Simultaneous AFM and QCM measurements of biological and electrochemical processes

J.-M. Friedt, K.-H Choi, L. Francis, F. Frederix, A. Campitelli

IMEC, Kapeldreef 75, 3001 Leuven, Belgium friedtj@imec.be, choik@imec.be, campi@imec.be

Development of a novel platform for bioanalytical investigations

- Understanding the oscillation properties of the quartz resonator under viscous load (liquid medium)
- Monitoring of processes at the cm² (QCM) and nm² (AFM) scales \rightarrow analysis of the interactions of the two techniques:
- static finite element analysis: out of plane displacement is 0.1 pm
- dynamic displacement=static displacement $\times Q \Rightarrow$ out of plane displacement is 0.3 nm ($Q \simeq 3000$)
- in plane displacement is at most 3 nm, smaller than AFM pixel size
- standing wave pattern between QCM and cantilever holder only disturbs the resonance frequency during approach

- fundamental resonance frequency (5 MHz) is unstable and overtones of the QCM must be used

Experimental setup

In-plane displacement (0.1 pm)

Out-of-plane displacements (0.1 pm)

- Use of commercial instruments:
- QSense-AB QCM monitoring electronics (frequency overtones and damping) \rightarrow continuous monitoring of the 3rd, 5th and 7th overtones+quality factor
- Molecular Imaging AFM (moving scanner, fixed sample holder)
- Gamry potentiostat for electrochemistry applications

Application to biological processes

Cu and Ag electrodeposition display different crystal structures \Rightarrow rougher surfaces interact more with the viscous layer of surrounding liquid. Biological layers behave as viscous or rigid lavers depending on the binding mechanism.

Application to electrodeposition monitoring

Rigid layer $\Rightarrow \Delta f_n / n \propto \Delta m_{layer}$ (low damping) with n: overtone number Viscous layer $\Rightarrow \Delta f_n / \sqrt{n} \propto \{\Delta m_{liquid}, \Delta m_{layer}\}$ (large damping)