
Digital electronics

J.-M Friedt

FEMTO-ST/time & frequency department

jmfriedt@femto-st.fr

slides at jmfriedt.free.fr

February 8, 2025

1 / 15

jmfriedt.free.fr

Plan

7 lessons/lab sessions (4-hour long schedules):

1. Executive environments: principles and introduction, getting started with FreeRTOS

2. FreeRTOS, RTEMS, Nuttx ... multitasking and associated methods to make sure shared data and
resources are kept in known states (mutex & semaphore)

3. Using the scheduler, mutex and semaphores to solve the “philosopher problem”

4. Embedded systems with GNU/Linux – POSIX compatible operating system
Architecture of an operating system, kernel v.s userspace
Internet connectivity and networking

5. Accessing hardware resources from userspace – memory translation from physical to virtual address
space (Memory Management Unit) – /dev/mem

6. Accessing hardware resources from a web server – internet connected instrument

7. From userspace to kernel space: character device (char device) for communicating between users
and the kernel

2 / 15

Background: FreeRTOS

▶ An executive environment makes you feel you are using an operating system (tasks with priorities
and local stack ⇒ semaphores and mutex, queues)

▶ github.com/jmfriedt/tp_freertos provides some basic usage examples

▶ common provides basic functionalities such as hardware access as no driver is supported

▶ 0no freertos provides some basic baremetal C examples to validate that common behaves as
expected

▶ Makefile assume that FreeRTOS 1 is located at the same level than tp freertos

1https://github.com/FreeRTOS/FreeRTOS-LTS
3 / 15

github.com/jmfriedt/tp_freertos
https://github.com/FreeRTOS/FreeRTOS-LTS

Dining philosophers problem
Define constaints and leave it to the scheduler to find the solution after providing the transition rules
between the state machine

▶ N philosophers are seated around a table,

▶ each philosopher has a chopstick at its left and
another chopstick at its right,

▶ each philosopher must grab two chopsticks to
eat,

▶ once a philosopher has eaten, it drops the
chopsticks it has used.

▶ Two philosophers cannot use the same
chopstick at the same time.

How can this problem be expressed in the
FreeRTOS framework for its scheduler to find
the solution?

A

B

CD

E

4 / 15

Dining philosophers problem
▶ how is a philosopher represented in the FreeRTOS framework?
▶ how is a chopstick represented in the FreeRTOS framework?
▶ how would you exit the case where all philosophers have selected to grab the chopstick at their

right?

5 / 15

Dining philosophers problem
Solution example (atomic communication):

eabdcEB4D1A3C02

1. all philosophers wish to grab a chopstick : eabdc,
2. E grabs two chopsticks
3. B opposite to E grabs two chopsticks
4. 4 (E) finishes eating and returns both chopsticks
5. ... allowing D to grab both chopsticks.
6. 1 (B) has finished eating and drops both chopsticks
7. ... allowing A to grab both chopsticks
8. 3 (D) finishes eating and drops the chopsticks
9. C can now grab both chopsticks
10. 0 (A) finishes eating ...
11. ... and so does 2 (C)

chopstick
return

to avoid
deadock

’a’+n

no

yes

’A’+n

returns chopsticks

’0’+n
completed

philosopher n (0..N-1)

grabs 2 chopsticks

grabs 1 chopstick’u’+n
no

’U’+n

6 / 15

Dining philosophers problem: emulator

$ qemu-system-arm -M stm32-p103 -serial stdio -kernel output/main.bin

eabcdEBung

wng

4D1A03C2

qemu supporting the STM32F1: https://beckus.github.io/qemu_stm32/

See hw/arm: stm32 p103.c platform

Adding a serial port:
Dev i c eS t a t e ∗ ua r t 3 = DEVICE(o b j e c t r e s o l v e p a t h ("/machine/stm32/uart [3]" , NULL)) ;
a s s e r t (ua r t 3) ;
s tm32 ua r t connec t ((Stm32Uart ∗) uart3 , s e r i a l h d s [0] , STM32 USART3 NO REMAP) ;

7 / 15

https://beckus.github.io/qemu_stm32/

Solution depending on scheduler settings

Different scheduling schemes depending on rules (timeout mutex = 500 ms):

▶ no delay (no one returns a chopstick, no delay between first and second mutex)
ebcdazEwBy4Dv1xA3C02

▶ 200 ms delay (all philosophers have returned their chopsticks while only a single one is eating)
eabcdzvwxyqeDmanboc3zvwxCqemanb2zvwBqema1zvAqe0zE4

▶ 500 ms delay (two philospohers at opposite positions on the table eat at the same time)
ebcdazwxyvqeDnbocA3zx0wEC42B1

▶ 800 ms delay (same as 200 ms)
eabcdzvwxyqeDmanboc3zvwxCqemanb2zvwBqema1zvAqe0zE4

8 / 15

Emulator: using an un-initialized peripheral
Message error from the emulator when an un-initialized is used:
USART InitTypeDef USART In i tS t ruc tu re ;
. . .
USART Init (USART2, &USART In i tS t ruc tu re) ;
USART Cmd(USART2, ENABLE) ;
pu t cha r (USART1, ’0’) ;
pu t cha r (USART2, ’0’) ;

We attempt using serial port 1 which was never initialized ⇒ neither clock source nor configuration
$ qemu_stm32/arm-softmmu/qemu-system-arm -M stm32-p103 -serial stdio -serial stdio -serial stdio -kernel main.bin

qemu stm32: hardware warning: Warning: You are attempting to use the UART1 peripheral while its clock is disabled.

R00=40013800 R01=00000030 R02=008e0001 R03=00000030
R04=20004fe8 R05=08000b1c R06=00000000 R07=20004fc0
R08=00000000 R09=00000000 R10=00000000 R11=00000000
R12=0000000f R13=20004fc0 R14=08000519 R15=08000808
PSR=20000173 --C- T svc32
qemu: hardware error: Attempted to write to USART_DR while UART was disabled.
CPU #0:
R00=40013800 R01=00000030 R02=008e0001 R03=00000030
R04=20004fe8 R05=08000b1c R06=00000000 R07=20004fc0
R08=00000000 R09=00000000 R10=00000000 R11=00000000
R12=0000000f R13=20004fc0 R14=08000519 R15=08000808
PSR=20000173 --C- T svc32
FPSCR: 00000000
Aborted 9 / 15

Access to shared resources
▶ Messages were so far atomic (single lettre) to avoid interferences between multiples messages sent

by philosophers.
▶ qemu-system-arm -M stm32-p103 -serial stdio -serial stdio -serial stdio -kernel output/main.bin

LED Off

4 wants to eat

0 wants to eat

1 wants to eat

2 wants to eat

3 wants to eat

4 has grabbed one chopstick

0 has grabbed one chopstick

0 has grabbed two chopsticks

2 has grabbed one chopstick

3 has grabbed one chopstick

4 drops chopsticks

4 wants to eat

3 has grabbed two chopsticks

1 wants to eat

0 has eaten

2 drops chopsticks

2 wants to eat

3 has eaten

4 has grabbed one chopstick

4 has grabbed two chopsticks

1 has grabbed one chopstick

2 has grabbed one chopstick

2 has grabbed two chopsticks

4 has eaten

1 drops chopsticks

1 wants to eat

2 has eaten

1 has grabbed one chopstick

1 has grabbed two chopsticks

1 has eaten

▶ How many mutex are needed to synchronize access to the serial port?
▶ What are the consequences of removing the mutex?

10 / 15

Conclusion
1. an emulator allows for completing the job even without hardware platform

2. an emulator provides some hint at the internal state of the processor and prevents the user from
making mistakes ...

3. ... assuming the peripheral is properly emulated.
ADC2, DAC, timer, GPIO, USART fonctionnal for STM32 but dependency on Python2 to compile
which is obsolete.
Eclipse includes an emulator for the STM32F4:
https://github.com/xpack-dev-tools/qemu-arm-xpack/ 3 (STM32F4-Discovery)

4. qemu can act as gdb server for probing embedded software execution state:
qemu-system-arm -M stm32-p103 -s -S -serial stdio -kernel main.bin # -s: wait connection on port 1234

and
gdb-multiarch main.elf

target remote localhost:1234

continue

2error in ADC flag handing detected when using libopencm3 which tests ADC CR2 SWSTART bit of ADC CR2 to check
that conversion has started: this bit should be set to 0 upon conversion start:
https://github.com/beckus/qemu_stm32/issues/24, see adc start conversion regular() in
libopencm3/lib/stm32/common/adc common v1.c where while (ADC CR2(adc) & ADC CR2 SWSTART);

3formerly http://gnuarmeclipse.github.io/qemu/
11 / 15

https://github.com/xpack-dev-tools/qemu-arm-xpack/
https://github.com/beckus/qemu_stm32/issues/24
http://gnuarmeclipse.github.io/qemu/

Analyzing the execution of an emulator

▶ qemu based on callback functions called when an event
occurs requesting the emulation of a peripheral

▶ ⇒ sequence of executed functions hard to follow as they
are not sequentially explicitly called

▶ valgrind --tool=callgrind -v \

--dump-every-bb=10000000 \

../qemu-system-arm \

-M stm32-p103 \

-serial stdio \

-kernel temperature/main.bin

▶ kcachegrind callgrind.out.8964 displays a chart of the
called functions and the associated resources.

<cycle 3>
1 394 645

stm32_p103_init
19 822 014

stm32_init
19 821 825

19 821 825 (1x)

armv7m_init
5 095 033

5 095 033 (1x)

stm32_init_periph
13 288 604

10 442 330 (10x)
stm32_create_uart_dev

2 974 312

2 974 312 (3x)

1 394 645 (3x)

armv7m_bitband_init
1 030 962

1 030 962 (1x)

qdev_init_nofail
1 724 807

1 724 807 (1x)

qdev_init
1 724 397

1 724 397 (12x)

sysbus_mmio_map
12 689 512

sysbus_mmio_map_common
12 689 194

12 689 194 (14x)

main
19 822 014

19 822 014 (1x)

12 687 829 (14x)1 723 964 (12x)

12 689 512 (13x)

2 846 274 (3x)

(below main)
19 822 014

19 822 014 (1x)

12 / 15

Beyond FreeRTOS ...
Many more executive environments to explore and discover, with more created (and dying) every day.

↑ Example of stack debugging functionality provided by Zephyr Project.
Introduction to NuttX [in French]: G. Goavec-Merou, J.-M. Friedt, Un environnement exécutif visant la compatibilité
POSIX : NuttX pour contrôler un analyseur de réseau à base de STM32, GNU/Linux Magazine France (Dec. 2017) at
http://jmfriedt.free.fr/lm_nuttx.pdf

13 / 15

http://jmfriedt.free.fr/lm_nuttx.pdf

Installing Zephyr-OS

sudo apt install gcc-arm-none-eabi python3-pyelftools device-tree-compiler

pip install west --break-system-packages

west init

cd zephyr/

west update

source zephyr-env.sh

export ZEPHYR_TOOLCHAIN_VARIANT=cross-compile

export CROSS_COMPILE=/usr/bin/arm-none-eabi-

cd samples/basic/blinky/

mkdir build

cd build

cmake -DBOARD=olimexino_stm32 ../

outputs zephyr/zephyr.bin to be flashed and executed on the microcontroller (STM32F103 4) ...
or on qemu:

~/zephyr/samples/basic/minimal/build

cmake -DBOARD=qemu_cortex_m3 ../

make -j12

make run

4On the STM32F100: if unable to reprogram the microcontroller after running Zephyr, connect Boot pin to 3V3.
14 / 15

Hardware description in Zephyr-OS: devicetree
Configuration files for the STM32VL-Discovery STM32F100 board:
▶ List of supported drivers, hardware configuration (RAM) and toolchain:

https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco.yaml

▶ Compilation options: https:

//github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco_defconfig

▶ Hardware description through the devicetree:
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco.dts

▶ Driver configuration through the devicetree nodes:
/dts -v1/;
#include <st/f1/stm32f100Xb.dtsi >
#include <st/f1/stm32f100r (8-b)tx-pinctrl.dtsi >
#include <zephyr/dt-bindings/input/input -event -codes.h>
/ {model = "STMicroelectronics STM32VLDISCOVERY board";

compatible = "st ,stm32vldiscovery";
...

leds {
compatible = "gpio -leds"; /* DRIVER NAME */
green_led:ld3 {gpios = <&gpioc 9 GPIO_ACTIVE_HIGH >; /* DRIVER PARAMETERS */

label = "User LD3";
};

blue_led: ld4 {gpios = <&gpioc 8 GPIO_ACTIVE_HIGH >;
label = "User LD4";

};
};

... 15 / 15

https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco.yaml
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco_defconfig
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco_defconfig
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/st/stm32vl_disco/stm32vl_disco.dts

