Outline: generic embedded GNU/Linux development methods

Buildroot, as OpenEmbedded/Yocto, supports multiple embedded boards running GNU/Linux: see
https://github.com/buildroot/buildroot/tree/master/board

1. General presentation of the project: http://jmfriedt.free.fr/presentation_projet_M1.pdf

2. First week: getting the Buildroot framework (kernel + library + userspace application + toolchain)
functional on the host computer (PC)

3. Second week: getting GNU Radio running on the target system (Raspberry Pi4) — demonstration
with FM broadcast radio demodulation and sound transfer to the host used as sound card !.

4. Design (schematic and routing) of a dedicated radiofrequency source board

5. Later: using these tools to characterize a SAW resonator

Buildroot make gdcard.img__dd___sdcard.img SDcard _ filesystem with GNU graphical flowchart with GNU _generate _ Python code run GNU
on host (PC) on PC on SD card onRPi4 Radio on RPi4 Radio Companion on PC Python on RPi4 Radio on RPi4

& scp to RPi4

1G. Goavec-Merou, J.-M Friedt, “On ne compile jamais sur la cible embarquée” : Buildroot propose GNURadio sur

Raspberry Pi (et autres), Hackable (2021), at http://jmfriedt.free.fr/hackable_buildroot.pdf
1/18

https://github.com/buildroot/buildroot/tree/master/board
http://jmfriedt.free.fr/presentation_projet_M1.pdf
http://jmfriedt.free.fr/hackable_buildroot.pdf

Getting started

Embedded systems development is about optimizing resources (lower power consumption for

maximum computational power)

> get a functional working environment: a functional GNU/Linux distribution (packages to solve
dependencies between libraries and userspace applications): Debian or Ubuntu

» native install on your computer, dual boot or at worst VirtualBox/VMWare virtual machine

> ability to work with the Windows Subsystem for Linux (WSL2 2 3 ?): Microsoft is adding POSIX
system calls to MS-Windows, worth trying but not tested

» whether native install or virtual machine: start with netinst % ® for a minimal setup and add
necessary functionalities

’https://devblogs.microsoft.com/commandline/announcing-wsl-2/
3T. Colombo, WSL2 : cheval de Troie ou cadeau empoisonné ?, GNU/Linux Magazine France 241 (2020)
“https://www.debian.org/CD/netinst/ for Debian

Shttps://cdimage.ubuntu.com/netboot/18.04/ for Ubuntu
2/18

https://devblogs.microsoft.com/commandline/announcing-wsl-2/
https://www.debian.org/CD/netinst/
https://cdimage.ubuntu.com/netboot/18.04/

Linux basics

> package management under Debian/Ubuntu: apt

» Ubuntu promotes temporary super user commands prefixed with sudo, Debian supports sudo if
installed, switch to root with su - otherwise

» add developer packages: apt install build-essential
» if a command is not known: man command provides the manual

» basic unix command and tree structure: already addressed at the bachelor level at
http://jmfriedt.free.fr/TP_cmd_unix.pdf

never, ever, work as root if not performing administration tasks

3/18

http://jmfriedt.free.fr/TP_cmd_unix.pdf

Embedded system development

Once a functional GNU/Linux (host = Intel x86) environment is available:

» develop for the target ARM board by cross-compiling: need for a consistent toolchain (compiler
and binary handling utilities), kernel (Linux), libraries and userspace applications

> several frameworks provide such consistent functionaliy (Yocto, OpenEmbedded, Buildroot) — the
latter being arguably the easiest to grasp and requiring fewer resources (8 GB hard disk space)

» fetch the latest stable release of Buildroot:
wget https://buildroot.org/downloads/buildroot-2022.08.1.tar.gz
(or check https://buildroot.org/download.html)

» uncompress (gunzip) and unarchive (tar xvf) on a storage medium with at least 8 GB available,
possibly external mobile storage medium: tar zxvf buildroot-2022.08.1.tar.gz

» do not attempt moving the Buildroot directory to some different location after configuring: some
hard-coded directory structure will be broken

4/18

https://buildroot.org/download.html

Embedded system development

First initial compilation of Buildroot
> tar zxvf buildroot-2022.08.1.tar.gz to uncompress/unarchive the downloaded file
» cd buildroot-2022.08.1/ to enter the directory

> |s configs/raspberrypi* to check available configurations and that raspberrypi4_64_defconfig is
supported

> make raspberrypi4_64_defconfig to configure with the default configuration

» make to compile Buildroot: many archives will be downloaded (requires fast internet connection)
and the resulting tree structure requires about 8 GB

» Buildroot should be self-contained and independent of the host operating system assuming basic
developer functions are available (gcc, g++, make, git, cmake ...)

> at the end: output/images/sdcard.img is the image to be transferred to the SD card
> bitwise copy from a file to a storage medium: dd (Disk Dump)

5/18

Embedded system development

> A WARNING: the following command will definitely delete all data on the target medium.
Make sure how the SD-card is called. It is usually /dev/sdb but in case a mobile hard disk/USB
stick is inserted, it could be that the SD-card is called something else. Check many times before

running dd

» identify the block name

[514523.
[614523.
[514523.
[514523.
[514523.
[514523.
[514523.
[514524.
[514524.

735373]
735669]
9948851
995006]
995008]
995129]
995133]
0248071

scsi
sd
sd
sd
sd
sd
sd

sdb:

a0 oo

6 using dmesg

6:0:0:0: Direct-Access Mass Storage Device 1.00 PQ: O ANSI: O CCS

0
[sdb]
[sdb]
[sdb]
[sdb]
0: [sdb]
sdbl sdb2

[
0
0
0o
0

025712] sd 6:0:0:0: [sdb]

Attached scsi generic sgl type 0

31422464 512-byte logical blocks: (16.1 GB/15.0 GiB)
Write Protect is off

Mode Sense: 03 00 00 00

No Caching mode page found

Assuming drive cache: write through

Attached SCSI removable disk

> sudo dd if=output/images/sdcard.img of=/dev/sdd bs=8M
(replace sdd with the appropriate medium provided by dmesg)

» This procedure will have to be repeated every time a modification is brought to Buildroot.

6also make sure a file manager has not automagically mounted the filesystems stored on the SD: if mount refers to

some automounted filesystem in /media, umount them

tail after inserting the SD card reader, or Isblk

6/18

Network configuration

We need to connect the Raspberry Pi4 to the host computer through an Ethernet link *:

» point to point Ethernet connection is most easily established when both computers are on the
same sub-network

» on the host computer (personal computer):
ifconfig -a & to identify the name of the network interface
sudo ifconfig eth0 192.168.2.1 to set ° the IP (Internet Protocol) address of interface Ethernet
eth0 to 192.168.2.1 1°

» network configuration is an administrator task: in room 215B, prefix commands with sudo

7if using a Virtual Box with a GNU/Linux guest on a Microsoft Windows host, configure network as a Bridged
Adapter (not the default NAT) and check the Windows firewall settings

8ifconfig is now superseded with ip: if ifconfig is not available, try ip addr

9assuming no interference from a network manager

Owith ip: ip a add 192.168.2.1 dev eth0

7/18

Network configuration

On the SD-card (still inserted in the USB-SD adapter on the host computer)

> we need to set the IP address of the Raspberry Pi4 on the same subnet 192.168.2.X

» network configuration is handled by /etc/network/interfaces

» mount the second partition of the SD-card (mount /dev/sdb2 /mnt if the SD-card is sdb)
>

edit the /mnt/etc/network/interfaces file to be read by the Raspberry Pi4 (not to be confused
with /etc/network/interfaces on the host)

» replace the dhep entry (dynamic IP allocation) with

iface ethO inet static
address 192.168.2.2
netmask 255.255.255.0

This will select the default IP address 192.168.2.2 for the Raspberry Pi4
> remove the SD-card: umount /mnt

» insert the SD-card in the Raspberry Pi4, connect the Ethernet cable, wait for the Raspberry Pi4 to
boot, and ping 192.168.2.2 from the host

8/18

Network configuration

if all goes well, we get a reply, meaning the Raspberry Pi4 has booted and the network
configuration is correct

We need to run a server to connect to the Raspberry Pi4 from the host computer: Secure SHell
(ssh) is provided by dropbear

in the Buildroot directory on the host computer: run
make menuconfig
to start configuring Buildroot with new packages

search (/") the keywork dropbear and select this package

the ssh server requires a root password: System Configuration — Enable root login with
password — provide a password you will remember

make to generate a new sdcard.img archive and dd to the SD card
ssh root@192.168.2.2 to log into the Raspberry Pi4

9/18

No Ethernet ? serial-USB cable

In case no Ethernet port is available on the host computer, option 1 is to use a serial to USB
converting cable: the console displays a login shell

O O [] $ & [ON _NoNON NONCRONON NON RONORE)
[ONcRoNON RONCHONCRONONON NORONCRONONON]

On the PC:

minicom -D /dev/ttyUSBO

Welcome to Buildroot
buildroot login:

At the login prompt, enter the administrator identifier
root

since it is the only account available.)
10/18

No Ethernet 7 virtual Ethernet over USB-C (1/2)

In case no Ethernet port is available on the host computer, option 2 is to use the virtual Ethernet over
USB-C! (might require powering
from a USB3 port)

» in the first SD card partition, edit config.txt and add a line with

dtoverlay=dwc2

to load the USB OTG functionality from overlays/dwc2.dtbo

add a file in /etc/init.d/ of the SD card second partition (the embedded GNU/Linux system) named S01-module
with

modprobe dwc2
modprobe g_ether

make the script on the SD card executable:
chmod 755 etc/init.d/SO1-module

after booting the Raspberry Pi 4, on the host computer, Isusb will show

Bus 001 Device 051: ID 0525:a4a2 Netchip Technology, Inc. Linux-USB Ethernet/RNDIS Gadget

a new network interface named usb0 will be available on both the embedded board — see ifconfig -a — and the host
computer (assuming g_ether was modprobe on the host computer)

11https ://dev.webonomic.nl/4-ways-to-connect-your-raspberry-pi-4-to-the-internet
11/18

https://dev.webonomic.nl/4-ways-to-connect-your-raspberry-pi-4-to-the-internet

No Ethernet 7 virtual Ethernet over USB-C (2/2)

. As described earlier, modify network/interfaces of the Raspberry Pi 4 with (here with IP 192.168.3.2)

iface usbO inet static
address 192.168.3.2

. check the name of the new interface on the host computer: it could be that it was renamed from usb0 to something
like enp0s20u2: defined its IP address on the host computer in the same subnet (here 192.168.3.1):
ifconfig usb0 192.168.3.1
or
ip a add 192.168.3.1 dev usb0

. check the routing table of the host computer: /sbin/route -n. If there is no entry associated with usb0 (or its
replacement name), add a routing condition: sudo route add 192.168.3.2 usb0 to route packets through the
interface (usb0) associated with the RPi4 target address 192.168.3.2

. check the connection with ping 192.168.3.2 from the host computer and ping 192.168.3.1 from the Raspberry Pi 4.
In both cases a reply with

PING 192.168.3.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.3.1: icmp_seq=1 tt1=64 time=0.181 ms
64 bytes from 192.168.3.1: icmp_seq=2 ttl=64 time=0.170 ms

should be displayed if communication is successful

. continue with the dropbear install for ssh connection (slide 9)

12/18

Adding audio support
Audio is not active in the default Buildroot configuration.

To activate audio, add in the config.txt of the first partition of the SD card:
dtparam=audio=on

After booting, load the sound card driver (modprobe snd-bcm2835.ko) so that dmesg displays

[X.XXXXXX] bcm2835_audio bcm2835_audio: card created with 8 channels

Add the ALSA!? utilities using make menuconfig in Buildroot and select the speaker-test function
so that the sound can be tested using
speaker-test -t sine -f 440

12 Advanced Linux Sound Architecture
13/18

v

v

v

Further reading

P. Ficheux & E. Bénard, Linux Embarqué 4éme édition, Eyrolles (2012)

P. Ficheux, Linux Embarqué — Mise en place et développement, Eyrolles (2018)

K. Yaghmour, J. Masters, G. Ben-Yossef, P. Gerum, Building Embedded Linux Systems, 2nd Ed.,
O'Reilly (2008)

J. Madieu, Linux Device Drivers Development, Packt (2017)

C. Hallinan, Embedded Linux Primer: A Practical, Real-World Approach, 2nd Edition, Prentice
Hall (2010)

14/18

No hardware? Emulator (RPi3)

gemu as provided in Debian/Ubuntu’s gemu-system-arm package emulates the Raspberry Pi 3:
$ gemu-system-aarch64 -M help | grep raspi

;;;piSb Raspberry Pi 3B (revision 1.2)

and allows for networking. From the Buildroot output/images directory:

gqemu-system-aarch64 -kernel Image -dtb ./bcm2710-rpi-3-b.dtb \
-drive file=./sdcard.img,format=raw,if=sd,id=hd-root \
-append "rw earlycon=pl011,0x3£201000 console=ttyAMAO loglevel=8 \
root=/dev/mmcblkOp2 fsck.repair=yes net.ifnames=0 rootwait memtest=1" \
-M raspi3b -m 1024 -serial mon:stdio -no-reboot -nographic \
-device usb-net,netdev=netO -netdev user,id=netO,hostfwd=tcp::5555-:22

For copying files through ssh, root access must be enabled: edit /etc/ssh/sshd_config in the
emulator and modify PermitRootLogin yes.

Restart the server service /etc/init.d/S50sshd restart and from the host (PC): ssh -p 5555
root@localhost will connect to the emulator.

15/18

No hardware? Emulator (RPi4)

After activating the VirtlO drivers in the Linux kernel (make linux-menuconfig in the Buildroot
directory), e.g. by enabling (Y) first the VirtlO PCl support:

CONFIG_VIRTIO_BLK=y
CONFIG_VIRTIO_BLK_SCSI=y
CONFIG_SCSI_VIRTIO=y
CONFIG_VIRTIO_PCI=y
CONFIG_VIRTIO_MMIO=y
CONFIG_FUSE_FS=y
CONFIG_VIRTIO_FS=y

execute 13

gemu-system-aarch64 -M virt -cpu cortex-a72 -nographic -smp 1 -kernel Image \
-append "rootwait root=/dev/vda console=ttyAMAO" -netdev user,id=ethO \
-device virtio-net-device,netdev=ethO \

-drive file=rootfs.ext4,if=none,format=raw,id=hd0 -device virtio-blk-device,drive=hdO

to run the Raspberry Pi 4 image on QEMU.

13https ://raduzaharia.medium.com/system-emulation-using-qemu-raspberry-pi-4-and-efi-87652f£203b7
16/18

https://raduzaharia.medium.com/system-emulation-using-qemu-raspberry-pi-4-and-efi-87652ff203b7

This week

Demonstrate your ability to

1. setup a functional Buildroot cross-development framework

2. configure the embedded Linux system (IP address)

3. run GNU/Linux on the Raspberry Pi and connecting through the network
4

. cross-compile a C program, transfer to the Raspberry Pi and execute

Resources:

» Never compile on the target ! GNU Radio on embedded systems using Buildroot, FOSDEM 2021 at
https://archive.fosdem.org/2021/schedule/event/fsr_gnu_radio_on_embedded_using_buildroot/

» GNURadio running on embedded boards: porting to buildroot, European GNU Radio Days 2018 at
https://pubs.gnuradio.org/index.php/grcon/article/view/86

» How To Build QEMU Images With Buildroot at https://www.youtube.com/watch?v=09RHMKJqVTg

» G. Goavec-Merou, J.-M Friedt, “On ne compile jamais sur la cible embarquée” : Buildroot propose GNURadio sur
Raspberry Pi (et autres), Hackable (2021), at http://jmfriedt.free.fr/hackable_buildroot.pdf [in French]

» Raspberry Pi 4 datasheet at https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

17/18

https://archive.fosdem.org/2021/schedule/event/fsr_gnu_radio_on_embedded_using_buildroot/
https://pubs.gnuradio.org/index.php/grcon/article/view/86
https://www.youtube.com/watch?v=O9RHMKJqVTg
http://jmfriedt.free.fr/hackable_buildroot.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

Next week

GNU Radio on Raspberry Pi 4

1. making sure GNU Radio is properly installed: accessing GNU Radio blocks and playing a sound
2. first demonstration with RTL-SDR dongle: FM receiver

3. from RPi4 to PC used as sound card: Zero-MQ publish/subscribe

4. from PC to RPi4: TCP/IP server running as a Python thread

— all the tools needed to develop an embedded instrument (data from instrument to PC and control
commands from PC to instrument)

18/18

