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Outline
Subsurface chemical sensing system:

[H  S]2

RXTX

cavity

?

t

1 acoustic transducer acting as cooperative target (separate sensor
echo from clutter)

2 transducer functionalization for chemical sensing: polymer
formulation

3 sensor measurement using Groung Penetrating Radar (GPR)

4 sampling rate stability issue and solution for the Mal̊a ProEx
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Surface Acoustic Wave
transducers as cooperative targets

1 A RADAR emits an
electromagnetic pulse,

2 the cooperative target
delays the pulse beyond
clutter delay for identifying
the transducer response
(TDMA)

3 the transducer becomes a
sensor if the time delay is
dependent on a known
quantity (temperature,
chemical compound
concentration)
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sensor measurement= clutter
sub−surface interfaces

4 shrink delay line dimensions by converting the electromagnetic wave
to a surface acoustic wave by using a piezoelectric substrate
(acoustic velocity 105 times slower than electromagnetic velocity)
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Chemical functionalization

• Physical transducer: conversion of adsorbed mass to velocity
variation to time of flight variation ⇒ no selectivity

• Chemical sensor: adlayer selective to a single compound

• Amongst the quantities inducing acoustic velocity variation
(temperature, stress), boundary conditions will define the acoustic
velocity

• “Microbalance” application of
acoustic transducers: the thicker
the loading layer, the slower the
wave – sensitivity S
S = ∆f

f
A

∆m
= ∆v

v
A

∆m
= ∆v

v
1

ρdt

S ' 200 cm2/g ⇒ ∆v
v
' 200 ppm if

∆m
A

= 1 µg/cm2

• well known technique for biosensor
applications, but can it be used
for subsurface wireless sensing ?

8×6 mm2 lithium niobate chip, 20 µm
wavelength @ 200 MHz = 5 µm elec-
trodes
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Chemical functionalization

Based on a well known chemical reaction, design a polymer whose
formulation

1 allows for spreading a homogeneous layer with thicknesses of the
order of the wavelength (' µm)

1 ... with deposition technique
compatible with wafer-scale
processing (cleanroom),

2 includes as many sensing sites as
possible (low weight polymer
matrix),

3 is selective to the targeted
compound and rejects interfering
molecules.

In this case, hydrogen sulfide (H2S) looks like water (H2O), but includes
a sulfur reacting with heavy metals (thiolation)
⇒ introduce a reactive heavy metal ion in the polymer matrix

5 / 12



Subsurface
wireless chemical

sensing

J.-M Friedt & al

Outline

Acoustic
transducer

Chemical
functionalization

Sensor
measurement

Timebase
stability

Digital ramp
synthesis

Conclusion

Sensor measurement

Chemical sensing induces a time delay variation of a few tens of ps:

(R − COO)2Pb + H2S → 2RCOOH + PbS R: functional alkyl chain

PbS nanoparticles (black): visual indicator
of reaction

Wafer scale functionalization by spin-
coating the synthesized polymer dedicated
to H2S detection: challenge of uniform
spreading sub-µm thick polymer wafer.

• Sensitivity S = df
f

A
dm ' 200 cm2/g (wave property)

• ρpolymer ' 1 g/cm3 & Mpolymer = (131× 2 + 207) g/mol &
t ' 0.2 µm ⇒ R = ρ/Mpolymer · t=43 nmol/cm2 receptor density

• MH2S = 34 g/mol⇒ absorbed mass per unit area:
R ×MH2S = dm/A ' 1500 ng/cm2

6 / 12



Subsurface
wireless chemical

sensing

J.-M Friedt & al

Outline

Acoustic
transducer

Chemical
functionalization

Sensor
measurement

Timebase
stability

Digital ramp
synthesis

Conclusion

Sensor measurement

• Periodic signal delay measurement as a phase shift

• One period τ (5 ns @ 200 MHz) is one full phase rotation 360◦

• dϕ
ϕ = df

f ⇒ dϕ = ϕ · S · dmA = 2πf τ · S · dmA = 20◦ or 280 ps

@ 200 MHz (1.5 µg/cm2, 1 µs)
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Velocity variation = phase variation through ϕ = 2πfd/c with c varying

Need to measure time delays with sub-100 ps long term accuracy
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Timebase stability
Stroboscopic signal generation and cause of drift
Static environment, controlled temperature and fixed sensor – time delay as cross
correlation between two echo signals:
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• Two echoes
(differential
measurement)
separated by
300 ns, at 1.3
and 1.6 µs

• measure time
delay (cross
correlation)
between echoes
in a stable
environment

5 ns drift at 300 ns delay = 1.5 %=15000 ppm � 200 ppm mass
sensitivity or 70 ppm/K T sensitivity 8 / 12
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Temperature dependence of the
timebase

Stroboscpic signal generator 1 with an integrator of a constant voltage:
voltage to time converter
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1B.A.T. Johansson, Ground Penetrating RADAR array and timing circuit, Patent
US 6496137 (2002)
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50◦C, inducing offset and drift in
surrounding passive components

1B.A.T. Johansson, Ground Penetrating RADAR array and timing circuit, Patent
US 6496137 (2002)
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The (user controlled) slow ramp is
generated by a Digital to Analog
converter (voltage ref + quartz
synchronized), little risk of drift
⇒ what about the fast ramp gen-
eration ?

1B.A.T. Johansson, Ground Penetrating RADAR array and timing circuit, Patent
US 6496137 (2002)

9 / 12



Subsurface
wireless chemical

sensing

J.-M Friedt & al

Outline

Acoustic
transducer

Chemical
functionalization

Sensor
measurement

Timebase
stability

Digital ramp
synthesis

Conclusion

Solution: replace analog timebase
with digital timebase

Solution: replace analog timing generator (drifting integrator capacitor)
with digital ramp generator ⇒ 100-fold improvement (4 ns → 34 ps)
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std()=34 ps=1.6 K=320 ng/cm2

27 pF Vishay NPO

frequency synthesizer

Tektronic arbitrary waveform generator configured for a ramp ranging
±5 V in 3.5 µs, triggered by integrator reset signal.

Lab-based, not compatible with field operation ⇒ embedded solution ?

10 / 12



Subsurface
wireless chemical

sensing

J.-M Friedt & al

Outline

Acoustic
transducer

Chemical
functionalization

Sensor
measurement

Timebase
stability

Digital ramp
synthesis

Conclusion

Solution: replace analog timebase
with digital timebase

• Replace laboratory equipment with embedded electronics: FPGA or
microcontroller triggers on reset signal and generates ramp

• not so obvious ... 8-bit (256 steps) within 5 µs=50 MHz DAC

• R-2R network on FPGA output

• different clocks for FPGA and GPR ⇒ jitter in reset detection
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Analog is asynchronous, digital must be
synchronous

50 ns/div

reset input

CPLD out (osc. trig.)

±20 ns when FPGA is clocked with
50 MHz oscillator
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reference signal (quartz referenced = ± ppm/K)
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Conclusion and perspectives
We have demonstrated

• using surface acoustic wave (SAW) transducer as cooperative target
and more broadly reference echo generator with ≥ µs delay

• sensing capability of SAW transducers when functionalized with the
appropriate polymer: H2S detection yields X00 ps delay @ 200 MHz

• issue of drift of the sampling rate
reference of the stroboscopic
measurement ...

• ... solved by replacing the analog
timing generator with a quartz-
synchronized digital timebase.

Perspectives:
• Replace R-2R network with a “real” DAC with voltage reference
• investigate PLL jitter impact on sampling rate stability

Who else ? anyone using the phase, i.e. beam focusing/time reversal
Project repository: sourceforge.net/p/proexgprcontrol/wiki/Home/

Further reading: J.-M Friedt, Passive cooperative targets for subsurface physical and
chemical measurements: a systems perspective, IEEE Geoscience and Remote Sensing
Letters 14 (6), 821–825 (2017), available at jmfriedt.free.fr/ieee_gpr.pdf 12 / 12

sourceforge.net/p/proexgprcontrol/wiki/Home/
jmfriedt.free.fr/ieee_gpr.pdf
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