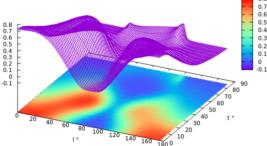
Experimental demonstration of Surface Acoustic Wave propagation on α -GeO₂ for wireless, passive sensor design



W. Daniau, R. Salut, J.-M Friedt FEMTO-ST, UFC/CNRS 6174 Besançon, France A. Peña, J. Debray, B. Menaert Institut Néel CNRS/UGA 2940 Grenoble, France P. Armand, P. Papet ICGM UMR5253 Montpellier, France A. Penarier, P. Nouvel IES UMR5214 Montpellier, France

α -GeO₂: from material to sensor to measurement

- Surface acoustic wave (SAW) transducer for wireless sensing of a passive sensor at high temperature (>800°C)
- α -GeO₂: no phase transition up to its melting temperature (1116°C)
- α -GeO₂: high temperature growth for **stable** and stoechiometric material
- α -GeO₂: quartz-like substrate (point group 32)
- α -GeO₂: low electromechanical coupling coefficient \Rightarrow **resonator** architecture
- **Question:** ability to generate and propagate a surface acoustic wave in a highquality factor design compatible with wireless sensing?

Electromechanical coupling coefficient v.s orientation

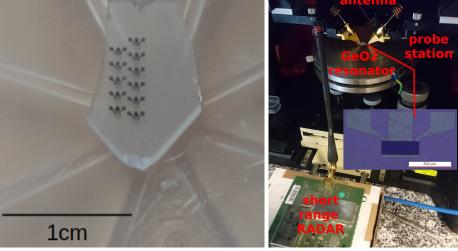
GeO_2 surface acoustic wave generation

Mixed matrix simulation based on published^{*ab*} piezoelectric constants to identify favorable α -GeO₂ cut, propagation direction, beamsteering, and temperature turnover.

^aR.M. Taziev, SAW properties in quartz-like α -GeO₂ single crystal, J. of Physics: Conference Series, **1015**(3)

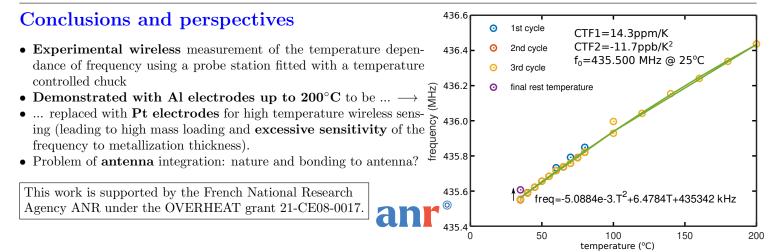
^bA. Lignie, P. Armand, P. Papet, Growth of piezoelectric water-free GeO₂ and SiO₂-substituted GeO₂ singlecrystals, Inorganic chemistry **50**(19) 9311–9317 (2011)

 $[\]begin{array}{c} & & & \\ & &$


Beam steering v.s orientation

Wireless interrogation of the passive transducer

• Design of a reflective, single port resonator operating in ...


032142(2018)

- ... the 434 ± 1 MHz Industrial, Scientific, and Medical (ISM) band.
- Varying wavelength λ for varying h/λ (*h* electrode thickness) and metallization ratio to adjust reflection and propagation coefficient of mixed matrix model.
- Quality factor (Q > 1000) sufficient to **differentiate** sensor response from **clutter**
- Aluminum electrodes patterned using **ebeam lithography** on cm² scale substrates
- <u>A</u> GeO₂ surface **damaged** by Al etchant, limited reuses of the substrate before requiring renewed polishing.

Patterned crystal

Experimental demonstration of passive sensor wireless measurement

