

2008 IEEE 19-21 Mai 2008

Acoustic characterization of thin polymer layer for love mode surface acoustic waveguide

L. El fissi¹, J-M. Friedt¹, S. Ballandras², L.Robert², F.Cherioux²

¹Senseor, 32 avenue de l'Observatoire, F-25044 Besançon France

² FEMTO-ST/LPMO, 32 avenue de l'Observatoire, 25044 Besançon France

OUTLINE

- Introduction
- Surface acoustic wave devices
- Simulation settings & validation
- Experimental monitoring of photo-resist characterization
 & results
- Conclusion

INTRODUCTION

Love mode acoustic sensors \rightarrow detection sensitivity in layered viscous media

Quantitative physical properties \rightarrow acoustic velocities & insertion losses

Validation of a simulation approach based on:

- transducer analysis \rightarrow FEA / BEM
- dispersive propagation for viscous effects \rightarrow Green's function
- delay line simulation \rightarrow results inserted in a mixed-matrix model

Addressed problem: evaluation of the physical properties of a resist layer:

- mass density, elastic coefficients, viscosity coefficient, thermal dependence
- Since the layer contributes to the Love mode guiding
 - \rightarrow identify the mode characteristics at different curing temperature
 - \rightarrow extract resist physical coefficients

> Love mode surface acoustic wave (SAW):

- Guided shear acoustic wave: thin S1813 and SiO₂ layers
- Interdigital transducers (IDTs) on a piezoelectric substrate
- > Basic structure of the sensor:

Sensor = a two-track delay line: the reference and the sensing line

• IDTs (4 finger-per-wavelength): Finite Element Method

> Typical IDT geometry:

> Lab-made FEA-BEM software used to calculate the Harmonic Admittance at $\gamma = 0.25$

Simulation of the IDT grating (II)

> Harmonic Admittance, p = $10\mu m$, a/p = 0.5, h/2p = 0.5%

SENSCOR femto-st

- Surface between IDTs: Green's function-based calculations
- Green's function of viscous-fluid-loaded devices allows for estimating velocity and losses of the wave

Acoustic velocity & acoustic losses versus glycerol concentration

Theory & experiment assessment

Love-wave device simulation: Mixed-Matrix model

Time resolved simulation & measurements of the magnitude shift of glycerol solution

• Experimental set-up:

- Monitor the viscosity & solvent concentration of S1813 photo-resist:
 - SiO₂ + S1813: guiding layer
 - \rightarrow Two experimental steps:
 - Evaluate the specific IL & phase velocity when curing the guiding layer
 - Record the solvent concentration within the layer using Infrared spectroscopy

Evolution of experimental frequency & insertion losses monitored for different temperatures with the SiO₂+ S1813 guiding layer

Measurement assessment: FTIR (II)

Spectrum localizing the exploited PGMEA absorption band

Measurement assessment (III)

Correlation between the temperature dependent acoustic signatures

& Infra-Red spectroscopy results

Evolution of experimental frequency & insertion losses monitored for different temperatures without the photo resist layer

Neglect effect of temperature on insertion losses and frequency of the SAW device (Quartz + SiO₂)

→ Using Green's function: assume the resist layer behaves like a viscous fluid

 $C_{66} = 0$

 \rightarrow identify viscosity from measured IL (for each temperature)

Problems:

- Variations of the frequency shift induced by the viscosity are negligible compared with the measurements
- Variations of the layer thickness & density have no impact on the propagation velocity
- ➔ Modify model to assume the resist behaves like a *quasi-fluid* (elastic):

 $C_{66} \neq 0$

 \rightarrow extraction of the temperature dependent shear elastic constant

For each temperature we can determine:

- the thickness of the layer: $e = e_0 (1 + (T - T_0)\alpha_{11})$ $\alpha_{11} = 150 \ ppm/K$ $T_0 = 25C^{\circ}$

- the mass density: $\rho(T) = \rho_0 / V_{me}(T)$

 V_{me} : thermal expansion coefficient of the elementary mesh

- keeping previously determined viscosity

→ Using Green's function \rightarrow temperature dependent shear elastic constant

$$C_{ij}(T) = C_{ij_0}(1 + (1/C_{ij_0}) * (dC_{ij}/dT) * (T - T_0))$$

linear fit of the effective temperature coefficients of elasticity v.s temperature curve

these parameters are dominant in the variation of the frequency

- SAW device system can be used to quantitatively evaluate viscous properties of liquids deposited atop the sensing track

- was used to characterize the acoustic behavior of a thin photo resist layer
 - \rightarrow the insertion losses give an indication on the viscosity of the layer
 - \rightarrow the property changes of the photo resist layer result primarily in:
 - the evolution of the viscosity (I.L)
 - the elastic behavior (Frequency)
 - while layer thickness and density are mostly unchanged during curing
 - ✤ This approach is applicable to any type of film thinned by spin coating