
Outline
General context: we wish to design an instrument in which the data are collected by the Raspberry
Pi 4, under control of the PC, to be transferred to the PC for processing and display.

(Python3)
PCsource RPi4DVB−T

signal

commands

samples

RF
DUT

red will be addressed later in the project

GNU Radio on Raspberry Pi 4

1. making sure GNU Radio is properly installed 1: accessing GNU Radio blocks and playing a sound

2. first demonstration with RTL-SDR dongle: FM receiver

3. from RPi4 to PC used as sound card: Zero-MQ publish/subscribe

4. from PC to RPi4: TCP/IP server running as a Python thread

Objective: a FM radio receiver running on the RPi4, streaming sound from the RPi4 to the PC,
whose carrier frequency is controlled from the PC

1raspberrypi4 64 gnuradio defconfig Buildroot configuration file with GNU Radio support (and dependencies) at
https://github.com/oscimp/oscimp_br2_external/tree/master/configs

1 / 14

https://github.com/oscimp/oscimp_br2_external/tree/master/configs

Challenge: consistency between PC and embedded system

We will generate GNU Radio flowcharts on the PC, convert to Python script and execute on the RPi4

Currently three generations of GNU Radio incompatible with each other: 3.7 (obsolete since 2019 2,
uses XML), 3.8 (YAML, SWIG, Python3, Qt5 3), 3.9/3.10 (YAML, no SWIG → Pybind11 4)

GNURadio 3.8 (Debian stable, Ubuntu 20)

▶ default configuration in Buildroot 2022.11
archive

▶ can benefit from
https://github.com/oscimp/oscimp_br2_

external/blob/master/configs/

raspberrypi4_64_gnuradio_defconfig

GNURadio 3.9/10 (Debian testing/unstable, Ubuntu 22)

▶ requires git version of Buildroot at
https://git.buildroot.net/buildroot (will
become Buildroot archive in 02/2023)

Alternatively, compile a custom known version of GNU Radio using PyBOMBS
(https://github.com/gnuradio/pybombs) after removing all binary distribution packages

2Debian oldstable/Ubuntu 18
3https://wiki.gnuradio.org/index.php/GNU_Radio_3.8_OOT_Module_Porting_Guide
4https://wiki.gnuradio.org/index.php/GNU_Radio_3.9_OOT_Module_Porting_Guide

2 / 14

https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://git.buildroot.net/buildroot
https://github.com/gnuradio/pybombs
https://wiki.gnuradio.org/index.php/GNU_Radio_3.8_OOT_Module_Porting_Guide
https://wiki.gnuradio.org/index.php/GNU_Radio_3.9_OOT_Module_Porting_Guide

Buildroot with GNU Radio support
GNU Radio requires multiple additional options not selected with the default Buildroot:

▶ glibc C library (instead of uClibc)

▶ eudev device handling

▶ Python3 support

▶ some additional GNU Radio options (Python support, 0-MQ ...)

to avoid iterative selection of the Buildroot packages, a new defconfig file is available from

https://github.com/oscimp/oscimp_br2_external/tree/master/configs

Download 5 raspberrypi4 64 gnuradio defconfig, put the file in the local Buildroot configs, and
restart the whole compilation

make clean

make raspberrypi4_64_gnuradio_defconfig

make

(should be faster since the downloaded archives are still in dl/)
Total disk space: about 12 GB

5make sure to download the raw (top-right menu) file, and not its HTML formatted code
3 / 14

https://github.com/oscimp/oscimp_br2_external/tree/master/configs

GNU Radio 3.8 on the PC (only if binary distribution version >3.8)
▶ pybombs allows for multiple version of GNU Radio to be installed on a same computer (including 3.8, 3.9 and 3.10)

▶ We will launch gnuradio-companion on the PC:

1. check the packaged version of GNU Radio: apt-cache policy gnuradio
2. if not the wanted version, use PyBOMBS (Python Build Overlay Managed Bundle System) as

described at https://github.com/gnuradio/pybombs

2.1 sudo apt-get install python3-pip

2.2 sudo pip3 install pybombs

2.3 pybombs auto-config

2.4 pybombs recipes add-defaults

2.5 pybombs prefix init ~/prefix-3.8 -R gnuradio38 assuming the installation directory is in
$HOME/prefix-3.8

2.6 source ~/prefix-3.8/setup_env.sh (will have to be repeated in each terminal launching GNU Radio
Companion)

2.7 gnuradio-companion

3. if GNU Radio Companion has started: install osmosdr, either from the binary package apt if GNU
Radio 3.8 is packaged, or with PyBOMBS (pybombs install gr-osmosdr) if this installation system
was used

4. close GNU Radio Companion and launch again (or refresh package list) to access Osmocom Source:
the links between blocks must be curves (≥3.8) and not lines at right angles (≤ 3.7).

4 / 14

https://github.com/gnuradio/pybombs

GNU Radio on PC: broadcast FM station reception
1. RTL-SDR sample rate ∈ [1.0 : 2.4] MS/s (samp rate)
2. Osmocom Source: carrier frequency (∈ [25 : 1600] MHz, ∈ [88 : 108] MHz for broadcast FM)
3. bandpass filter to select a single FM station (250 kHz banwidth) + decimation
4. WBFM receiver6

5. decimate the WBFM output to reach one of the available audio sampling rates (e.g. 48 kHz)
assuming samp rate was wisely selected)

6. assess (QT Freq Sink spectrum analyzer) each processing step using the graphical interface
features

7. dynamically change the carrier frequency using a GUI slider setting the variable

48000*24

Quadrature rate = samp_rate/6

Options

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

Variable

ID: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4

in
Audio Sink

Sample Rate: 48k

outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 4.5k

Window: Hamming

Beta: 6.76
outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 102.4M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 0

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20
in

QT GUI Frequency Sink

FFT Size: 1024

Center Frequency (Hz): 0

Bandwidth (Hz): 1.152M

in

QT GUI Frequency Sink

FFT Size: 1024

Center Frequency (Hz): 0

Bandwidth (Hz): 38.4k

in

QT GUI Time Sink

Number of Points: 8.192k

Sample Rate: 38.4k

Autoscale: No

6D. Bederov, Arithmetic based implementation of a quadrature FM Demodulator, FOSDEM (2015) at
https://archive.fosdem.org/2015/schedule/event/sdr_arithmetic/ 5 / 14

https://archive.fosdem.org/2015/schedule/event/sdr_arithmetic/

GNU Radio on Raspberry Pi4

1. Check that GNU Radio is properly installed: on the RPi4,

python3

import gnuradio

must return with a prompt and no warning/error

2. basics of GNU Radio flowcharts: one source, digital processing blocks, and sinks with consistent
datarate along the processing path (samp rate/decimation factors)

3. no graphical output in the Raspberry Pi4: launch gnuradio-companion on the PC and select
Options → Generate Options → No GUI

4. the Id defines the name of the output Python script

5. Run → Generate to convert the flowgraph in a Python script (see console for output file & path)

6. copy (scp 7 the Python script from the PC to the Raspberry Pi4

7. on the Raspberry Pi4, execute with python3 my script.py

7on the PC: scp my script.py root@pi4 IP address:/root
6 / 14

GNU Radio on Raspberry Pi4
1. the trivial flowchart generated on the PC with GNU Radio Companion (3.8 – check the curved

connections)

▶ 2 audio outputs (GNU Radio inputs) for
stereo

▶ 48 kS/s sampling rate

▶ sine wave signal source

▶ run on the RPi4 with
python3 pgm.py

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

outfreq

Signal Source

Sample Rate: 48k

Waveform: Cosine

Frequency: 440

Amplitude: 900m

Offset: 0

Initial Phase (Radians): 0

in0

in1

Audio Sink

Sample Rate: 48k

⇒ must output a tone on the audio jack
2. FM radio receiver to check proper operation of DVB-T dongle

samp_rate=48000*24

cutoff=samp_rate/12

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4
in0

in1

Audio Sink

Sample Rate: 48k

outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 36k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 40

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

7 / 14

Streaming from RPi4 to PC
▶ An instrument collects the data and sends them to a PC for processing

▶ the PC might not process all data but only segments

▶ UDP-like Zero-MQ stream: Publish-Subscribe mechanism (supported by Python, GNU/Octave, C, C++ ...)

▶ demonstration: stream the FM demodulated sound to the PC used as sound card.

On the Raspberry Pi4, fetch samples, demodulate and send

48000*24

input rate=samp_rate/6

cutoff=samp_rate/12

Adapt IP @ to you embedded
board network configuration

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 48k

Window: Hamming

Beta: 6.76

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

ZMQ PUB Sink

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

Publish Sink: the address tcp://192.168.x.y:5555 is the Raspberry Pi4 Ethernet address (listening to incoming
connection requests).
The port is a random value >1024, here 5555.

8 / 14

Streaming from RPi4 to PC

On the PC:

IP is the embedded board
network address

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

Audio Sink

Sample Rate: 48k

ZMQ SUB Source

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

set the Subscribe Source to the
tcp://192.168.x.y:5555 IP address of
the Raspberry Pi4, same port as before.

9 / 14

Commands from PC to RPi4
Multithreaded Python script approach
▶ GNU Radio Companion is a Python script generator

▶ GNU Radio Companion 3.8 allows for inserting additional Python commands in its initialization code: Python
Snippets

▶ GNU Radio Companion 3.8 allows for adding Python functions: Python Module
▶ Launch a separate thread running a TCP (connected mode) server

▶ Receive commands from the PC running a TCP client (telnet)
▶ Tune the GNU Radio flowgraph variables by calling the callback function associated with the modified variable

▶ Alternate ZeroMQ solution: REQ/REP (Request/Reply)

What is a thread ?
▶ function run in parallel to the main program but sharing the same memory space

impor t t h r e a d i n g
impor t t ime

de f jmf1 (argument) :
wh i l e True :

p r i n t (argument)
t ime . s l e e p (1)

t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(1 ,)) . s t a r t ()
t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(2 ,)) . s t a r t ()
t h r e a d i n g . Thread (t a r g e t=jmf1 , a r g s =(3 ,)) . s t a r t ()

▶ make sure to kill/quit the thread before leaving the Python script (self.my status=...) 10 / 14

What is a server ?
Definition: a server waits for a connection, a client connects to the server when it needs information 8

impor t s o c k e t
impor t s t r i n g
wh i l e True :

sock=sock e t . s o c k e t (s o ck e t . AF INET , s o ck e t .SOCK STREAM)
sock . s e t s o c k op t (s o ck e t . SOL SOCKET , s o ck e t . SO REUSEADDR, 1)
sock . b ind ((’127.0.0.1 ’ , 4242))
p r i n t ("Waiting for connection")
sock . l i s t e n (1)
conn , addr = sock . accep t ()
w i th conn :

p r i n t (’connected from ’ , addr)
wh i l e True :

data=conn . r e c v (1)
i f data :

data=data . decode ()
p r i n t (data)
i f ’q’ i n data :

sock . shutdown (s o ck e t .SHUT RDWR)
sock . c l o s e ()
b reak

▶ Run python3 my server in one terminal
▶ Run telnet localhost 4242 in another terminal
▶ Enjoy ... quit by sending ’q’

8availability of the selected port can be checked using nmap localhost which lists ports used by running services 11 / 14

Putting it all together ...
Python Snippet executes the thread including the Python Module running the TCP server controlling the GNU Radio
execution by tuning parameters with the associated callback function 9

"*" x 4

f rise
x4

xterm
running
GNU Radio
Companion

9J.-M Friedt, W. Feng, Analyse et réalisation d’un RADAR à synthèse d’ouverture (SAR) par radio logicielle (2/3),
GNU/Linux Magazine France 242 (Nov. 2020) 12 / 14

Commands from PC to RPi4
▶ Demonstrate how you modify the previous flowchart, streaming the output of the FM demodulator

to the PC, to tune the broadcast station frequency on the Raspberry Pi4 from the PC.

▶ Provide a graphical user interface allowing to enter the FM radio frequency and transferring the
information to the RPi4

GNU Radio
RPi4 running FM station freq.

TCP/IP

ZeroMQ

audio

Python GUI

sound card
PC

DVB−T
dongleRF I, Q

USB

Why GNU Radio >3.8?
Link between Python and C++:

▶ ≤3.8: SWIG (Simplified Wrapper and Interface Generator) – runtime errors (dynamic library
linking issues)

▶ ≥3.910: C++(11/14) bindings through Pybind11 – compilation errors 11

10D. Estévez, GNU Radio 3.9 in Buildroot at https://destevez.net/2021/10/gnu-radio-3-9-in-buildroot/
11https://wiki.gnuradio.org/index.php/GNU_Radio_3.9_OOT_Module_Porting_Guide

13 / 14

https://destevez.net/2021/10/gnu-radio-3-9-in-buildroot/
https://wiki.gnuradio.org/index.php/GNU_Radio_3.9_OOT_Module_Porting_Guide

Next week

Design a dedicated signal source based on the AD9954 DDS:

1. read datasheet, identify necessary pins and
passive components, analyze evaluation board

2. match signals with those available on the
Raspberry Pi4 40-pin connector12 including
power supply and communication signals

3. schematic: logic relations between signals

4. board routing

5. mechanical design: connector location

6. Bill of Materials (BoM), supplier and
manufacturing cost

12https://www.raspberrypi.com/documentation/computers/images/GPIO-Pinout-Diagram-2.png
14 / 14

https://www.raspberrypi.com/documentation/computers/images/GPIO-Pinout-Diagram-2.png

