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RDS – Radio Data System – is the digital communication protocol used by commercial FM
station in the 88–108 MHz band to inform the listener of information such as the name
of the station being broadcast, free text such as the title of the current program or music,
as well as time or the kind of program being broadcast. We consider addressing the full
decoding scheme, from recording the analog signal with a DVB-T dongle used as a general
purpose radiofrequency receiver, to understanding the various demodulation and decod-
ing schemes, to finally conclude with an exploration of means of detecting and correcting
errors.

1 Introduction

The commercial FM broadcast band, between 88 and 108 MHz, is divided to allocate 200 kHz wide bands to
each station (Fig. 1, left). Each station sub-divides its spectrum fraction in three sub-segments: sound, with
first the left plus right audio signals, then the stereo signal including left minus right audio signals (so that a
mono-receiver can still receive a stereo program), and finally a digital signal – RDS (Radio Data System, Fig. 1
right) – which includes information such as the name of the station (Fig. 2), or free text such as the title of the
program or the music. A receiver is noticed that a broadcast is stereo by a pilot – a continuous periodic signal
– at 19 kHz after demodulation of the FM signal. The digital sub-carrier is at 57 kHz, generated as three times
the pilot signal if the broadcast is stereo, an assumption we will not consider during our processing in which
we will aim at reproducing a local copy of the 57 kHz subcarrier. The digital signal bandwidth is about 5 kHz.
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Figure 1: Left: the frequency band of interest – RDS – is located at 57 kHz in each FM station sub-band: it is
thus accessible by frequency translation, to bring the digital signal to baseband (around the 0-frequency), after
demodulation of the FM signal. Right: the various signals broadcast by a commercial FM station are visible
on a waterfall following the WBFM demodulator. We have switched stations halfway during the acquisition
between a stereo and a mono station, both emitting an RDS identification signal.

A reader who only wants to read the content of the digital information might be content with using one of
the readily available integrated chips doing the job, such as the ST TDA7330 [1] or TDA7478 (single chip RDS
decoders), or the integrated FM receiver RDS5807 by RDA microelectronics. [2] uses similarly a TEA5764 to
synchronize a sensor network, despite all these references appearing now as obsolete and no longer provided
by major suppliers. Doing so, we would not have learned anything about the encoding scheme, the kind of
information transmitted but most significantly the means for recovering the bits corrupted during transmis-
sion. All these concepts will be tackled during software decoding of the sentences, analyzing step by step the
path to convert a frequency modulated signal (commercial FM broadcast) to understandable sentences. As
usual, such an understanding help assessing malicious use of the protocol or how to divert it from its original
purpose [1, 3, 4]. All digital signal processing prototyping will be performed on GNURadio 1 used for acquiring
the signal, followed by an implementation of the processing and decoding algorithms with GNU/Octave 2 with
the aim of getting back to basics, without using high level libraries such as the communication toolbox 3 which
would hinder the detailed understanding of the processing flow.

1gnuradio.org
2www.gnu.org/software/octave/
3octave.sourceforge.io/communications/overview.html
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Figure 2: Reception of various FM commercial broadcast, with the display of the name of each station as
transmitted by RDS. Notice that Le Mouv’ is sometimes identified as stereo, sometimes as mono, without
preventing the display of its identifier.

Decoding a digital communication on a radiofre-
quency link always requires solving the issues of syn-
chronizing remote oscillators, namely the radiofre-
quency carrier on which the information is transmit-
ted, and the data rate. The receiver translates the
radiofrequency signal to baseband by mixing the re-
ceived signal with a local oscillator LO (Fig. 3). The
phase which encodes the information on the carrier
is only usable once a copy of the emitter carrier – RF –
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Figure 3: Problem of synchronization with the remote oscillator car-
rying the information and clocking the databit rate. Decoding will
only become possible once the two oscillators on the receiver – LO
(Local Oscillator) and digital sampling rate – are locked on their re-
mote counterpart on the emitter.

is locally generated: LO is controlled by RF using schemes described later in the text (section 2). Once the bits
are visible at the output of the demodulation, the digital information is periodically sampled to extract each
bit value and assemble sentences. Here again, the decoding rate has no reason of being synchronous with
the encoding rate: even if the nominal bitrate is known, any offset between the oscillator generating the data
stream with the local oscillator will necessarily end up generating a loss of synchronization with the receiver.
Here again, some feedback control will be necessary, as described in section B.

In the GNURadio acquisition scheme depicted in Fig. 4 which aims at demodulating an FM signal, extract
the digital sub-carrier, and store the resulting stream in a binary file for post-processing, two characteristics
define the quality of the demodulation and the computational power needed to implement the algorithm:
the cutoff frequency to isolate the frequency band of interest using successive filterings, and the decimation
factors (only taking one in every N sample for a decimation factor of N ) to reduce the data rate. A DVB-T
receiver based on a RTL2832U analog to digital converter can only operate with sampling rates between 1.5
and 2.4 MHz, which are much more than the spectral bandwidth occupied by a single FM broadcast station.
Our first task hence consists in decimating this data stream to only keep about 200 ksamples/s, hence meeting
the requirements of the spectral bandwidth allocated to each FM station. However, decimating is only possible
after attenuating the signal of neighboring stations located more than 100 kHz away from the band we are
interested in, otherwise aliasing 4 would bring their signals into baseband during decimation.

Hence, we start with a low-pass filter which isolates the frequency range of interest, and only then decimate
enough to reduce the data rate to about 200 ksamples/s. The other advantage of decimating is to allow for the

4aliasing is a consequence of discrete periodic sampling at times 1/ fs , which assumes that the spectrum between − fs /2 and fs /2
repeats every fs . Thus, decimating by a factor N would bring all spectral components between fs /(2N ) and fs /2 to the band between
− fs /(2N ) and fs /(2N ) by translating the spectra by fs /(2N ) steps. This effect is avoided by including prior to any decimation a low-pass
filtering step which efficiently eliminates all signal components above fs /(2N ).
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transition width of subsequent filters to be sharper with a same number of coefficients: indeed, the transition
width of a filter is about the sampling rate divided by the number of coefficients in the filter. Hence, the com-
putational load of a sharp filter at a high sampling rate is heavy, while the same result is achieved with a lighter
load if a preliminary decimation was performed previously. The 200 ksamples/s we have just obtained include
all the information encoded by the FM station we are considering: the WBFM block demodulates the signal
and provides a data stream which can again be decimated if only the audio signal is of interest. However, we
wish to decode RDS located on a subcarrier around 57 kHz so we cannot decimate yet, but must bring this sig-
nal of interest to baseband using a Xlating FIR Filter 5 before again decimating, the 200 ksamples/s being
far too much bandwidth for the few kHz needed by the digital signal. Hence, the FIR (Finite Impulse Response)
filter is designed to isolate the digital signal in a bandwidth of a few kHz and reject all the other spectral compo-
nents prior to the decimation which yields a data rate consistent with that needed for digital mode decoding.
Warning: the sampling rate defining the FIR filter must be the sampling rate at the input of the Xlating FIR

Filter, which must include the decimation factor of the first low-pass filter and possibly of the WBFM de-
modulator. In our case, this filter (taps variable called in the field with the same name of the Xlating FIR

Filter) is defined by the Python expression: filter.firdes.low_pass_2(1, samp_rate/8, 2000, 500,

60) to indicate that the low pass filter already performed a decimation by 8, and no decimation was applied by
the WBFM demodulator, and 2 kHz cutoff frequency and a 500 Hz transition width. Following this processing
step, we have isolated the RDS band which includes the data we wish to decode.

Figure 4: Left: processing sequence of a signal recorded in the commercial FM band. The waterfall mode
(bottom-right) clearly exhibits the 19 kHz pilot and the RDS sub-carrier around 57 kHz. Top-right: without
carrier synchronization scheme (blue), the phase encoding the signal exhibits a linear drift with a slope equal
to the offset between the nominal frequency of 57 kHz and the digital oscillator frequency. Using a Costas loop
(green) eliminates such a frequency offset: the phase now exhibits usable bit states (bottom right, blue).

RDS is actually readily available to GNURadio users through the gr_rds module, initiated by Dimitrios
Symeonidis 6 and currently maintained by Bastian Bloessl 7. Copying this code might bring some insight,
even validate the proper operation of the receiving hardware setup, but will not help in understanding the
various steps needed to demodulate and decode the protocol, as will be addressed in this document. The
various contributors to gr_rds do not seem to have considered useful to document in detail the underlying
principles of their software in an associated publication, making the analysis of the source code a bit tedious,
especially for the beginner which is our current status at this point of the protocol analysis. Indeed, we will
meet several OSI layers before getting a readable message, and this clear separation of the abstraction layers
in the technical documentation [6] remains confusing at first by postponing in the appendix the layer 2 while
the main text addresses layers 1 and 3. Furthermore, all source codes found on the web are inspired from
an implementation of the error correcting code as a linear feedback shift register, a natural solution for the
electronics engineer but poorly suited to signal processing prototyping under GNU/Octave in which problems
are naturally expressed as linear algebra matrix computations. We will hence describe an implementation

5we have introduced the Xlating FIR Filter as a block including a core signal processing function during demodulation, namely
frequency translation, filtering and decimating [5]. As a reminder, the low pass filter aims at attenuating spectral components after mixing
– frequency translation – above the sampling rate achieved following decimation: without this filter, all signal components above the new
sampling rate would be brought to baseband by aliasing during the decimation and would prevent further processing.

6https://bitbucket.org/azimout/gr-rds/
7https://github.com/bastibl/gr-rds
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that seems to be original to synchronize sentences and for correcting errors that we have not found readily
implemented in the documentations we have read during this investigation, but whose compacity aims at
helping understand underlying concepts tricky to address at the logic gate level.

The modulation scheme is described in a somewhat confus-
ing way in the technical documents describing RDS [6], explain-
ing that a carrier-less amplitude modulation [7] is generated by
using two signal in phase opposition [6, section 1.4]. The alter-
native explanation, considering information being carried by a
±90◦ phase modulation, completely changes our demodulation
strategy (see appendix A). While an amplitude modulation only
requires a rough estimate of the carrier and a rectification/filter-
ing with a bandwidth wide enough for any frequency offset of
the emitter with respect to the receiver to be included, a phase
modulation requires a strategy in which a local copy of the un-
modulated emitted carrier oscillator is recovered, which will be
the topic of the first part of this document.

Having generated useful signal – phase of the carrier – rep-
resentative of the successive bit values, we will group these bits
into sentences (Fig. 5). Since bits are continuously transmitted,
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Figure 5: Processing sequence for decoding sentences:
going from the middle to the bottom steps is consistent
with Tab. 2 of [6] with a conversion meeting the defini-
tion of a differential Manchester encoding.

we must find a strategy for identifying the beginning of sentences in this continuous bit stream. Finally, hav-
ing synchronized our receiver on the bit-stream, we will interpret the payload and observer that the results
are consistent. We observe on Fig. 4, which consists in a GNURadio processing flow for demodulating the
FM station, extract the 57 kHz sub-carrier and display the phase and magnitude, that the phase does not ex-
hibit a visually appealing structure representative of a bit sequence. The spectrum of the phase information
hints that the binary phase shift keying (BPSK [8, 9]) modulation with two states separated by 180◦ is the right
approach: the spectrum is spread around 1200 Hz by the phase modulation, but the fine peak at 2375 Hz con-
firms that any non-linear process which has produced the square of the incoming signal generates a spectrally
pure output, as would be expected from a BPSK modulation.

2 Translation and reproducing the carrier

We have already seen, during our investigation of GPS [9], that demodulating BPSK which is characterized
by two phase states with 0 and 180◦ values to represent the two bit states 0 and 1 for example, is achieved by
reproducing a local copy of the emitter unmodulated carrier. In order to achieve such a feat, we had considered
various means of extracting a phase from the complex generated from the I and Q coefficient using function
insensitive to 180◦ phase rotations (atan in GNU/Octave which does not account for the quadrant in which
I and Q individually are located but is only concerned with the Q/I ratio, as opposed to atan2 which exploits
each component individually, allowing it to recover a phase including 180◦ rotation). An alternative approach
was to raise the signal to its square (multiplying it by itself) in order to remove the phase modulation, since
squaring an harmonic signal creates the double of its argument, and 2×180◦ = 360 = 0[360] (Fig. 6, bottom
right). The result, with a double frequency than that of the sub-carrier, generates a local copy of the emitted
carrier prior to its modulation by feeding a counter which divides by two the frequency. This latter method is
implemented in the signal processing block named Costas loop [9], which outputs on the one hand the signal
corrected from any offset between the emitter oscillator and the local receiver oscillator, and on the other hand
an estimate of this error.

Our processing strategy is thus summarized as:

1. transpose the signal located around 57 kHz at the output of the FM demodulator to bring the digital
information into baseband, for example using the GNURadio Xlating FIR Filter, using a free run-
ning local oscillator. While we usually have to experiment with the sign of the transposition frequency
when handling complex input signals to bring the output to baseband, the problem exceptionally does
not happen in this case in which the FM demodulation output is a real signal, so that the magnitude of
the Fourier transform is even. The information we are interested in around +57 kHz also exists around
-57 kHz: both solutions are acceptable and yield the same result,

2. extract the phase of the resulting signal, phase which includes two components: the information en-
coded in the BPSK encoding scheme at ±90◦, and the linear drift due to the offset between emitter and
receiver frequencies ∆ f ,

3. feed a Costas loop with this signal so it estimates ∆ f and compensates for it.
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Figure 6: Left: FM reception, followed by the extraction of the RDS sub-band. Lacking a carrier synchronization
strategy, the phase varies too quickly to look like a digital signal.

The digital modulation is at a nominal rate of 1187.5 bits/s, and we shall see later that the encoding scheme
is differential which hence requires a bandwidth of at least 1187.5×2 = 2375 Hz, defining the width of the low-
pass filter of the Xlating FIR Filter as well as its decimation factor. We aim at having at least 5 samples
per period, or at least 11875 samples/s.

3 From baseband signal to bits

We now assume to have recovered a stream representative of the digital signal. We wish to extract a bit se-
quence from phase values. We initially learn [6, section 1.6] that the signal is encoded with a differential strat-
egy (reminiscent of a differential Manchester 8), encoding) as confirmed by our observation that the phase
variation rate is twice the expected bit rate of 1187.5 Hz. We will thus threshold the phase after removing the
mean value – considering that a negative value becomes null, and otherwise assigned to a bit value of 1 (bit
slicer in GNURadio), and once the threshold value is obtained, we apply the conditions that two equal adjacent
values become a bit equal to 0 while if a transition is observed, the resulting bit is assigned a value of 1. The
two subtleties here lie on the one hand in mistakenly synchronizing on the wrong transition when searching
for the half-bit used to start the analysis – in such a case all adjacent pairs exhibit a transition (as would be
expected from a Manchester encoding) – and on the other hand synchronize the bit rate if the data rate is
not locked on our local oscillator. We search for the first transition (debut), then move forward in the data
stream by considering the quarter period and three-quarters (second state) after the transition. By analyzing
whether these two states are equal or different (s1 and s2), we deduce so the output bit state, as an exclusive
OR (XOR) of these two bit-states, which can also be expressed as a sum modulo 2, a statement more natural
for GNU/Octave programmers.

1 fe=24000; % sampling rate −− cf gnuradio sink
2 bitlength=fe/1187.5 % 1 bit = 2 transitions
3 bitsur2=bitlength/2;
4 bitsur4=bitlength/4; % half transition width
5 r=read_complex_binary(’costas_output100p4_24kHz.bin’);% Virgin
6
7 p=angle(r);
8 p=conv(p,ones(4,1)/4);p=p(2:end−2); % normalized low pass filter
9 p=p(2000:end); % time needed for costas to lock

10 p=p−mean(p);
11 k=find(diff(p(11:1000))>0.5);debut=k(1)+10; % first transition index
12 s=(p>0);s=s−mean(s); % binary slicer
13 l=debut;
14 for k=1:length(s)/bitlength−bitlength

8www.mathworks.com/examples/simulink-communications/mw/rtlsdrradio_product-RBDSSimulinkExample-rbds-rds-

and-radiotext-plus-rt-fm-receiver
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15 s1(k)=s(floor(l+bitsur4)); % first state
16 s2(k)=s(floor(l+bitsur2+bitsur4)); % 2nd state 1/2 a period later
17 l=l+bitlength; % move fwd one period
18 transition=abs(diff(s(floor(l−2):floor(l+1))));
19 [val,pos]=max(transition);
20 if (val>0) % synchronization attempt
21 if (pos==3) l=l+1;end % we are a bit early
22 if (pos==1) l=l−1;end % we are a bit late
23 end
24 end
25 s1=(s1>0); s2=(s2>0);
26 so=mod(s1+s2,2); % 2 bits −> 1 state

The GNURadio processing sequence provides a signal synchronous to the radiofrequency carrier, but does
not address the issues of synchronizing the datarate (time interval between two bits). In the example provided
above, a naive approach consists in checking whether a transition from one bit state to another occurs one
sample period before or after the expected moment, and if such an offset occurs, to shift the counter which
is incremented along the sentence (variable l). A more rigorous, but more complex, solution is discussed
in appendix B, using the appropriate GNURadio signal processing block provided by MPSK Decoder or Clock
Recovery MM, as presented inhttp://gnuradio.4.n7.nabble.com/Clock-Recovery-MM-documentation-

td55117.html. Although this digital datastream synchronization was not used while writing this article, hence
requiring the investigations on error correcting codes to recover erroneous bits as identified while decoding
the sentences, its late implementation yielded excessively decoding efficiency as demonstrated at the end of
appendix B.

4 From bits to sentences: synchronization

We have obtained a continuous stream of bits. However, a sentence starts and ends at some boundary that
must be identified: we have for example seen when exploring the ACARS protocol [10] that each sentence starts
with a preamble used for synchronizing the receiver with the bitrate of the emitter. In the case of RDS, finding
the beginning of each sentence is described in the reference document [6, annexe C]: locating this issue that far
in the appendix of the document makes its reading complex since it promotes attempting doomed decoding
strategies [6, section 2] before being even sure that sentences are consistent. We learn between these two
sections that each RDS sentence is made of 16-bit long data payload followed by a 10-bit long error correcting
code (an alternative synchronization approach is given in C). The basic information is thus grouped in 26-bit
long sentences, differentiated as four successive blocks named A, B, C, and D which follow to make one big
message. The means of synchronization described in [11, chap.12] is thus summarized as

1. consider 26 adjacent bits in the acquired stream

2. compute their error correcting code, as described bellow, for these 16+10 bits, assuming they represent
an A-block

3. if the last ten bits of the sequence indeed match the error correcting code, we might have reached a syn-
chronization condition, which is validated by repeating the error correcting code computation on the
next block (B, next 26 bits) and then D (26 adjacent bits separated by 78 positions from the current posi-
tion). If all three error correcting code conditions are met, we have very probably met a synchronization
condition, and hence identified where the first bit of a sentence is located. Block C has been omitted
since it is split in two possible options, C and C’ depending on the content of the message, with different
syndromes in both cases, expanding the number of cases to be tested.

4. if the error correction code computation on the first 16 bits does not match the last 10 bit sequence,
synchronization is not achieved: we move forward one bit of the recorded sequence and restart the
whole procedure.

This sequence must end up converging when we meet a condition in which the last 10 bits of each block
match the error correcting code of each preceding 16 bits. If that condition is never reached, then the bit
decoding sequence from the raw analog data (previous step) must have failed, and we must reconsider the
procedure used to convert the phase information to digital information. Successful decoding is the source of
the time synchronization proposed in [2]. Once the beginning of a block identified, the payload interpretation
of each block depends on the kind of message: while all A-block contain the same station identifier unique
to each FM broadcaster (PI code, appendix C), the content of the other blocks depend on the nature of the
transmitted data, as described in [6, section 3].
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A key issue in the coming discussion lies with the error correcting code. All implementations we have found
use a Linear Feedback Shift Register (LFSR) approach, a natural representation of the problem when configur-
ing an FPGA or programming a microcontroller in assembly language [12], but poorly suited to GNU/Octave
which best expresses problems in a matrix representation (see inset below). In order not be accused of plagia-
rism – all free code examples found on the internet for implementing the error correcting code look the same
as found at https://github.com/bastibl/gr-rds/blob/master/lib/decoder_impl.cc#L69-L80 (Fig.
7) – we demonstrate an error correcting code computation as a matrix computation as described in [6, section
B.2.1]: a 26×10 matrix H provides the linear relationship between each payload bit sequence and its associated
correcting code bit.

Figure 7: Linear feedback shift register implementation of the error correcting code. We discuss an alternative
solution of pre-computing all possible states of the error correcting code in order to fill a matrix, better suited
for expressing a problem to be solved by GNU/Octave. Each “⊕” symbol must be understood as a binary sum,
or an exclusive OR. This chart was copied from [6, p.62].

Converting the polynomial expression to the matrix expression of the error correcting code might not seem
obvious at first sight. The basic approach of linear algebra (matrix expression) is to decompose a problem
on each element of a base and compute the global solution as a linear combination of each solution found
for each element of the base. In our case, the base of the problem is represented as a message with one bit
set to the value 1 at the nth position of the sentence and all other bits set to 0. We hence apply the error
correcting code computation to each vector [0 ... 0 1 0 ... 0] and shift the position of the bit set to 1 in this
vector, also expressed in a polynomial form as xn . Computing the error correcting code is the remainder of
the polynomial division [13] of xn , n ∈ [0..25] (the 26 possible positions of the bit in the emitted message)
with the polynomial expression representing the BCH code [14, p.251] x10 + x8 + x7 + x5 + x4 + x3 + 1 which
is written under GNU/Octave as [1 0 1 1 0 1 1 1 0 0 1] (with the highest power to the left). As a reminder,
the polynomial division is performed as a classical integer division, with the denominator multiplied by the
appropriate power to cancel the term with the highest power of the numerator, and the remainder is computed
as the subtraction of these two terms. The procedure continues until the remainder reaches a power lower than
that of the denominator. For example x4 +x2 +x +1︸ ︷︷ ︸

numeer ator

= (x2 +1)︸ ︷︷ ︸
denomi nator

× x2︸︷︷︸
quoti ent

+ (x +1)︸ ︷︷ ︸
r emai nder

The remainder of the polynomial division is found with GNU/Octave (and Matlab) as [b,r]=deconv(N,D);
with N and D the vectors representing respectively the numerator and denominator polynomial functions,
and r the remainder of the division we are interested in. In the previous example, [d,r]=deconv([1 0 1 1

1],[1 0 1]) yields d=1 0 0 and r=0 0 0 1 1. Hence, matrix G of [6] is found using the following GNU/Oc-
tave script:

1 vecteur=[1 zeros(1,10)]; % first element of the base: 1*x^{10}
2 polynome=[1 0 1 1 0 1 1 1 0 0 1]; % x^10+0+x^8+x^7+0+x^5+x^4+x^3+0+0+x
3 for k=1:16 % position of the bit set to 1
4 [a,b]=deconv(vecteur,polynome); % polynomial division
5 mod(abs(b(end−9:end)),2) % modulo x^10
6 vecteur=[vecteur 0]; % next element in the base: add a 0
7 end

Since the identity matrix at the left of G places the least significant bit to the bottom, this script computes the
right part of the lines of G from bottom to top.

1 % p.75 US, 64 EU
2 sA2=[1 1 1 1 0 1 1 0 0 0]; % A= [0 0 1 1 1 1 1 1 0 0];
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3 sB2=[1 1 1 1 0 1 0 1 0 0]; % B= [0 1 1 0 0 1 1 0 0 0];
4 sC2=[1 0 0 1 0 1 1 1 0 0]; % C= [0 1 0 1 1 0 1 0 0 0];
5 Cp= [1 1 0 1 0 1 0 0 0 0];
6 % sCp=[1 0 1 1 1 0 1 1 0 0];
7 sCp=[1 1 1 1 0 0 1 1 0 0]; % an495
8 D= [0 1 1 0 1 1 0 1 0 0];
9 sD2=[1 0 0 1 0 1 1 0 0 0]; % inconsistent with an495

10 % sD2=[0 1 0 1 0 1 1 0 0 0]; % an495
11
12 % p.74
13 H=[
14 1 0 0 0 0 0 0 0 0 0 ; % this
15 0 1 0 0 0 0 0 0 0 0 ; % identity
16 0 0 1 0 0 0 0 0 0 0 ; % sub−
17 0 0 0 1 0 0 0 0 0 0 ; % matrix
18 0 0 0 0 1 0 0 0 0 0 ; % will be
19 0 0 0 0 0 1 0 0 0 0 ; % replaced
20 0 0 0 0 0 0 1 0 0 0 ; % with
21 0 0 0 0 0 0 0 1 0 0 ; % eye()
22 0 0 0 0 0 0 0 0 1 0 ; % in the
23 0 0 0 0 0 0 0 0 0 1 ; % next codes.
24 1 0 1 1 0 1 1 1 0 0 ;
25 0 1 0 1 1 0 1 1 1 0 ;
26 0 0 1 0 1 1 0 1 1 1 ;
27 1 0 1 0 0 0 0 1 1 1 ;
28 1 1 1 0 0 1 1 1 1 1 ;
29 1 1 0 0 0 1 0 0 1 1 ;
30 1 1 0 1 0 1 0 1 0 1 ;
31 1 1 0 1 1 1 0 1 1 0 ;
32 0 1 1 0 1 1 1 0 1 1 ;
33 1 0 0 0 0 0 0 0 0 1 ;
34 1 1 1 1 0 1 1 1 0 0 ;
35 0 1 1 1 1 0 1 1 1 0 ;
36 0 0 1 1 1 1 0 1 1 1 ;
37 1 0 1 0 1 0 0 1 1 1 ;
38 1 1 1 0 0 0 1 1 1 1 ;
39 1 1 0 0 0 1 1 0 1 1 ;
40 ];
41
42 texte="";
43 station="";
44 debut=0
45 so=(1−so);
46 for k=1:length(so)−104
47 data1=(so(k:k+25)); % A
48 data2=(so(k+26*1:k+25+26*1)); % B
49 data3=(so(k+26*2:k+25+26*2)); % C(’)
50 data4=(so(k+26*3:k+25+26*3)); % D
51 HI1=mod(data1*H,2);
52 HI2=mod(data2*H,2);
53 HI3=mod(data3*H,2);
54 HI4=mod(data4*H,2);
55 pa=findstr((sA2),(HI1));
56 pb=findstr((sB2),(HI2));
57 pc=findstr((sC2),(HI3));
58 pcp=findstr((sCp),(HI3));
59 pd=findstr((sD2),(HI4));
60 if (!isempty(pa) && !isempty(pb) && !isempty(pd))
61 printf("synchronization\n");
62 end
63 end

This example, a bit lengthy due to the expression of the decoding matrix H, operates as follows:

1. for each consecutive 104 bit long sequence, we split four adjacent 26 bit long blocks (ll.47–50). Each
block is assumed to be composed of a 16-bit payload followed by a 10-bit error correcting code to which
a block identification value was added,

2. we compute the 10-bit syndrome of each 26 bit block by applying the matrix multiplication with H (ll.
51–54),

3. we check if the syndrome we have found matches the expected block syndrome (ll. 55–59). If this con-
dition is met, a valid block has been found, and we assume we have met a synchronization condition if
the syndromes of the four consecutive blocks have been found.
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4. If a block syndrome does not match the expected error correcting code value, we assume we are not
yet synchronized: we move forward one step in the acquired bit sequence to define a new 104-bit long
dataset and restart the computation.

Converting G to H as found in [6] is also not trivial. While converting G to a shape of H that allows checking the
integrity of a received message x by computing H ·x = 0 as described in [14, p.244] or [15, p.70] is only a matter
of transposing the non-identity part of G , the expression of the control matrix found in [6, p.63] does not match
this expression by putting the identity part of the matrix to the left of the decoding matrix. Means of converting
one expression to the other is explained at http://www.di-mgt.com.au/cgi-bin/matrix_stdform.cgi
which uses the algorithm described in [15, pp.52,71] to convert from one expression (deduced by transposing
part of the encoding matrix) to the other (so called standard) by linear combinations and permutations of the
lines and columns. Using the afore-mentioned site, converting H as found in [6, p.63]

Input:

1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1

0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1

to that found in [14, p.244] by transposing the part of G at the right of the identity (the left-most column below
is indeed the end of the first line of G for example)

0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0

0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1

using this set of transforms (notice how the identity sub-matrix was shifted from left to right in the expression
of matrix H).

5 Message interpretation

The most difficult part is now behind us: we have a sequence of bits, whose integrity is guaranteed following
the error correcting code. We are simply left with analyzing the payload of each message, by replacing lines
60–62 of the previous example. All transactions are performed with the most significant bit first (MSB). We
have limited our decoding ability to a few simple examples to keep the source code short: name of the station,
clock (day/hour/minutes) or free text. Since we want to be able to identify the station being received, the first
type of message we wish to decode is 0A or 0B as defined in the first 4 bits of block B: if the first 4 bits of B are
zero, then block D contains the ASCII code of a string containing the name of the broadcast FM station. Block
B is the second block whose payload is stored in variable data2, yielding the interpretation of the content of
the last block as two ASCII characters, MSB first:

1 puissances=2.^[7:−1:0]’; % 128 64 32 6 8 4 2 1
2 if (!isempty(pa) && !isempty(pb) && !isempty(pd))
3 if ((data2(1:4)*puissances(end−3:end))==2) % RDS text
4 texte=[texte char(data3(1:8)*puissances)] % 2chars in C
5 texte=[texte char(data3(9:16)*puissances)]
6 texte=[texte char(data4(1:8)*puissances)] % 2chars in D
7 texte=[texte char(data4(9:16)*puissances)]
8 end
9 if (sum(data2(1:4))==0) % station name

10 station=[station char(data4(1:8)*puissances)];
11 station=[station char(data4(9:16)*puissances)]
12 end
13 if ((data2(1:5)*puissances(end−4:end))==2) % 1A
14 day=data4(1:5)*puissances(end−4:end);
15 heure=data4(6:10)*puissances(end−4:end);
16 minute=data4(11:16)*puissances(end−5:end);
17 printf("time1A %d %d %d\n",day,heure,minute);
18 end
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19 if ((data2(1:5)*puissances(end−4:end))==8) % 4A
20 day=data2(15:16)*2.^[16:−1:15]’+data3(1:15)*2.^[14:−1:0]’;
21 heure=data3(16)*2^4+data4(1:4)*puissances(end−3:end); % UTC
22 minute=data4(5:10)*puissances(end−5:end);
23 offset=data4(12:16)*puissances(end−4:end); % *30 min−>local
24 printf("time4A %d %d %d %d\n",day,heure,minute,offset);
25 end
26 else % printf(".");
27 end
28 end
29 printf("\n");

Notice the slight subtlety when converting the bit array to a number by using the dot-product (and not one
to one product) of data with puissance, the latter containing the powers of 2 from 128 to 1 (most significant
bit first).

The result of this computation, for stations received in Besançon (France), is

station = IRN VIRGIGIN GIGIGIN GIN GIIRGIIRGIN VGI VIR

on 100.4 MHz,

texte = ES (FEAT. GUCCI MANE) MOUVAE SREMMURD - BLACK BEAT(FEAT. GECCI MANE) MOUV',

RAE SREMMURD - BLACK BEAT(FEAT. G]CCI MANE) MOUVAE SREMMERD - BLACK BEATLES (FEAT. G MAN MOUV'( RAE

station = LEOUOU MLEV'V' MOULE MOUV'OUV'LE MV'LEOUV'LE MOUV' MOUV'LE MOUV'LEV'LE MOUV'LEOUV'LE MOULE MOULEV' MOUV'

MOUV'LE MOUV'LE MV'LE MOUV'LE MOUV'LE MV'LE MOUV'LEOUV'LEOULE MV'LE MOUV

on 93.5 MHz, and

station = .9.9P BI.996.9BIP BI96BIP .9BI96.9P 96.9BIBI.9BI.996BIP .9BI.9BIP

on 96.9 MHz, which hints at records of the signal emitted by Virgin, Le Mouv’ and BIP. Finally Rire & Chanson
on 91.0 yields

station = ELLI& E & RIR RE & RIRE & RE & RIR& R SLI SELLIG SELLIG SELLIG SELLI RIRE & RIRE & RIRE &

RIRE & RIRE & RIRE RIRE R& IRE & IR R

Sellig seems to be a humorist so his name in the title of this broadcast station in not unlikely. More interesting,
France Info yields

texte = N MOCH - SUR(LA CART FRAFRANCE INFO 14 : JULIEN MOCH - SUR LA CARTE DE FRAFRANCE INFO - LE| 17 : JULIEN

MOCH - SUR LA CARTE DE FRANCE FRANKE INFO - LE 14 | 17 : JULIEC@ - SUR LA CARTE DE FRANCE - LE 14 | 17 : JN MOCH -

SUR LA Cï¿½RTE DE FRACE INFO - LE 14 | 17 : JULIE

station = FO INFO FO INFOINININFO INFO FO INFO FO INFO INFO FO INFO

INFO IN INFO INFO INFO INFO INFO INFO INFO IN INFO INFO INFO FO INFO

FO INFO INFO INFO IN INFO INFO INFO FO

indicating that in addition to the title of the station, a free text with the title of the current program being
broadcast is sent.

Without being perfect, these sentences demonstrate that the concept is sound and properly implemented,
with results in agreement with those provided by gr_rds (Fig. 8).

6 Error correction

We have decoded RDS messages following
the synchronization procedure to align sen-
tences on a continuous bit stream, what more
could we expect ? The 10-bit error correcting
code added at the end of each 16 bit payload
has only been used so far for synchronization
and make sure of the integrity of the transmit-
ted message. The RDS signal is noisy, and some
sentences are eliminated of this investigation
because their error correcting code does not
match the expected value. Can we improve the
reception decoding yield by attempting to cor-
rect transmission errors thanks to redundan-
cies introduced by the error correcting code
[16], process which contributed to the com-
munication bandwidth increase of deep space
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Figure 9: Evolution of the communication bandwidth of deep space probes.

probes (Fig. 9) [17] ? This will take us back in the processing sequence with respect to the last section, back to
layer 2 of the OSI model, but will provide the opportunity for an experimental demonstration of implementing
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==> RIRE & <== -TP- -Music-STEREO - AF:107.20MHz, 107.30MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> RIRE & <== -TP- -Music-STEREO - AF:95.80MHz, 97.20MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SIRE & <== -TP- -Music-STEREO - AF:107.20MHz, 107.30MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SIRE & <== -TP- -Music-STEREO - AF:107.20MHz, 107.30MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SIRLI& <== -TP- -Music-STEREO - AF:91.80MHz, 91.90MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SIRLIG <== -TP- -Music-STEREO - AF:95.80MHz, 97.20MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SIRLIG <== -TP- -Music-STEREO - AF:95.80MHz, 97.20MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SELLIG <== -TP- -Music-STEREO - AF:91.00MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SELLIG <== -TP- -Music-STEREO - AF:91.80MHz, 91.90MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SELLIG <== -TP- -Music-STEREO - AF:95.80MHz, 97.20MHz

00A (BASIC) - PI:F226 - PTY:Undefined (country:EG/FR/NO/BY/BA, area:National, program:38)

==> SELLIG <== -TP- -Music-STEREO - AF:107.20MHz, 107.30MHz

Figure 8: Left, gr_rds decoding of France Info: the graphical layout is slightly more attractive than executing
a GNU/Octave script but the displayed result are about the same. We notice during its execution that the
station name and free text display slowly accumulate letters, in agreement with the difficulty we have also met
of obtaining a complete uncorrupted sentence. Right: the gr_rds output when listening at Rire & Chanson,
confirming the inclusion of the name of the program being broadcast in the name of the station.

error correcting capability.

The implemented procedure not only allows identifying a corrupted message, but also to identify which bit
was flipped: a Hamming code [15, chap.8] is able of such a feat for a unique error only. A BCH code [14,
p.252],[15, chap.11] extends the concept to more than a single flipped bit: here, the implemented code allows
for correcting up to two bits corrupted during transmission.

6.1 One error

Appendix C of [6] explains that the error correcting code is implemented, during emission, as a linear combi-
nation (sum modulo 2, or XOR) of the emitted bits.

A linear transform is implemented either as a linear feedback shift register with taps feeding XOR gates
(Fig. 7), but since we prototype using GNU/Octave, we keep on using the matrix approach [14, p.244]: a 16×10
matrix computes 10 output bits considering 16 input bits. We have seen that a block identifier for synchroniza-
tion was added to this error correcting code output: the transmitted message is made of 16 data bits followed
by the 10-bit error correcting code to which the block identifier was added. Such a procedure is implemented
in GNU/Octave as

1 A= [0 0 1 1 1 1 1 1 0 0]; % A block emission
2 data=[0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1]; % JM
3 G=[0 0 0 1 1 1 0 1 1 1; % 16x10: emitted message
4 1 0 1 1 1 0 0 1 1 1;
5 1 1 1 0 1 0 1 1 1 1;
6 1 1 0 0 0 0 1 0 1 1;
7 1 1 0 1 0 1 1 0 0 1;
8 1 1 0 1 1 1 0 0 0 0;
9 0 1 1 0 1 1 1 0 0 0;

10 0 0 1 1 0 1 1 1 0 0;
11 0 0 0 1 1 0 1 1 1 0;
12 0 0 0 0 1 1 0 1 1 1;
13 1 0 1 1 0 0 0 1 1 1;
14 1 1 1 0 1 1 1 1 1 1;
15 1 1 0 0 0 0 0 0 1 1;
16 1 1 0 1 0 1 1 1 0 1;
17 1 1 0 1 1 1 0 0 1 0;
18 0 1 1 0 1 1 1 0 0 1];
19 mI=mod(data*G,2)
20 mI=mod(mI+A,2); % add A identifier
21 envoi=[data mI]

If all goes well, this message 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 which con-
tains the two ASCII characters “JM”, is transmitted and received without corruption, so that decoding on the
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receiver side is achieved with

1 % p.75 US, 64 EU
2 sA2=[1 1 1 1 0 1 1 0 0 0]; reception syndrome
3 % p.74
4 H=[
5 eye(10); % identity matrix
6 1 0 1 1 0 1 1 1 0 0 ;
7 0 1 0 1 1 0 1 1 1 0 ;
8 0 0 1 0 1 1 0 1 1 1 ;
9 1 0 1 0 0 0 0 1 1 1 ;

10 1 1 1 0 0 1 1 1 1 1 ;
11 1 1 0 0 0 1 0 0 1 1 ;
12 1 1 0 1 0 1 0 1 0 1 ;
13 1 1 0 1 1 1 0 1 1 0 ;
14 0 1 1 0 1 1 1 0 1 1 ;
15 1 0 0 0 0 0 0 0 0 1 ;
16 1 1 1 1 0 1 1 1 0 0 ;
17 0 1 1 1 1 0 1 1 1 0 ;
18 0 0 1 1 1 1 0 1 1 1 ;
19 1 0 1 0 1 0 0 1 1 1 ;
20 1 1 1 0 0 0 1 1 1 1 ;
21 1 1 0 0 0 1 1 0 1 1 ;
22 ];
23
24 mIr=abs(mod(envoi*H,2)−sA2)

and the received message mIr must be 0 after subtraction of the syndrome of block A, here named sA2. This
little numerical experiment validates the proper decoding sequence.

Let us assume now that between emission and reception, an error occurred:

1 N=3;envoi(N)=1−envoi(N); % error introduction

Can we do better than reject the sentence ? By displaying the result of the syndrome computation, we note
that flipping the third bit yields a syndrome

mIr = 0 0 1 0 0 0 0 0 0 0

which indeed tells us that the third bit was corrupted. This is due to the fact that the first ten lines of H are
the identity matrix. More generally, and error on bit N is detected by a syndrome equal to the N th line of H.
Indeed, and error might occur on any of the 26 bits of the message: if bit 25 is flipped for example

1 N=25;envoi(N)=1−envoi(N); % error introduction

then we obtain

mIr = 1 1 1 0 0 0 1 1 1 1

which is indeed the line before last of H. Searching for the corrupted bit is hence generalized with

1 [num,ligne]=ismember(mIr,H,’rows’)
2 % if not 0, this is the pattern of the line of the matrix in which the error lies

with num telling us if the syndrome was identified as a line of H, and if so, ligne tells us which bit was flipped.
We hence improve the decoding yield of RDS, with for example 24 characters in addition to the 680 already
properly decoded when listening at Le Mouv’ (+4%), 9 characters in addition to the 79 already acquired on
Virgin (+11%) and an additional 10 to the 60 acquired when listening to BIP (+17%).

Experimenting with the two shapes of the H decoding matrix discussed earlier allow us to be convinced
that they operate similarly, since the code properties are kept even if lines and columns are switched. Hence,
we observe with

1 A= [0 0 1 1 1 1 1 1 0 0]; % A block emission
2 sA2=[1 1 1 1 0 1 1 0 0 0]; % syndrome de reception
3
4 data=[0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1]; % JM
5 G=[0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 ;
6 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 ;
7 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 ;
8 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 ;
9 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 ;

10 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 ;
11 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 ;
12 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 ;
13 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 ;
14 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 ];
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15
16 mI=mod(data*G’,2); % on a pris transposee de G pour prendre moins de place
17 mI=mod(mI+A,2); % encodage du message
18 envoi=[data mI] % message + code (identit’e a gauche de G’)
19 N=5;envoi(N)=1−envoi(N); % introduction d’une erreur
20
21 H1=[ % forme fournie dans document RDS => on en deduit le syndrome de A
22 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 ;
23 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 ;
24 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 ;
25 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 ;
26 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 ;
27 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 ;
28 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 ;
29 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 ;
30 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 ;
31 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 ];
32
33 H2=[ % forme issue de [I | tG] => on en deduit A (matrice de controle)
34 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 ;
35 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 ;
36 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ;
37 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 ;
38 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 ;
39 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 ;
40 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 ;
41 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ;
42 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 ;
43 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 ];
44
45 res=mod(envoi*H2’−A,2) %
46 [tmp,col]=ismember(res,H2’,"rows")
47 res=mod(envoi*H1’−sA2,2) % sA
48 [tmp,col]=ismember(res,H1’,"rows")

that by encoding a message, including the block identifier (optional in these numerical experiments), we
are on the one hand able to validate a transmission without error: comment the bit flip instruction in line 19
to observe the two decoding results, using H1 or H2, in both cases with null results. If on the other hand a bit
is flipped, the result is indeed the line whose index is equal to the position of the erroneous bit.

6.2 Two errors

Recovering one corrupted bit seems to work properly, and we have understood how to identify which bit was
corrupted by searching the line of H which contains the syndrome after decoding with one bit flipped. How-
ever, what happens if two bits are flipped ?

A quick numerical experience again puts us on the track:

1 N=2;envoi(N)=1−envoi(N); % error introduction
2 N=5;envoi(N)=1−envoi(N); % error introduction

yields

mIr = 0 1 0 0 1 0 0 0 0 0

Two bits are now set to 1 after decoding the syndrome, those of the second and fifth lines. The analysis
is hence trivial as long as two of the first ten bits have flipped: the bit numbers appear as the indices of the
ones in the decoded syndrome at the reception, again because the first ten lines of H are the identity matrix.
This concept is generalized as found in the syllabus of [18]:“Suppose we wish to correct all patterns of t errors.
In this case, we need to pre-compute more syndromes, corresponding to 0, 1, 2,... t bit errors. Each of these
should be stored by the decoder.”

We hence compute a new matrix, deduced from H and which we call m2r, which includes all 10-bits syn-
dromes obtained as all possible combinations of line pairs of H. An approach using for loops, not necessarily
the best when programming with GNU/Octave but which provides a good result, is

1 m2r=[0 0 0 0 0 0 0 0 0 0]; % seed
2 l=1;
3 for k=1:length(H)−1 % compute all combinations
4 for j=k+1:length(H)
5 m2r=[m2r ; mod(H(k,:)+H(j,:),2)];
6 solution(l,1)=k; % which line is to be corrected ?
7 solution(l,2)=j;
8 l=l+1;
9 end
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10 end
11 m2r=m2r(2:end,:); % remove seed

Of course m2r is much larger than H since this time we have all possible error pairs represented as the lines of
the new matrix. We check that all the resulting lines are unique – an expected property of a code designed to
correct two communication errors – with

1 for k=1:length(m2r)
2 [num,ligne]=ismember(m2r(k,:),m2r,’rows’);
3 if (num>1)
4 printf("duplicate %d ",num) % never twice the same row
5 end
6 end

which does not print any “duplicate” message (question: why does [m2runiq,m,n]=unique(m2r,'rows');
return fewer lines in m2runiq than those found in m2r, although all lines are unique ?).

We can now search which pairs of bits flipped during transmission with

1 [num,ligne]=ismember(mIr,m2r,’rows’)
2 if (num>0) solution(ligne,:),end % display which bits have flipped

and since we have taken care of filling solution with the couple j and k of the lines of H which were summed
to yield a line of m2r, we know the indices k and j of the flipped bits. Indeed,

1 N=21;envoi(N)=1−envoi(N); % error introduction
2 N=25;envoi(N)=1−envoi(N); % error introduction

indeed yields

mIr = 0 0 0 1 0 1 0 0 1 1

num = 0

ligne = 0

num = 1

ligne = 314

ans = 21 25

in which we observe that looking for syndrome mIr
in matrix H (one modification) yields no result (num=0)
but the search in m2r indeed yields one result, with the
syndrome found as line 314 of m2r, which was com-
puted as the sum of the two lines when j=21 and k=25.
Decoding hence operates properly. RDS only claims
the ability to correct 1 or 2 bits flipped during trans-
mission, so we stop here our investigation of error cor-
recting codes.

The number of bits that can be corrected by a
code is defined by the concept of Hamming distance,
which graphically represents the distance between the
“good” message and the corrupted message, below
which the correction is possible (fr.wikipedia.org/
wiki/Code_correcteur).

The ability of correcting corrupted transmission is
a core issue allowing increased datarates (Fig. 10),
whether during communication with deep space probes
[17] or for short range low power communication [19].
This quick overview of a simple example provides the
opportunity to further investigate a topic still currently
active: without claiming we understand how to gener-
ate the codes, experimenting with real data with con-

Figure 10: Evolution of the bit error rate as a function of the signal
to noise ratio, for various error correcting code types, as found in
[17, Fig. 7-11, p.477]

crete results provides the motivation to further read more theoretical books dealing with this topic such as [14]
and its excellent presentation of the relation between compression, cryptography and error correction.

7 Conclusion

We have investigated the RDS protocol, exploited for transmitting digital information associated with com-
mercial FM broadcast station including the name of the station or the kind of program, by starting with the
acquisition of the raw analog signal using a digital video broadcast (DVB-T) receiver, then extracted the digital
information on the 57 kHz sub-carrier, before extracting sentences (after solving the synchronization issue)
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and interpret their content. We have finally tackled the error correction issue by showing that we could in-
troduce error and identify which bits had been flipped. Using this error correction method on experimental
data, we could recover an additional 10% characters with respect to the decoding yield limited to un-corrupted
sentences.

Many more developments would be needed before this proof of concept could be considered robust enough
to be used practically, especially on the 1187.5 bps bitrate synchronization, but that would make the decoding
code longer and less readable. We consider the proof of concept to be explicit enough to demonstrate un-
derstanding of digital communication basics with decoded sentences consistent with each broadcast station.
This exercise was completed in about 2 months: it is hence a topic worth investigating for grasping the whole
processing chain of a communication protocol, from the hardware to the session layers.

A disappointing issue is the poor time transfer capability through this medium. We have only received
few timing sentences (CT, group 4A) which provide the date and time with a resolution of ±0,1 s at the begin-
ning of each minute. This poor time-transfer capability will be tackled soon with software decoding of DCF77
presented elsewhere.

An archive with the GNU/Octave scripts, GNURadio Companion configurations and example files, is avail-
able at http://jmfriedt.free.fr/lm_rds.tar.gz.
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A Phase or amplitude ?

We have selected throughout this document to consider RDS to be phase-modulated since our initial attempts
at displaying the magnitude of the filtered signal (Band Pass Filter around 57±2.5 kHz) yielded unusable re-
sults. Although phase and frequency control using Costas loop remain mandatory, displaying the real part of
the output instead of the phase provides a usable solution (Fig. 11). A few oscillations are visible on the longest
symbols, which might be interpreted erroneously of a short symbol if care is not taken: an optimized low-pass
filter reduces this fluctuation amplitude and improves the detection chances of the transmitted signal. In-
deed, filtering with a rectangular window in the frequency domain induces, through the Fourier transform of
the rectangle window, by a convolution with a cardinal sine (or sinc, sin(x)/x) and hence a spreading in the
time domain of each symbol on its neighbors considering the slow decay of the filter. Whatever the filtering
used, the magnitude of the complex signal always yields unusable results for detecting bits: only the phase or
real part are usable.

Figure 11: Top: processing sequence to extract the various components of the RDS sub-carrier following the
correction of the local oscillator offset with a Costas loop. The phase will be displayed in blue, and the real part
in green. Bottom: left without low-pass RRC, the real part exhibits some oscillations on the longest symbols.
Bottom middle: a RRC filter attenuates such artifacts and yields a usable real part. In all cases, the magnitude
of the complex (red) is unusable.
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The Root Raised Cosine (RRC [20])
filter was designed to correct such a
deficiency: a low pass filter able to
reduce occupation both in the time
and frequency domains, with the abil-
ity to finely select a given frequency
band while preventing too slow a de-
cay. While a rectangular filter in the
frequency domain (blue on Fig. 12, left,
case α = 0) provides utmost spectral
selectivity, its time domain response
is very long with a null at the position
of adjacent symbols, but any error on
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Figure 12: Left: spectral response of RRC filters with various shapes, from rectangular
(best frequency selectivity) to the segment of trigonometric functions. Right: multiple
successive pulses in the time domain, filtered with the same RRC shapes depicted in
the frequency domain, with the left-pulse shifted by 20% with respect to its nominal
timing assuming a constant bitrate.

the timing between emission and sampling on the receiver side (Fig. 12, left of the time-domain curve)
induces some leakage of energy on neighboring symbols, with the larger the contribution the further away
the neighbors are. The RRC also exhibits zeros on neighbor symbol positions, but its decay is much faster
(Fig. 12, right, case α= 1), preventing the pollution of neighbors if synchronization errors occur [8, p.136],[21].
The α parameter provides a degree of freedom for continuously shifting from utmost spectral selection to
optimal tradeoff between spectral occupation and time-domain decay of the shaped pulse. Thus, RRC aims at
optimizing the spectral occupation of the communication channel (reduction of the bandwidth B) used for
transmitting the digital stream, while maximizing the bitrate by allowing the reduction of the time interval
1/B between successive symbols.

B Bitrate control

Phase modulation requires a local copy of the unmodulated radiofrequency carrier, as generated for ex-
ample by the Costas loop which eliminates the phase modulation from the
received signal. Once bits have become visible as 0 or π phase values (for
BPSK), the bitrate synchronization remains to identify when to sample the
phase. The clock generating the digital transmission (for example a micro-
controller on the emitter) has no reason to be clocked on the same source
than the radiofrequency carrier, and hence another feedback loop much
control the sampling rate on the receiver side to reproduce the emitter bi-
trate clock for the decoding to be possible (Fig. 13). Various strategies
are available, such a maximizing the number of transitions on the emit-
ted signal to ease the control of the receiver clock (case of the Manchester
encoding which provides at least one transition during each bit transmis-
sion). GNURadio provides various blocks for bitstream synchronization,
such as Clock Recovery (using the algorithm published in [22]) or MPSK
Receiver. These blocks are fed with the output of the Costas loop which
has already taken care of correcting the coarse frequency error, and now
handle digital symbols generated by the previous processing steps to adjust
the bitrate. These blocs output one sample per symbol, making later pro-
cessing steps much easier (GNURadio Binary Slicer by saturating and
comparing – for further analysis of the resulting digital stream). We vali-
date the proper operation of these blocks by displaying the constellation
diagrams, which exhibit on their ordinate the imaginary part of the output
and the real part in abscissa. Since in the complex plane (phase diagram)
the angle with the abscissa axis represents the complex number phase and

96,9 MHz

57 kHz

FM demod.
BPSK/RF

BPSK/baseband

Costas loop
synchro. porteuse : bits

I, Q

Clock recovery MM

synchro. des trames

phrases

synchro. numérique

Code correcteur

Figure 13: Signal processing chain for
processing the information collected by
the antenna in order to recover messages
(sentences): in this appendix, we are in-
terested in the bitrate synchronization, in
red.

the distance to the origin the magnitude, a point cloud at constant angle and constant distance indicate ef-
ficient synchronization. A “dancing” point cloud or shaped as a circle indicate no or poor synchronization.
The output of the Costas loop illustrates the latter case (Fig. 14, right) while the output of the processing by
one of the synchronization blocks for locking the bitrate indeed yields two distinct clouds (Fig. 14, left) which
separate the two possible states expected from a BPSK modulation. We note here that the RRC filter described
earlier. despite not significantly changing the visual aspect of the time-domain signal, helps in bitrate clock
synchronization by reducing leakage of power from one symbol to its neighbors. A low pass filter induces the
same result, but less efficiently.
Configuring synchronization blocks as described athttp://gnuradio.org/redmine/projects/gnuradio/
wiki/Guided_Tutorial_PSK_Demodulation requires minimizing the number of samples per symbol, while
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Figure 14: Top: signal processing chain, with the addition of the bitrate synchronization blocks following the
carrier synchronization (Costas). Bottom: constellation diagrams (XY mode oscilloscope fed with complex
data) for various processing conditions – from left to right, output of the Costas loop (no bitrate synchroniza-
tion), bitrate synchronization following a low-pass filter, and finally following and RRC. Two distinct point
clouds ensure proper symbol separation.

keeping that number above 2. Doing so is achieved by introducing an RRC between the Costas loop and the
bitrate synchronization block, with a decimation factor large enough to reach an Omega parameter (ratio of the
sampling rate to the bitrate) close but above 2. In our example, Omega is equal tosamp_rate/128/(1187.5*2)
with 128 the product of all decimation factors of previous processing blocks between source and bitstream syn-
chronization blocks, 1187,5×2 the bitrate when using a differential Manchester encoding, and samp_rate the
sampling rate of the source. Other processing parameters of the synchronization block remain unchanged.
The RRC is configured with an input rate equal to the source sample rate divided by the product of the vari-
ous decimation factors found in the preceding processing chain, and again a symbol rate equal to 1187,5×2,
defining its cutoff frequency.

The file recorded at the output of the carrier synchronization (Costas) and bitstream synchronization (Clock
Recovery or MPSK) is perfectly decoded with the scripts described in the main text (section 3), after removing
the first 4 lines since we already now have one sample for each symbol, and only keeping from lines 8 to 24 the
following part
p=angle(r);p=p-mean(p);s=(p>0);s=s-mean(s);s1=s(2:2:end);s2=s(1:2:end-1);. Indeed, s is the
saturated version of phase p, analyzed as a differential Manchester encoding in which successive pairs are
considered to generate the bitstream. After that, the whole processing sequence (synchronization on the syn-
drome of each 16 bit sentences) remains unchanged, yielding for example

station = P 96.9BIP 96.9BIP 96.9BIP 96.9BIP 96.9BIP 96.9BIP 96.9BIP 96.9BIP

which is this time perfect, or

station = EUROPE 1EUROPE 1EUROPE 1EUROPE 1EUROPE 1EUROPE 1EUROPE

again without corrupted sentences, and even
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station = RIRE & RIRE RIRE & RIRE & RIRE & RIRE JEAN JEAN JEAN JEAN JEAN

JEDUJARDINDUJARDINDUJARDINDUJARDINDUJARDINDUJARD

temps4A 57811 7 51 2

or

texte = FRANNFO - LE 9 : FABIENN - 8APHATIE FRANCE INFO - LE 7 | 9 : FABIENNE SINTES - 8H30 APHATIE

FRANCE INFO - LE 7 | 9 :IENNE SINTES - 8H30 APHATIE FRANCE INFO - LE 7 | 9 : FABIENNE SINTES - 8H30 APHATIE

FRANCE INFO - LE 7 | 9 : FABIENNE SINTES - 8H30 APHATIE

station =FO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO

INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO

temps4A 57811 7 54 2

which are close to perfect. The date is in agreement with our expectation: the date is given in modified
Julian date as day 57811, which http://www.csgnetwork.com/julianmodifdateconv.html converts to
February 27 2017, and the time is 7h5{1,4} shifted by 2 half-hours, which is indeed 8h5{1,4}, the time at which
the signal was recorded. Sentence 4A [6, p.28] is hence properly decoded and allows time transfer using RDS,
with an update every minute claimed to be accurate to within ±0,1 s. It is only after implementing bitrate syn-
chronization that we managed to obtain timing sentence shaped following the 4A format since they are only
emitted once every minute. Too low a sentence decoding yield reduces the chances of grasping this relatively
rare transmission:

station = RT RTL2 RT RTL2 RT RTL2 RT RTL2 RT RTL2 RT RTL2 RT RTL2 RT RTL2 RT RTL2

temps4A 57811 8 3 2

All examples presented in this appendix were recorded in a complex format (2×4 bytes) representing each
symbol, as provided at the output of the Clock Recovery MM block. At a rate of 1187.5×2 = 2375 Hz, records
are typically files of a few hundreds of kilo-bytes for acquisitions lasting a few tens of seconds (19000 kB/s).

C PI code

Each RDS transmission includes, in its first block (A [6, p.15]), the PI code of the received station. [6, p.66] hints
that knowing the PI code, unique to each broadcast station, one might be able to synchronize the bitstream
on this bit sequence which repeats every 104 bits (4 blocks 26 bit long each), instead of struggling with error
correcting codes to be computed on each 26 bit sequences of the received bitstream and checking if the last
10 bits match the syndrome of the first 16 bits as was done here. We could have changed the story of our
investigation when writing this article by demonstrating first, before addressing the error correcting code issue,
the synchronization on the PI code, but the truth is that the list of PI codes was only recovered at the very
end of writing this text. Indeed, the list of PI codes for all authorized broadcast stations is made available by
the French regulating agency CSA at www.csa.fr/maradiofm/radiords_tableau. As an example for Radio
Campus in Besançon, we learn that the PI code is FC3A. Adding in the sentence decoding loop, similarly to the
free text or station name decoding strategy, the PI code decoding with

if (PI==0) PI=dec2hex(data1(1:16)*2.^[15:-1:0]') % PI

and having taken care of initializing PI=0 out of the loop, our GNU/Octave script indeed decodes and identifies
PI = FC3A when listening at 102.4 MHz. The code was properly identified.
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