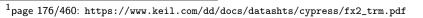
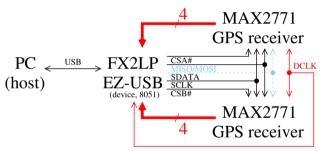

Efficient USB communication under GNU/Linux for a wideband L-band (GNSS) SDR receiver: getting familiar with the MAX2771

J.-M Friedt FEMTO-ST Time & Frequency, Besançon, France

From

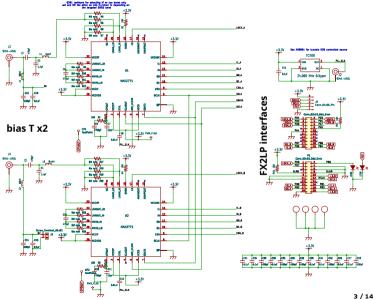
January 6, 2025

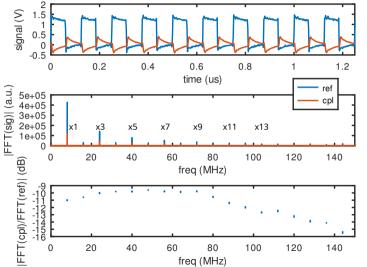

Getting familiar with the MAX2771 L-band receiver


FX2LP core based on a 8051 microcontroller

- ... for efficient conversion from parallel stream to USB and communication to PC (USB Bulk over endpoints EP2, EP4, EP6 or EP8)
- EP2 and EP6 buffer size: 1024 bytes, with half-full and full FIFO flags.
- EP2 = bulk out, EP6 = bulk in 1

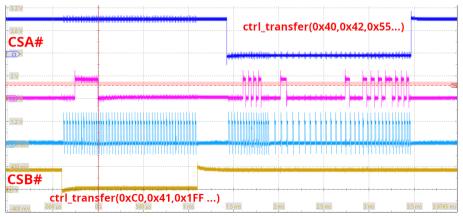
. . .


- MAX2771 L-band frontend converts radiofrequency signal to baseband IQ stream digitized on 2 or 3 bits (parallel in to USB, up to 44 MHz)
- MAX2771 registers are configured through a synchronous protocol


Getting familiar with the MAX2771 L-band receiver

- Maxim IC MAX2771 (now Analog Devices)
- "SPI"-like configuration (bitbanged since EZ-USB does not provide SPI)
- ► two chips for upper/lower L-band reception or CRPA ^a in one band ⇒ CS# selection of the chip
- ▶ few passive external components but propagating >1 GHz signals
 ⇒ impedance matching

^aControlled Reception Pattern Antenna with two antennas separated by $\lambda/2$ for direction of arrival measurement

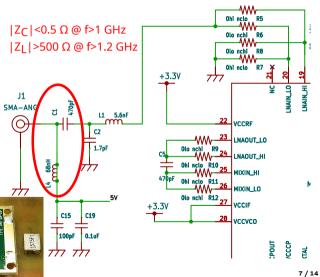

Why a dedicated PCB? (time-domain analysis)

- A square wave generates odd harmonics with the *n*th component amplitude decreasing as *n*
- Coupling between ajacent wires, here 21 cm-long wires a few millimeters apart, loaded on 50 Ω to ground
- Induced voltage might trigger a logic gate and result in an erroneous bit state

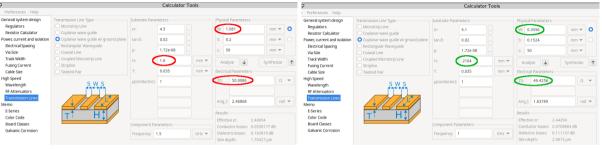
SPI implementation in the 8051 as user requests

- Reading and writing MAX2771 registers
- Synchronous protocol more or less compliant with SPI: clock generated by 8051 master, chip selected with CS#, but single two-way data signal
- PocketSDR: most significant byte of Vendor Request to select which chip is activated

Test with a Python script for setting register values


PCB schematic

- Create a new symbol and footprint representing the FX2LP EZ-USB (symbol and footprint)
- Check DIL connector spacing (mechanical constraint on footprint)
- Check RF signal path depending on upper (∈ [1151 : 1214] MHz) or lower (∈ [1559 : 1610] MHz) GNSS L-bands ², pre-amplifier and local oscillator/mixer
- Check IQ outputs from MAX2771 to FX2LP + clock feeding the FIFO input


²https://gssc.esa.int/navipedia/index.php/GNSS_signal

Bias T

- GNSS antennas are usually active, *i.e* include an amplifier close to the receiving radiating element before propagating the L-band signal over a coaxial cable
- remote amplifier must be powered
- eliminate need for an additional wire by sharing one common coaxial cable to carry RF and DC signals
- separation using bias-T:
 - inductor in series with the DC signal (low resistance "wire") to block RF signal (|Z_L| = Lω)
 - ► capacitor in series with the RF signal (low impedance path $|Z_C| = 1/(C\omega)$) while blocking the DC signal

Impedance matching

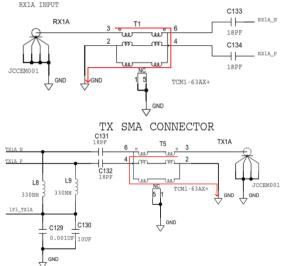
- KiCAD calculator to evaluate coplanar transmission line ³
- geometry of the substrate and properties (thickness, relative permittivity, losses)
- geometry of the copper conducting line (thickness, width)
- Make sure to match manufacturer characteristrics (30 μ m Cu, 1.6 mm FR4 ...)

³patterned on a dielectric printed circuit board substrate uniformly coated on the opposite side with a conducting ground plane and surrounded with a ground plane on both sides

PCB routing

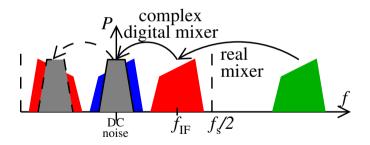
- Try to match 2-layer, 1.6 mm-thick FR4 PCB, to 50 Ω: what is the impact of line width at the MAX2771 pad spacing?
- Try to match 4-layer, 0.2-1.2-0.2 mm-thick FR4 PCB, to 50 Ω: what is the impact of line width at the MAX2771 pad spacing?
- separate as much as possible RF paths from digital paths
- check MAX2771 datasheet for decoupling capacitor specifications ⁴
- ▶ Move component numbering (silkscreen) to avoid overlap with footprints
- BOM (supplier, reference v.s volume), manufacturing cost with volume and delay?

⁴See "General Layout Guidelines for RF and Mixed-Signal PCBs"


DC bias on antenna connector

 \triangle DC-bias output to power active antenna \Rightarrow use DCblocker (series capacitor⁵ when feeding a RF signal in a wired configuration since diode to ground for ESD protection of RF port, or balun, will short-circuit DC bias.

T1 and T5 unbalanced center conductor are DC-coupled to ground through balun coils (PlutoSDR schematics⁶) \longrightarrow


RX SMA CONNECTOR

⁵e.g. Minicircuits BLK-18-S+ at https://www.minicircuits.com/WebStore/dashboard.html?model=BLK-18-S%2B
⁶https://wiki.analog.com/_media/university/tools/pluto/hacking/plutosdr_schematic_revb.pdf

Signal testing: 0-IF v.s super-heterodyne (IF) frequency layout

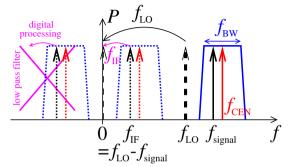
- Principle of super-heterodyne (IF) to get rid of DC-noise (e.g. power supplies)
- Check compression point, i.e. input power above which the output power is no longer proportional to input power = maximum allowed input power for proper operation

Understanding the various parameters of the frequency transposition

- ► local oscillator frequency: $LOBAND = \{0 \text{ or } 1\} \text{ for } L1 \text{ (upper) or } L2/L5 \text{ (lower)}$ $F_{LO} = \frac{F_{XTAL}}{RDIV} \times \left(NDIV + \frac{FDIV}{2^{20}}\right)$
- bandpass filter bandwidth^a:

 f_{BW} = 000 for 3.9 MHz center, 2.5 MHz bandwidth f_{BW} = 010 for 7.1 MHz center, 4.2 MHz bandwidth f_{BW} = 001 for 7.6 MHz center, 8.7 MHz bandwidth or

lowpass filter bandwidth:


 $f_{BW} = 011$ for 11.7 MHz cutoff frequency $f_{BW} = 111$ for 8.2 MHz cutoff frequency $f_{BW} = 100$ for 18.0 MHz cutoff frequency

bandpass filter center frequency:

 $f_{center} = \left(\frac{128 - f_{cen}}{2}\right) \times \begin{cases} 0.195 \text{ if } f_{BW} = 000\\ 0.355 \text{ if } f_{BW} = 010\\ 0.66 \text{ if } f_{BW} = 001 \end{cases}$

with f_{cen} 7-bit long (0..127)

Challenge: find the mistakes in MAX2771 datasheet!

ADC sampling frequency (=basband bandwidth)

$$f_{ADC} = REFDIV(f_{XTAL}) \cdot \frac{LCOUNT}{4096 - MCOUNT + LCOUNT}$$

with ^a: $REFDIV(\cdot) = \{\times 2, /4, /2, \times 1, \times 4\}$ for 0,1,2,3,4 and LCOUNT, MCOUNT 12-bit registers

^aMAX2771 datasheet p. 8/50

^aMAX2771 datasheet p. 24/50

Data collection and characterization

- ▶ Broadcast various waveforms, record on the MAX2771 without and with IF, plot spectra
- software processing (Python/Octave) to remove the IF
 - 1. considering the known sampling frequency, create the "time" vector
 - 2. considering the known IF frequency, create the (complex) local oscillator vector
 - 3. multiply the recorded signal with the local oscillator to bring the IF to baseband
 - 4. low-pass filter to get rid of unwanted spectral components (where are they?)
 - 5. plot the time-domain and frequency-domain characteristics
 - 6. test on Iridium (requires a modified GNSS antenna without band-pass filter)
- 1. configure PocketSDR:

sudo ./app/pocket_conf/pocket_conf conf/pocket_L1L1_4MHz.conf

2. check PocketSDR configuration:

sudo ./app/pocket_conf/pocket_conf

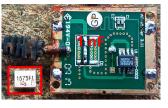
- 3. collect samples, two binary files (IQ interleaved or I real only, 8 bit/sample) for the two channels: sudo ./app/pocket_dump/pocket_dump 1.bin 2.bin
- 4. for GNSS signals, decode:

python3 ./python/pocket_acq.py -f 4 -fi 2 -sig L1CA -prn 1-32 -d 15000 2.bin python3 ./python/pocket_acq.py -f 4 -fi 2 -sig L5I -prn 1-32 -d 15000 1.bin python3 ./python/pocket_acq.py -f 8 -fi 4 -sig E1B -prn 1-32 -d 15000 2.bin python3 ./python/pocket_acq.py -f 8 -fi 4 -sig E5AI -prn 1-32 -d 15000 1.bin

Sidenote exploration: Iridium reception

- LEO (780 km) satellite constellation broadcasting in the upper L-band, J. Bloom, Eccentric Orbits: The Iridium Story – How a Single Man Saved the World's Largest Satellite Constellation From Fiery Destruction, Grove Press (1998)
- signal well above thermal noise ...
- ... but (BPSK/QPSK) does not benefit from correlation to increase number of bits
- ▶ GPS L1 active patch antenna whose bandpass filter was replaced with a capacitor
- ▶ Fractional PLL of MAX2771: $RDIV \in [0:1023]$, $NDIV \le 546$ ($f_{LO} = 1638 > 1622$ MHz) and $FDIV \in [36 32767]$,

for
$$f_{LO} = \frac{f_{Xtal}}{RDIV} \times \left(NDIV + \frac{FDIV}{2^{20}} \right)$$
 with $f_{Xtal} = 24$ MHz


Settings: $f_{IF} = 6.5$ MHz, $f_s = 24$ MS/s ; MAX2771 spectrum around 1622 MHz

Flight history for aircrat	ft - G-FHFX			AWARD
AIRCRAFT Embraer Praetor 600 AIRLINE Flexjet OPEBATOR Flexjet Europe	TYPE CODE E550 Code / LXJ Code / FLJ	MODE S 407AE1 SERIAL NUMBER (MSN) AGE G	erzephacob i Jetyberes	
DATE FROM 07 Aug 2024 Rome (CIA)	TO Milan (LIN)	FLIGHT FLIGHT TIME	D ATD STA STATUS	Aug. 09, 2024 Aug. 07, 2024

 2024-08-07T14:02:03
 [hdr: 0339010100000001]
 Dir:DL Mode:2
 REG:F-GXLI
 ACK:7
 Label:_?
 (Demand mode)
 bID:F

 2024-08-07T14:42:12
 Dir:DL Mode:2
 REG:GFHFX
 ACK:8
 Label:_?
 (Demand mode)
 bID:Z

Result: ACARS message 7 from a plane between Rome and Milan (Italy), beyond the horizon from Besançon (France)

⁷https://thebaldgeek.github.io/Iridium.html