
Outline

General context: embedded network analyzer architectured around the Raspberry Pi 4 and using an
RTL-SDR DVB-T dongle as radiofrequency receiver.

(Python3)
PCsource RPi4DVB−T

signal

commands

samples

RF
DUT

Emitting a radiofrequency signal from the Raspberry Pi 4 clock

1. Investigating radiofrequency emission sources

2. Using the RPi4 internal PLL feeding a GPIO as radiofrequency source

3. Making sure the radiofrequency is controlled and understood by receiving with the DVB-T dongle

Objective: emitting an FM radio signal from the Raspberry Pi4 and listening to the resulting sound 1

1sample video of one possible outcome: https://www.youtube.com/watch?v=JIiKZ3UVAIw
1 / 15

https://www.youtube.com/watch?v=JIiKZ3UVAIw

Outline
General context: embedded network analyzer architectured around the Raspberry Pi 4 and using an
RTL-SDR DVB-T dongle as radiofrequency receiver.

Emitting a radiofrequency signal from the Raspberry Pi 4 clock
1. Investigating radiofrequency emission sources
2. Using the RPi4 internal PLL feeding a GPIO as radiofrequency source
3. Making sure the radiofrequency is controlled and understood by receiving with the DVB-T dongle

Objective: emitting an FM radio signal from the Raspberry Pi4 and listening to the resulting sound 1

1sample video of one possible outcome: https://www.youtube.com/watch?v=JIiKZ3UVAIw
2 / 15

https://www.youtube.com/watch?v=JIiKZ3UVAIw

Device under test: dual resonator surface acoustic wave temperature
sensor

Operating range; Industrial, Scientific and Medical (ISM) band, [433.05, 434.79] MHz

0.005

0.01

0.015

0.02

0.025

0.03

433 433.5 434 434.5 435

R
e

(Y
)

freq (MHz)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

433 433.5 434 434.5 435

p
h

(Y
)

freq (MHz)

0

0.2

0.4

0.6

0.8

1

433 433.5 434 434.5 435

S
1

1
 (

lin
e

a
r)

freq (MHz)

434.3

434.35

434.4

434.45

434.5

0 50 100 150

f 2
 (

M
H

z)

433.35
433.4

433.45
433.5

433.55
433.6

433.65

0 50 100 150

f 1
 (

M
H

z)

0.6
0.7
0.8
0.9

1
1.1

0 50 100 150
f 2

-f
1

(M
H

z)
T (oC)

3 / 15

Radiofrequency sources
Characterize the transfer function of a passive Device Under Test
⇒ radiofrequency driving signal
▶ broadband = noise: Zener diode, but requires high (24 V) voltage for broadband signal +

radiofrequency amplifiers
▶ pulse: must be short and sharp edges. Test with ADCMP fast comparators (e.g. ADCMP573 2 for

single supply operation): functional but requires an external trigger, e.g. RPi PWM
These solutions require additional, external hardware and are prone to artefacts ...

Broadband noise source 40 ns pulse every 160 ns 40 ns pulse every 800 ns

... but the RPi GPIO can be driven from a radiofrequency clock source ! See the PiFM project 3.

2https://www.analog.com/en/products/adcmp573.html
3http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

4 / 15

https://www.analog.com/en/products/adcmp573.html
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

Fractional PLL

/I

VCOLO

/Q

LO/I

VCO/Q

VCO=

700 MHz I=8 dVCO=2,6 kHz
(dQ=1/2)12

LOxQ/I
12dVCO=LO/I /22

=> LO/I=VCOx(1+F/4096/I)

Q=1/(1+F/4096/I)

▶ Raspberry Pi single board computers provide a reference clock LO (700 MHz for RPi4, 500 MHz for others)

▶ LO feeds a fractional Phase Locked Loop (PLL 4) with a pre-scaler of I ∈ N
▶ the PLL Voltage Controlled Oscillator (VCO) is divided by Q ∈ Q

▶ the phase comparator compares LO/I with VCO/Q: VCO = LO × Q/I = LO/I ×
(
1 + F

I×4096

)−1
(see

5)= LO/ (I + F/4096)

▶ output frequency < 125 MHz (GPIO limitation 6) ⇒ use overtone (5th overtone of FM band to reach 434 MHz ISM
band)

▶ output frequency resolution: considering that VCO = LO ×Q/I and that the resolution dF on F ∈ [0 : 4095] is 1,
what is the frequency resolution at 434 MHz? Is it enough for our application? How does it compare with a
DDS?
4https://elinux.org/The Undocumented Pi#Clocks
5https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf p.81 “5.4 General Purpose GPIO

Clock”
6https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf p.82 “5.4.1 Operating Frequency”

5 / 15

https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf

Fractional PLL

Many implementations derived from the original PiFM demonstration 7:
▶ https://github.com/ChristopheJacquet/PiFmRds is easiest 8 to understand

▶ GPIO4 clock sourced from a fractional PLL is described pp.104–105 of
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0.pdf

▶ a much more general (and complex 9) implementation is available at github.com/F5OEO/rpitx relying on
github.com/F5OEO/librpitx

▶ interfacing the latter with GNU Radio {I,Q} stream is explained at https://github.com/ha7ilm/rpitx-app-note

▶ http://abyz.me.uk/rpi/pigpio/pigs.html explains that “Access to clock 1 is protected by a password as its use
will likely crash the Pi. The password is given by or’ing 0x5A000000 with the GPIO number.”

Our application only requires a single continuous-wave (CW) tone for a Frequency Swept CW analyzer
(FSCW)

7O. Mattos & O. Weigl, https://github.com/rm-hull/pifm described at
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

8github.com/ChristopheJacquet/PiFmRds/blob/master/src/pi fm rds.c#L534
9E. Courjaud Rpitx: Raspberry Pi SDR transmitter for the masses, SDRA (2017) at

https://www.youtube.com/watch?v=Jku4i8t_nPc
6 / 15

https://github.com/ChristopheJacquet/PiFmRds
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0.pdf
github.com/F5OEO/rpitx
github.com/F5OEO/librpitx
https://github.com/ha7ilm/rpitx-app-note
http://abyz.me.uk/rpi/pigpio/pigs.html
https://github.com/rm-hull/pifm
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
https://www.youtube.com/watch?v=Jku4i8t_nPc

Overtone
The RPi GPIO has been observed to generate a strong signal up to 250 MHz.

We aim for the 434 MHz band ⇒ use overtones

-70

-60

-50

-40

-30

-20

-10

 0

 10

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 3x10
8

 3.5x10
8

 4x10
8

 4.5x10
8

 5x10
8

p
o

w
e

r
(d

B
m

)

8
8

 M
H

z

4
4

0
 M

H
z

2
6

4
 M

H
z

frequency (Hz)

86.8 MHz
88.0 MHz

noise floor

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

 4.25x10
8

 4.3x10
8

 4.35x10
8

 4.4x10
8

p
o

w
e

r
(d

B
m

)

frequency (Hz)

88.0 MHz
86.8 MHz
85.6 MHz
86.8 MHz

noise floor

Broadband spectrum Zoom on the (FM modulated) overtone signal

Square wave output ⇒ overtone N scales as 1/N. Emit at 434/5 = 86.8 MHz

7 / 15

AM emission from the RPi4

Assessing the spectrum of the signal broadcast by gr-rpitx modulated as AM:

▶ AM modulation at ωm with modulation index m ≤ 1: s(t) = (1 +m cos(ωmt)) · exp(jωct) on
carrier ωc

▶ since cos(ωmt) ∝ (exp(jωmt) + exp(−jωmt)) the spectrum must consist in three spectral
components at ωc and ωc ± ωm

▶ emit an AM modulated signal from gr-rpitx (signal source → mag/phase to complex with
constant phase → rpitx sink) and record using the RTL-SDR dongle

▶ 0MQ stream the RTL-SDR output to the host PC and display the spectrum to check the spectrum
consistency on the fundamental carrier (ωc) and fifth overtone (5ωc)

8 / 15

FM emission/reception from the RPi4 (sequel to week 2)
On the embedded board: two CLI flowchart for on the one hand emitting FM broadcast, and on the
other hand acquisition, demodulation and streaming (lowering the sampling rate and hence the
communication bandwidth)

48000*5

Carson: 2*(48+75)=246 kHz

Options

Id: rpi_fm

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 240k

outin

WBFM Transmit

Id: analog_wfm_tx_0

Audio Rate: 48k

Quadrature Rate: 240k

Tau: 75u

Max Deviation: 75k

Preemphasis High Corner Freq: -1

out

Wav File Source

Id: blocks_wavfile_source_0

File: Radar Love.wav

Repeat: Yes

in

rpitx source

Id: rpitx_rpitx_source_0

Samp_rate: 240k

Carrier_freq: 86.6M wideband FM demodulation
+ decimation to reach audio rate

lower sampling rate

stream 48 kS/s audio signal

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

outin

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4
outin

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 36k

Window: Hamming

Beta: 6.76

outcommand

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 86.8M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

in

ZMQ PUB Sink

Address: tcp://1....0.16:5555

Timeout (msec): 100

Pass Tags: No

On the host PC: GUI for displaying the spectrum and playing audio on the sound card

Options

Title: Not titled yet

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 48k

in
Audio Sink

Sample Rate: 48k

freq

in

freq

bw

QT GUI Frequency Sink

FFT Size: 8.192k

Center Frequency (Hz): 0

Bandwidth (Hz): 48k

out

ZMQ SUB Source

Address: tcp://1....0.16:5555

Timeout (msec): 100

Pass Tags: No

9 / 15

SAW resonator characterization
The SAW device is connected in parallel to the antenna ⇒

make sure to disconnect the antenna (MCX connector) when
measuring the SAW device to avoid radiating the probe signal
and collecting environmental noise !

RPiTX DVB−T

Example of radiated spectrum when seeping around the 434 MHz ISM band:

10 / 15

gr-rpitx general purpose sink

▶ Wrapping librpitx as a general purpose
GNU Radio Sink

▶ Although targeted to the Raspberry Pi 4, must
also be compiled on the host to be accessible
from GNU Radio Companion

▶ datarate: 10000-250000 Hz so that fourth
overtone will span 1 MHz

▶ compiles and tested on 3.8 and 3.9, compiles
with 3.10:

1. git clone

https://github.com/jmfriedt/gr-rpitx/

2. cd gr-rpitx

3. mkdir build && cd build

4. cmake ../ && make

5. sudo make install

6. reload processing block list in GNU Radio
Companion

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

ID: samp_rate

Value: 200k

out
Constant Source

Constant: 0

outcmd

Signal Source

Sample Rate: 200k

Waveform: Cosine

Frequency: 5k

Amplitude: 1

Offset: 0

Initial Phase (Radians): 0
out

re

im

Float To Complex in

rpitx sink

Samp_rate: 200k

Carrier_freq: 86.6M

11 / 15

Consistency issue between GNU Radio version (host v.s target)
Consistency issues between flowgraph generated on PC and run on the Raspberry Pi:
▶ Debian/stretch (oldoldstable): 3.7.10.1 ; buster (oldstable): 3.7.13.4 ;

bullseye (stable): 3.8.2.0 : bookworm (testing) and sid (unstable): 3.10.1.1
▶ Ubuntu/bionic (18.04LTS): 3.7.11 ; focal (20.04LTS): 3.8.1.0 ;

hirsute (21.04) and impish (21.10): 3.8.2.0 ; jammy: 3.9.4.0
▶ For GNU Radio 3.8 as provided by the official Buildroot release:

▶ PyBOMBS at https://github.com/gnuradio/pybombs produces with the gnuradio-default

recipe generates a local copy of GNU Radio 3.8 (source setup env.sh after completion 10 to use
this version)

▶ For GNU Radio 3.9 as provided by most current binary distributions:
▶ use the gnuradio39 recipe: pybombs prefix init pybombs-3.9 -R gnuradio39

▶ after completing GNU Radio PyBOMBS compilation:
▶ in the PyBOMBS directory: source setup env.sh
▶ pybombs install gr-osmosdr 11

▶ a temporary Buildroot is available from the BR2 EXTERNAL at
https://github.com/oscimp/oscimp_br2_external/ (see package/gnuradio39 for the recipe)

▶ GNU Radio 3.9 will never be part of Buildroot, shifting straight to GNU Radio 3.10

10watch for conflicting libuhd function prototypes: https://github.com/gnuradio/pybombs/issues/612
11in case of error with gr-fcdproplus, remove this entry from

$HOME/.pybombs/recipes/gr-recipes/gr-osmosdr.lwr since it is not needed.
12 / 15

https://github.com/gnuradio/pybombs
https://github.com/oscimp/oscimp_br2_external/
https://github.com/gnuradio/pybombs/issues/612

Reading a 0MQ stream from Python

Initialize the ZeroMQ socket, receive a byte array and convert to the appropriate format:

impor t numpy as np
impor t zmq
impor t a r r a y

Nt=1024
con t e x t=zmq . Context ()
sock1=con t e x t . s o c k e t (zmq .SUB)
sock1 . connect ("tcp ://127.0.0.1:5556") ; # r e p l a c e w i th RPi4 IP and po r t
sock1 . s e t s o c k op t (zmq . SUBSCRIBE , b"")
v e c t o r 1 =[]
wh i l e (l e n (v e c t o r 1)<Nt) :

r aw r e c v=sock1 . r e c v ()
rec v=a r r a y . a r r a y (’ f ’ , r aw r e c v) # f l o a t

r e c v=a r r a y . a r r a y (’l’ , r aw r e c v) # i n t e g e r
p r i n t (r e c v)

13 / 15

Conclusion
PiFM is provided as Buildroot external package (BR2 EXTERNAL) at https://github.com/oscimp/oscimp_br2_external/
rpitx has been converted to a library compatible with a GNU Radio sink: https://github.com/jmfriedt/gr-rpitx 12

1. Compile PiFM and its dependenciens for the RPi4

2. Generate signals and check that their spectra are consistent with expectations (tone, chirp, FM)

3. Listen to the generated signals

4. Control the emitted signal, in addition to the received signal, from the Python server

Do not add a wire to GPIO4: the pin will radiate a low enough power to be detected by the DVB-T receiver without

bothering neighbours

Conclusion: characterize
the SAW resonator
transfer function, either
using a noise generator
or a frequency sweep,
either using RPiTX
(standalone program)
or gr-rpitx

12main branch for GNU Radio 3.8, gr39 branch for GNU Radio 3.9 14 / 15

https://github.com/oscimp/oscimp_br2_external/
https://github.com/jmfriedt/gr-rpitx

Executing a processing flowchart when inserting the RTL-SDR dongle

1. flowchart runs to completion (not prompt)

2. remove dvb-usb-rtl28xxu.ko and dvb usb v2.ko

3. add in /etc/udev/rules.d/rtl-sdr.rules:

SUBSYSTEMS=="usb", ATTRS{idVendor}=="0bda", ATTRS{idProduct}=="2838", \

ENV{ID_SOFTWARE_RADIO}="1", MODE="0660", GROUP="plugdev", \

RUN+="/root/rpi_fm_auto.py"

with /root/rpi fm auto.py the GNU Radio flowchart to be executed.

Take care that GNU Radio Companion flowcharts are not backward-compatible.

15 / 15

