Theoretical & experimental analysis of high Q SAW resonator transient response in a wireless sensor interrogation application

P. Varshney ^{1,2}, S. Ballandras ^{2,3}, B.S. Panwar ^{1,2}, J.M. Friedt ³, T. Rétornaz ³, B. François ², G. Martin ², P. Rathore ¹

¹ CARE, Indian Institute of Technology Delhi, New Delhi, India
 ² FEMTO-ST, UMR CNRS 6174, Univ. of Franche Comté, Besançon, France

³ SENSEOR SAS, Besançon, France

 $Emails: \verb|varshney.pratyush@gmail.com|, ballandr@femto-st.fr|| \\$

Context: surface acoustic wave (SAW) devices used as passive sensors interrogated through a wireless link using a monostatic, frequency-sweep pulsed RADAR

Objective: link budget and frequency identification resolution including electronic component noise and acoustic device characteristics in order to identify limiting factor in interrogation range

Oscillator noise limitation

- Phase noise S_{φ} of local oscillator (LO) = frequency fluctuation of the reference signal: $S_{\varphi}(f_c) = \frac{\Delta \varphi_{RMS}}{BW}$ (BW: measurement bandwidth, f_c offset from carrier)
- The longer the interrogation, the higher the chance of phase fluctuations (=high phase noise close to carrier)
- resonator time constant $\tau = Q/(\pi f_0) \simeq 7 \ \mu s$ for resonator at $f_0 = 433$ MHz and quality factor Q = 10000: wait for 5τ to reach 99% of load/unload (independent sequence of measurements)
- frequency sweep strategy: N = 128 points/frequency band (fixed frequency comb ^a) or 2-point strategy (feedback on measured frequency ^b)

$$\Rightarrow S_{\varphi}$$
 at $f_c = 1/(2 \times N \times \tau) \in [0.1 - 7]$ kHz

Experimental load/unload of resonator: the carrier is chopped during load so that the stored energy is visible

Phase to frequency noise: $S_{\Delta f} = f_c^2 S_{\varphi} = \frac{\Delta f_{RMS}^2}{BW}$ *i.e.* for a measurement bandwidth BW of $2 \times f_c$,

$\Delta f_{RMS} = \sqrt{2 \times f_c^3 \times S_{\varphi}}$				
Phase noise	f_0	Q	Δf_{RMS}	resolution
-170 dBc/Hz	$434 \mathrm{~MHz}$	10000	$0.01~\mathrm{Hz}$	$4.10^{-6} { m K}$
-130 dBc/Hz	$434 \mathrm{~MHz}$	10000	1 Hz	$4.10^{-4} { m K}$
-90 dBc/Hz	$434 \mathrm{~MHz}$	10000	$140~\mathrm{Hz}$	50 mK
-170 dBc/Hz	$2.450~\mathrm{GHz}$	1500	2 Hz	$10^{-4} {\rm K}$
-130 dBc/Hz	$2.450 \mathrm{~GHz}$	1500	230 Hz	10 mK
-90 dBc/Hz	$2.450~\mathrm{GHz}$	1500	$23000~{\rm Hz}$	$1 \mathrm{K}$

assuming 6 ppm/K (200 K range within 434 MHz ISM band). Receiver amplifier noise floor: kT/P (P received power, temperature T) dominates at large range, -114 dBc/Hz if P = -60 dBm

^aJ.-M Friedt, C. Droit, G. Martin, and S. Ballandras A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement, Rev. Sci. Instrum. **81**, 014701 (2010)

^bJ.-M Friedt, C. Droit, S. Ballandras, S. Alzuaga, G. Martin, P. Sandoz Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy, Rev. Sci. Instrum. **83**, p.055001 (2012)

SAW transducer limitation

Two approaches:

- finite element modelling followed by mixed matrix assembly of elementary structures (transducer, cavity) $\rightarrow S_{11}$ response file
- equivalent electrical model (Butterwortdh-van Dyke) with fitted motional parameters

Modelling sequence:

- 1. include either model in ADS in addition to RADAR electronics component models, antenna impedance set to 70 Ω load (to be improved later)
- 2. time-domain analysis for transient response of acoustic device probed by pulse with variable frequency carrier
- 3. record amplitude at time $t\ll Q/(\pi f_0)$ for resonator operating at frequency $f_0\simeq 433$ MHz and quality factor $Q\simeq 10000$

Challenge: high quality factor \Rightarrow simulation time step $\ll 1/f_0$ (here 10 ps steps for a total 10 μ s simulation)

ADS model of the resonator with gated source: source at 434.12 MHz. BVD equivalent circuit: L_m =0.24 mH, C_m = 0.56 fF, R_m = 76.8 Ω , C_0 = 1.7 pF

TECHNOLOGIES

Current through BvD (load & unload)

Frequency dependent current through BvD (\leftarrow) and motional branch (\rightarrow) Current in motional branch = mechanically stored energy (current continuity condition is met)

Conclusion: towards full wireless SAW reader modelling tool, including phase noise of LO and contribution of noise of electronics & transducer. LO is limiting at low range, receiver noise at range > 1 m. **Perspectives:** add propagation path/medium losses (buried sensors) and antenna impedance/radiation pattern.