conclusion

We have demonstrated

• using surface acoustic wave (SAW) transducer as cooperative target and more broadly reference echo generator with $\geq \mu s$ delay

Conclusion and perspectives

- sensing capability of SAW transducers when functionalized with the appropriate polymer: $\rm H_2S$ detection yields X00 ps delay @ 200 MHz
- issue of **drift** of the sampling rate reference of the stroboscopic measurement ...
- ... solved by replacing the analog timing generator with a **quartz**synchronized digital timebase.

Perspectives:

- Replace R-2R network with a "real" DAC with voltage reference
- investigate PLL jitter impact on sampling rate stability

Who else ? anyone using the phase, i.e. beam focusing/time reversal Project repository: sourceforge.net/p/proexgprcontrol/wiki/Home/ Further reading: J.-M Friedt, Passive cooperative targets for subsurface physical and chemical measurements: a systems perspective, IEEE Geoscience and Remote Sensing Letters 14 (6), 821-825 (2017), available at jmfriedt.free.fr/ieee_gpr.pdf 12/

J.-M Friedt & al

Outline

Acoustic transducer

Chemical functionalization

Sensor measurement

Timebase stability

Digital ramp synthesis

Conclusion

Conclusion and perspectives

Acknowledgement: Malå Geoscience has supported this research by lending and donating equipment for research purposes.

- issue of **drift** of the sampling rate reference of the stroboscopic measurement ...
- ... solved by replacing the analog timing generator with a **quartz**synchronized digital timebase.

Perspectives:

- Replace R-2R network with a "real" DAC with voltage reference
- investigate PLL jitter impact on sampling rate stability

Who else ? anyone using the phase, i.e. beam focusing/time reversal Project repository: sourceforge.net/p/proexgprcontrol/wiki/Home/ Further reading: J.-M Friedt, Passive cooperative targets for subsurface physical and chemical measurements: a systems perspective, IEEE Geoscience and Remote Sensing Letters 14 (6), 821-825 (2017), available at jmfriedt.free.fr/ieee_gpr.pdf 12/

