
Digital electronics

J.-M Friedt

FEMTO-ST/time & frequency department

jmfriedt@femto-st.fr

slides at jmfriedt.free.fr

February 15, 2025

1 / 14

jmfriedt.free.fr

Plan

7 lessons/lab sessions (4-hour long schedules):

1. Executive environments: principles and introduction, getting started with FreeRTOS

2. FreeRTOS, RTEMS, Nuttx ... multitasking and associated methods to make sure shared data and
resources are kept in known states (mutex & semaphore)

3. Using the scheduler, mutex and semaphores to solve the “philosopher problem”

4. Embedded systems with GNU/Linux – POSIX compatible operating system
Architecture of an operating system, kernel v.s userspace
Internet connectivity and networking

5. Accessing hardware resources from userspace – memory translation from physical to virtual address
space (Memory Management Unit) – /dev/mem

6. Accessing hardware resources from a web server – internet connected instrument

7. From userspace to kernel space: character device (char device) for communicating between users
and the kernel

2 / 14

Introduction

▶ Why use an operating system (OS) on an embedded board?

▶ Impact (memory, CPU workload)?

▶ Work method: programs developed on a personal computer (PC) will run on the embedded system
with the same OS

▶ Added functionalities: networking, dynamic scheduler, filesystem, other (database?
crypotography?)

▶ gcc: unified framework for developing on all platforms

3 / 14

Beyond C: an operating system

▶ adding yet another abstraction layer (assembly – C – kernel) and hence API

▶ Why an operating system? scheduler, memory management (multi-tasking), abstraction layer
aimed at hiding the hardware low level description from the programmer, filesystem management
(> rawrite), communication (IP, TCP ...), console for interactive shell with user.

▶ But new additional constraints: understand a new set of protocols and programming methods
(API) ...

▶ ... in order to properly handle resource sharing between multiple users.

4 / 14

Operating system basics

▶ What is GNU/Linux: operating system Unix clone aiming at POSIX compliance, multiplatform
(for “better” POSIX compliance, check the BSDs).

▶ Linux is a kernel supporting free, opensource software tools developed in the framework of GNU).

▶ Various C libraries available with different memory footprints: glibc, uClibc, newlib ... and different
functionalities.

▶ A distribution only wraps all these tools in packages.

▶ uClinux for systems with no MMU 1, Linux for systems with MMU, OpenWRT for routers ...

▶ other proprietary operating systems: MS-Windows, macOS (BSD derivate) 2, LynxOS, QNX,
vxWorks, iOS

▶ other opensource OS: *BSD (Free, Net, Open), Plan9, Inferno, Hurd

▶ Android: yet another layer (libraries, applications) provided by Google over Linux, executing in a
Java Machine

1Memory Management Unit, a memory handler aimed at controlling access and converting virtual memory addresses
to hardware physical addresses

2http://www.bbc.com/news/technology-41551546
5 / 14

http://www.bbc.com/news/technology-41551546

Operating system basics

What is GNU/Linux:
operating system
Unix clone aiming at
POSIX compliance,
multiplatform (for
“better” POSIX
compliance, check
the BSDs) a

aen.wikipedia.org/

wiki/File:Unix_

history-simple.svg

6 / 14

en.wikipedia.org/wiki/File:Unix_history-simple.svg
en.wikipedia.org/wiki/File:Unix_history-simple.svg
en.wikipedia.org/wiki/File:Unix_history-simple.svg

Development methods
OS on the target platform:

▶ Development cycle: the code is validated on a PC before being transfered to the embedded
platform (OS common to both platforms).

▶ Compliance with POSIX system calls ⇒ code usable on any platform as long as hardware access
is separated from software/algorithm (be aware of endianness issues)

▶ on two systems with memory management units, the code developed on PC is immediately
usable

▶ lack of memory management unit ⇒ some functionalities might be missing and should be avoided
(fork, malloc) or replaced

▶ NFS (Network File System) to quickly test applications by sharing a common storage medium
between host and target.

mount -o nolock 192.168.2.1:/home/etudiant/nfs /mnt

▶ the target is hardly ever x86 ⇒ cross-compile

▶ output/host/usr/bin/ for the toolchain (host = PC – set $PATH accordingly)

7 / 14

Reminder: libraries

Implementation of libc providing access to Linux system calls (orders from userspace to the kernel).

On the target: impact of an inconsistent toolchain

ldd gpio_sleep

libc.so.0 => /lib/libc.so.0 (0xb6f56000)

ld-uClibc.so.0 => /lib/ld-uClibc.so.0 (0xb6fac000)

▶ Here, uClibc provides these functionalities
▶ Lacking the dynamically loaded libraries, a cryptic (at first) error message

./gpio_sleep

-sh: ./gpio_sleep: not found

here due to using the wrong compiler (missing dynamically loaded libraries) as shown by strace

ldd gpio_sleep

checking sub-depends for ’not found’

libc.so.6 => not found (0x00000000)

/lib/ld-linux.so.3 => /lib/ld-linux.so.3 (0x00000000)

ls -l /lib | grep ld-l

#

8 / 14

Development environment
Complex development framework since it must provide a consistent set of tools for
▶ compiling the Linux kernel
▶ compiling the libraries needed for the userspace applications
▶ compiling applications themselves (“packages”)
▶ compiling the bootloader using the platform configuration files
▶ using a compilation toolchain dedicated and optimized towards the targeted platform.

Redpitaya: Zynq processor (dual ARM Cortex A9 @ 800 MHz), OS and bootloader on SD card (+FPGA)

Raspberry Pi4: BCM2711 (quad ARM Cortex A72 @ 1.5 GHz), OS and bootloader on SD card
9 / 14

Objectives

A consistent framework a to generate

1. a cross compilation toolchain

2. a bootloader (uboot: initializes the CPU + loads the kernel)

3. operating system kernel (Linux)

4. rootfs (userspace applications and libraries)

all stored in various partitions and directories of the SD card.
Most embedded boards are non-x86 based3⇒ cross-compile pro-
grams from the host to the target

aWhy not use a distribution? See F. Dolcini, “Vanilla” Debian On An
Industrial Embedded Device, FOSDEM (2024)
https://fosdem.org/2024/schedule/event/

fosdem-2024-2572--vanilla-debian-on-an-industrial-embedded-device/

userspace program

libraries

kernel (Linux)

kernel module

hardware

(drivers, platforms)

communication interfaces
(/dev, /sys, /proc)

system calls

3http://iqjar.com/jar/an-overview-and-comparison-of-todays-single-board-micro-computers/
10 / 14

https://fosdem.org/2024/schedule/event/fosdem-2024-2572--vanilla-debian-on-an-industrial-embedded-device/
https://fosdem.org/2024/schedule/event/fosdem-2024-2572--vanilla-debian-on-an-industrial-embedded-device/
http://iqjar.com/jar/an-overview-and-comparison-of-todays-single-board-micro-computers/

Development environments

Consistent framework to target many platforms:
1. OpenEmbedded
2. Yocto
3. Buildroot
For Olinuxino A13-micro (26 euros 4) :
▶ https://github.com/trabucayre/buildroot

▶ 6 GB hard disk space for a 200+ MB image in output/images/a13 olinuxino.sdimg

▶ Check configs/ for supported platforms: a13 olinuxino micro defconfig so this target is configured 5 with: make
a13 olinuxino micro defconfig && make

For Redpitaya:
▶ https://github.com/trabucayre/redpitaya.git complements the official Buildroot version (source

sourceme.ggm to load the BR2 EXTERNAL variable):

▶ make redpitaya defconfig && make

For Raspberry Pi4
▶ make raspberrypi4 64 defconfig && make

4https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
5http://jmfriedt.free.fr/A13_v2.pdf

11 / 14

https://github.com/trabucayre/buildroot
https://github.com/trabucayre/redpitaya.git
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
http://jmfriedt.free.fr/A13_v2.pdf

Buildroot

make menuconfig: configure Buildroot (userspace packages, toolchain)

make linux-menuconfig to configure the kernel (USB support e.g. – the kernel source code is
found in output/build/linux* after compiling Buildroot)

Tree structure organization:

1. configs/*defconfig: Buildroot configurations (e.g make raspberrypi4 64 defconfig)

2. board/raspberrypi4-64/: board specific scripts

3. output holds all Buildroot compilation results

4. output/host/bin holds all files related to the (x86) host – toolchain and other tools (e.g. dtc)

5. output/target/ holds all files related to the ARM target

6. output/target/lib holds the dynamically loaded libraries for the embedded target board

7. output/build/linux-*: Linux source code

8. output/build/linux-*/arch/arm/boot: compiled Linux kernel

9. output/images/*img: image to be transfered on the non-valatile storage medium (dd)

12 / 14

Buildroot (custom 6 7 8)

▶ Adding custom functionalities (board, packages): BR2 EXTERNAL

▶ See https://github.com/oscimp/oscimp_br2_external for GNU Radio 3.9 support,
temporary packages prior to mainline support

▶ See https://github.com/trabucayre/redpitaya for new board support

▶ Handling new packages: add in packages

https://buildroot.org/downloads/manual/manual.html#adding-packages

6G. Goavec-Merou, J.-M Friedt, “On ne compile jamais sur la cible embarquée” : Buildroot propose GNU Radio sur
Raspberry Pi (et autres), Hackable 37 (Avril-Mai-Juin 2021)

7G. Goavec-Merou, GNURadio running on embedded boards: porting to buildroot, GNU Radio Conference (2018) at
https://pubs.gnuradio.org/index.php/grcon/article/view/86

8G. Goavec-Merou & J.-M Friedt, Never compile on the target ! GNU Radio on embedded systems using Buildroot,
FOSDEM 2021, at
https://archive.fosdem.org/2021/schedule/event/fsr_gnu_radio_on_embedded_using_buildroot/

13 / 14

https://github.com/oscimp/oscimp_br2_external
https://github.com/trabucayre/redpitaya
https://buildroot.org/downloads/manual/manual.html#adding-packages
https://pubs.gnuradio.org/index.php/grcon/article/view/86
https://archive.fosdem.org/2021/schedule/event/fsr_gnu_radio_on_embedded_using_buildroot/

Linux filesystem

Two partitions (sda1 and sda2) on the hardware non-volatile memory (sda)

▶ first small FAT filesystem including the bootloader, Linux kernel image and devicetree hardware
configuration description

▶ large Unix filessystem (EXT) with rootfs including libraries and applications
▶ /etc configuration files
▶ /sbin system binaries
▶ /bin unix binaries
▶ /usr user specific files (/usr/bin and /usr/lib)
▶ /root administrator home directory
▶ /home users home directories
▶ /proc pseudo-files representing the Linux kernel state and processes
▶ /dev and /sys pseudo-files for communicating with hardware through kernel drivers

dd if=output/images/sdcard.img of=/dev/sda bs=8M to transfer the Buildroot generated
image to the SD card (will definitely erase the mass storage medium content)

minicom -D /dev/ttyUSB0 to access console (root/root)

14 / 14

	Introduction
	Embedded operating systems

