
Objectives
Embedded digital radiofrequency network analyzer:
1. embedded operating system generated from the cross-compilation framework Buildroot
2. radiofrequency signal recording using GNU Radio running on the embedded board from an

RTL-SDR DVB-T dongle + server on the embedded board for controlling the recording parameters
3. signal source to probe the device under test
4. programming the signal source and transfering to the PC to complete the measurement
Tunable radiofrequency source:

▶ Voltage Controlled Oscillator (VCO) requires a tuning
voltage + non-linear response of frequency v.s tuning
voltage requires calibration (linearization)

▶ Phase Locked Loop (PLL): poor resolution + settling
time, available on GPIO4 of the RPi4

▶ Direct Digital Synthesizer (DDS): digital
radiofrequency signal generation

▶ Selected signal source: Analog Devices AD9954
requiring a dedicated board + SPI communication

1 / 14

Printed Circuit Board (PCB) design flow

Design a dedicated signal source based on the AD9954 DDS:

1. Datasheet analysis, evaluation board as
example, passive peripheral components and
link to signals available from the Raspberry Pi4
40-pin bus →
passive external components, supply voltage, signals

2. Schematic: logical link between components
through signals

3. Bill of Materials (BoM): list of components,
supplier, reference and price

4. Custom footprint (SAW ceramic package)

5. Board: routing signals between components

6. Mechanical analysis (FreeCAD 1)

1https://www.raspberrypi.com/documentation/computers/images/GPIO-Pinout-Diagram-2.png
1https://wiki.freecadweb.org/KicadStepUp_Workbench/it

2 / 14

https://www.raspberrypi.com/documentation/computers/images/GPIO-Pinout-Diagram-2.png
https://wiki.freecadweb.org/KicadStepUp_Workbench/it

Datasheet analysis
DDS principle: a 32-bit phase accumulator counts
up to the frequency tuning word (FTW), the phase
counter is converted to a sine wave by a lookup
table driving a Digital to Ananlog Converter (DAC)

fout = fref × FTW /2N

Sample schematic from the evaluation board de-
scription:

3 / 14

Datasheet analysis

Pinout analysis: which are the relevant pins (be-
yond supply), logic function and acceptable volt-
ages ⇒ power supply management

Sample schematic from the evaluation board de-
scription:

4 / 14

Schematic
Use the AD9951 KiCAD part (similar to AD9954 except for two pins)

Decoupling capacitors (as many as supply voltage pins)

5 / 14

Bill of Materials
Ref Qnty Value Reference Vendor Price
C1, C4, C5, C7, C8, C13 6 100n
C2 1 C
C3 1 1u
C6 1 10n
C9 1 1n
C10 1 4.7u
C11, C12 2 27p
J1 1 Raspberry Pi 2 3 Connector2

J2, J3 2 Connector Coaxial (SMA)
J4, J5 2 Conn 01x02 Male
R1 1 3920
R2 1 243
R3, R4, R5, R6, R7 5 0
R8, R9 2 25
T1 1 Transformer 1P SS
TP1, TP2, TP3 3 TestPoint
U1 1 AD9951 400 MSPS DDS3

U2 1 LM1117-1.8 800 mA Linear Regulator4

Y2 1 20MHz Crystal
4https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3bplus_1p0_reduced.pdf
4https://www.analog.com/static/imported-files/data_sheets/AD9951.pdf
4http://www.ti.com/lit/ds/symlink/lm1117.pdf

6 / 14

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3bplus_1p0_reduced.pdf
https://www.analog.com/static/imported-files/data_sheets/AD9951.pdf
http://www.ti.com/lit/ds/symlink/lm1117.pdf

Drawing a custom footprint: SENSeOR SEAS10 filter ceramic package
▶ KiCAD separates the logic description of the component (schematic) and its footprint (board
▶ Under many circumstances, ability to describe a new component and associate with an existing

footprint (Footprint assignement tool in Schematic Editor))
▶ Create a new component:

Symbol Editor
▶ Create a new footprint:

Footprint Editor
▶ Input = pin 2,

output = pin 6,
4&8=GND 5

 0.60 0.60 0.60 0.93

 5

 0
.6

0
 1

.2
0

 1
.2

0

 0.60

 2.08

B

C

D

1 2

A

321 4

B

A

5 6

AUTHOR

VERIF.

RESP.

FAB.

QUAL.

DIMENSIONS ARE IN MILLIMETERS
SURFACE STATE:
TOLERANCES:

.X

.XX

.XXX

FINISHING:

NAME SIGNATURE DATE

MATERIAL:

DO NOT CHANGE THE SCALE REVISION

TITLE:

DRAWING NUMBER

SCALE: 20:1 SHEET 1 OF 1

A4

C

WEIGHT:

S. Aubert

SENSeOR

YYY-X-WWW-VVV-UUU-A

Boitier 5x5
COMMENTS

All information in this document remains the sole and exclusive property of SENSeOR and
shall not be disclosed by the recipient to a third party without the prior consent of SENSeOR

7 / 14

Drawing a custom footprint: SENSeOR SEAS10 filter ceramic package
▶ KiCAD separates the logic description of the component (schematic) and its footprint (board
▶ Under many circumstances, ability to describe a new component and associate with an existing

footprint (Footprint assignement tool in Schematic Editor))
▶ Create a new component:

Symbol Editor
▶ Create a new footprint:

Footprint Editor
▶ Input = pin 2,

output = pin 6,
4&8=GND

8 / 14

Board

▶ Two layer board (top, bottom)

▶ Do not bother routing ground power supplies:
ground planes on both sides

▶ shield radiofrequency tracks, avoid intersection
with supply and digital signals on the opposite
side

▶ short track length from radiofrequency signal
generation to connectors

▶ decoupling capacitors as close as possible to
each supply

▶ short track length from Osc pins to resontor
(avoid parasiticy capacitance/inductance)

9 / 14

Mechanical layout: FreeCAD

▶ KiCAD plugin in FreeCAD

▶ 3D model of the Raspberry Pi4 (.step format)

▶ merge the two models to assess connector
location and compatibility with existing
mechanical constraint (e.g. Ethernet & USB
connectors)

▶ screws? mechanical stability?

10 / 14

Activating SPI (DDS communication)

1. activate SPI Linux driver 5 : in the SD card first partition config.txt, add
dtaparam=spi=on

After reboot, check that /dev/spidev0* exists (.0 and .1 refer to CS0 and CS1). Also, check that
the SPI related modules are loaded (lsmod)

spidev 24576 0

spi_bcm2835 24576 0

2. In Buildroot, activate the packages python-spidev from Target packages→Interpreter

languages and scripting→Python3→External Modules as well as python-pigpio from
the same sub-menu

3. activate pigpio for the associated daemon in Target packages→Hardware handling (will be
useful for testing IO UPDATE): check the daemon is running

ps aux | grep pigp

199 root /usr/bin/pigpiod

4. remember to toggle IO UPDATE after each SPI transaction is completed and to handle the
RESET signal

5https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial/all
11 / 14

https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial/all

Testing SPI communication with the DDS

Basic sample program for SPI (check CK, MOSI and CS# with the oscilloscope):

impor t t ime
impor t s p i d e v

bus = 0 # SPI0
d e v i c e = 0 # CS#
s p i = s p i d e v . SpiDev ()
s p i . open (bus , d e v i c e)
s p i . max speed hz = 500000
s p i . mode = 0
msg = [0 x42 , 0x55 , 0xAA]
s p i . x f e r 2 (msg) # x f e r shou l d r a i s e CS# between t r a n s a c t i o n s but does not

Check how the various “mode” parameter affect CPHA and CPOL and select the one matching the
DDS datasheet description.

12 / 14

mode 3mode 2

mode 1mode 0

13 / 14

Testing SPI communication with the DDS
▶ Test functional board: Python scripting to access SPI bus and GPIO

▶ Slow interpreted language ⇒ Linux kernel module

▶ Compliance with Linux API: IIO driver

▶ Use gr-iio or custom sink from GNU Radio to access the signal
sink

(spidev)

userspace

Python

Linux kernel

driver (IIO)

AD9954

GNU Radio
sink

Datasheet AD9954 p . 2 3 :
SPI CK r e s t s t a t e =0, change on f a l l i n g edge => mode 0
GPIO12 −> 47
GPIO23 −> IO UPDATE
impor t t ime
impor t s p i d e v
impor t p i g p i o
bus = 0 # SPI0
d e v i c e = 0 # CS#
s p i = s p i d e v . SpiDev ()
s p i . open (bus , d e v i c e)
s p i . max speed hz = 1000000
s p i . mode = 0

p i=p i g p i o . p i ()
p i . set mode (12 , p i g p i o .OUTPUT)
p i . w r i t e (12 , 0) # PS0 low

p i . set mode (23 , p i g p i o .OUTPUT)
p i . w r i t e (23 , 0) # IO UPDATE low

p i . set mode (7 , p i g p i o .OUTPUT)
p i . w r i t e (7 , 0) # r e s e t low

t ime . s l e e p (0 . 0 1)
p i . w r i t e (7 , 1) # r e s e t h i
t ime . s l e e p (0 . 0 1)
p i . w r i t e (7 , 0) # r e s e t low

CFR1=[0x00 , 0x00 , 0x00 , 0x00 , 0x40] ; # CFR1 d i s a b l e comparator
CFR2=[0x01 , 0xC4 , 0x02 , 0x94] ; # CFR2 REFCLK Mu l t i p l i e r
ASF =[0x02 , 0x04 , 0x55] ; # Auto Ramp Rate Speed
ARR =[0x03 , 0 x f f] ; # Ampl i tude Ramp Rate
POW0=[0x05 , 0x00 , 0x00] ; # POW0 PHASE O f f s e t World
FTW1=[0x06 , 0x2C , 0x8B , 0x43 , 0x95] ; # FTW1 Frequency Tuning Word
FTW0=[0x04 , 0x18 , 0x2d , 0x82 , 0xd8] ; # FTW0 Frequency Tuning World

dec2hex (f l o o r (34/360∗2ˆ32))
s p i . x f e r 2 (CFR1)
s p i . x f e r 2 (CFR2)
s p i . x f e r 2 (ASF)
s p i . x f e r 2 (ARR)
s p i . x f e r 2 (POW0)
s p i . x f e r 2 (FTW1)
s p i . x f e r 2 (FTW0)
p i . w r i t e (23 , 1) # IO UPDATE
t ime . s l e e p (0 . 0 1)
p i . w r i t e (23 , 0)

14 / 14

