Efficient USB communication under GNU/Linux for a wideband L-band

(GNSS) SDR receiver: getting familiar with the MAX2771

J.-M Friedt
FEMTO-ST Time & Frequency, Besancon, France

From

January 12, 2026

1/7

PocketSDR MAX2771 configuration and recording
set RF frontend LO frequency: 24/400 x 26040 = 1562.4 MHz

>

INT_PLL = 1 # PLL mode control (O:fractional-N,1:integer-N)

NDIV = 26040 # PLL integer division ratio (36-32767): F_LO=F_XTAL/RDIV*(NDIV+FDIV/2~20)
RDIV = 400 # PLL reference division ratio (1-1023)

FDIV = 0 # PLL fractional division ratio (0-1048575)

set ADC sampling rate: 24- %/2:24/3/2 =4 MHz

PREFRACDIV_SEL = 1 # Clock pre-divider selection (0:bypass,1:enable)

REFCLK_L_CNT = 2048 # Clock pre-divider L counter value (0-4095): L_CNT/(4096-M_CNT+L_CNT)
REFCLK_M_CNT = 0 # Clock pre-divider M counter value (0-4095)

ADCCLK = 0 # Integer clock div/mul selection (0O:enable,l:bypass)

REFDIV = 2 # Integer clock div/mul ratio (0:x2,1:1/4,2:1/2,3:x1,4:x4)

FCLKIN = 0 # ADC clock divider selection (0:bypass,1:enable)

ADCCLK_L_CNT = 0 # ADC clock divider L counter value (0-4095): L_CNT/(4096-M_CNT+L_CNT)
ADCCLK_M_CNT = 0 # ADC clock divider M counter value (0-4095)

set output format (real | or complex 1Q)

> stream output as raw 8-bit values (00, 01, 10 and

11/value) or signed bytes (two channels)

stream interaction with GNU Radio: FIFO as “pipe”
between output and input

Figure 3. Clock Distabution

2/7

Reading pocket_dump output with GNU Octave & Numpy

Output of pocket_dump -t 4 /tmp/1.bin /dev/null:

synthesizer: 1562 MHz. -85 dBm ; MAX2771 LO: 1562.4 MHz, 4 MS/s

GNU Octave: 2o
fs=4; /4 sampling rate (MHz)
N=1e5; /4 number of samples 150105
fr=1linspace(-fs/2,fs/2-fs/N,N);
f=fopen(’/tmp/1.bin’); /4 file descriptor 3
d=fread (f,2*N,’int8°); /4 read 2N samples (8 bit int)g 16405
d=d(1:2:end)+j*d(2:2:end); / interleaved I to complez H
plot (fr,abs (fftshift (f£ft(d))))

50000
Numpy:
import numpy és Pp Nt i L1
from matplotlib import pyplot as plt 2 4 o 2
fs=4 # sampling rate (MHz) frequency (MHZ
N=int (1e5) # number of samples

fr=np.linspace(-fs/2,fs/2-£fs/N,N)
with open(’/tmp/1.bin’,’rb’) as f:

d=np.fromfile (f,dtype=np.int8, count=2*N)
d=d[0::2]+1j*d[1::2]
plt.plot(fr,np.abs(np.fft.fftshift(np.fft.££t(d))))
plt.show ()

3/7

MAX2771 internal architecture: tests with continuous wave (CW) signals
Real output (I only), will require IF and software transposition to Complex output (IQ = non-even spectrum)
remove images @ f <0 (even spectrum)

< S 9 9 cwsignal
20000 = T o 30000
(1) LO=1574.42 MHz } B GG o Gl oo requency few<fio SEEEEEEREEEEE
| thin=no filter s T - = = - (-80dBm) . 25000 80 dB! N NIl g 8 & Q3]
S 15000 1 = -80 dBm % R B B T
g thick = 2.5 MHz (2) LPF 2 20000 fno filter = I =l ~ -
5 10000 r q 5 15000 1
H 5000 Z 10000 1
L 4 a
: * oo (LBl -
0 i s A 0 L sl . i
-1e+07 -5e+06 -1e+07 -5e+06 5e+06 1e+07
frequency (Hz) frequency (Hz)
w
o
T = T 30000 -
20000 3 TY 538599 oo
= 25000 95 T < o 4
5 15000 F] El i e 2y e (o 3
F oo & 20000
5 10000 r N 5 15000 1
H 5000 ofe 2 10000 1
r a
: | LU,
0L— _’lf'.!‘."..‘;?i‘..,'._., B e =
-1e+07 -5e+06 0 5e+06 1e+07 -1e+07 -5e+06 5e+06 1e+07
frequency (Hz) frequency (Hz)
FCEN = 107 # IF filter center frequency: (128-FCEN)/2%*{0.195|/0.66]0.355} MHz
FBW = 1 # IF filter BW (0:2.5MHz,1:8.7MHz,2:4.2MHz,3:23.4MHz,4:36MHz,7:16.4MHz)
F30R5 = 1 # Filter order selection (0:5th,1:3rd)
FCENX = 0 # Polyphase filter selection (0:lowpass,1:bandpass)
FGAIN = 1 # IF filter gain setting (0:-6dB,1:normal)
TQEN = 0 # I and Q channel enable (0:I-CH-only,1:I/Q-CH) from PocketSDR pocket_conf 47

Lmk with GNU Radio

PocketSDR app/pocket_dump/pocket_dump allows for streaming to files.

> Link to GNU Radio through named pipes (mkfifo) 1 ..

> ... requires though two GNU Radio scripts, one for each pipe/file = dynamic display of spectra for analyzing the MAX2771
behaviour.

cH o
H 2 2 LNA compression above -110 dBm
> PocketSDR can address multiple MAX2771-based boards] EOE | troninearbeshcun
(app/pocket_scan/pocket_scan 2) 5 27 N
3 <
) H
£ le A = 0 Wrygn ‘\.
= et oy’ 4.)v‘ gl A
Options File Source () 11'""1%“ i A M(V»W’i M&V« i
10: max2771 2 1D: blocks_file_source_0 ErmEIT QT GUI Frequency Sink 2 Al i it N
Title: Not titled yet File: /tmp/ch2 o b 1D: qtgui_freq_sink X0 8 H é
Output Language: Python | | Repeat: Yes sonteracion g =2 FFT Size: 1024 K]] na
Generate Options: QT GUI | | Add begin tag: pmt.PMT_NIL=() et Center Frequency (Hz): 0 s § h
offset: 0 put: No Bandwidth (Hz2): samp. rate=am Qe
Variable Length: 0]
LO 1575. 42 MHz
1D: samp_rate . ; . . frequency (MHz)
Value: 4e6=4M -Z.ODO -1 500 -1.000 . . . | E 2.000
& fl 1575 000 000GHz | ~100.0dBm
Options File Source e .
1D: max2771 1D: blocks_file_source_0 [p—— QT GUI Frequency Sink o
Title: Not titled yet File: /tmp/chl e 1D: qtgui_freq_sink x.0 LO=1575.42 MHz
Output Language: Python | | Repeat: Yes Sc;le Fm'":; - - FFT Size: 1024 4
Generate Options: QT GUI | | Add begin tag: pmt.PMT_NIL=() . Center Frequency (Hz): 0 -
Offset: 0 Vector Input: No Bandwidth (H2): samp_rate-amt | 8 20
Length: 0 =]
& Variable £ S
sudo pocket_conf pocket_L1L1_4MHz.conf 1D: samp_rate [f*ﬁm L iy 'r i e 7 ittty
sudo mkfifo /tmp/ch1 Value: 4e6=aM [] TW\(N"W% MW
sudo mkfifo /tmp/ch2 - 4
sudo /app/pocket_dump/pocket_dump /tmp/ch1 /tmp/ch2 <
o 601
Datasheet: In-Band Mixer Input Referred 1dB Compression 1
1 —_ 1 -80 - Leak: \d channel above -80 dBr
Point = -85 dBm after 18 dB LNA gain 80 i sakage tsecond channel above £0 dem i ‘ frequency (MHz)
-2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000

Igw. Kernighan, AT&T Archives: The UNIX Operating System (1982) @ https://www.youtube.com/watch?v=tc4R0OCJIYbmO
(6'00" “the notion of pipelining is the fundamental contribution of the system...”) & D. Ritchie @ 11'51" & 17'17" “input/output
redi_rection” 5/7

https://www.youtube.com/watch?v=tc4ROCJYbm0
https://gpspp.sakura.ne.jp/paper2005/pocketsdr_seminar_202411_revA.pdf

Link with GNU Radio: using a single named pipe

> Two FIFOs with decoded samples require two GNU Radio Companion flowcharts with different file sinks

> Single pocket_dump output with -r option (raw) streaming packed 8-bit samples
> Each byte is two 10 11 Q0 Q1 nibble for each channel

= split bytes to nibbles and map (Chunk to Symbols) to 16 possible states / € {-3,-1,1,3} and Q€ {-3,-1,1,3}
= deinterleave both channels and display on separate spectrum analyzers

Video of demonstration: https://www.youtube.com/watch?v=9ugML8JjXIQ

Relaive Goin (48)

«4PlutoSDR with
>{DC-block & 20 dB at]

Relave Gain (48)

t L

ol L
- W‘W “‘ﬁl‘?"\’»dr"mh"\h*’ﬁ*ﬁ\l*‘m*‘ﬁkp‘k'r’mm,‘m,

Fraquency g

+150 ohm load

i

i

s i "
WM“W\’N bl w.‘m,““}"w[

Iy
ull}

6/7

https://www.youtube.com/watch?v=9ugML8JjXIQ

Sidenote exploration: Iridium reception

> LEO (780 km) satellite constellation broadcasting in the upper L-band,
J. Bloom, Eccentric Orbits: The Iridium Story — How a Single Man Saved the World'’s Largest
Satellite Constellation From Fiery Destruction, Grove Press (1998)

> signal well above thermal noise ...

> .. but (BPSK/QPSK) does not benefit from correlation to increase number of bits
> GPS L1 active patch antenna whose bandpass filter was replaced with a capacitor
> Fractional PLL of MAX2771: RDIV €[0:1023], NDIV <546 (f o =1638>1622 MHz) and FDIV € [36 -32767],

for Lo = iy x (NDIV + EBIY) with fyy =24 MHz

Settings: fip =6.5 MHz, fs =24 MS/s ; MAX2771 spectrum around 1622 MHz

Flight history for aircraft - G-FHFX

Embraer Praetor 600

Flexjet

Flexjet Europe

07Aug2024 Rome (CIA) Milan (LiN) (FLIBTH) 0:47 1:30PM 1:54PM 223PM Landed 2:41 PM

2024-08-07T14:02:03 [hdr: 0339010100000001] Dir:DL Mode:2 REG:F-GXLI ACK:7 Label:_? (Demand mode) bID:F
2024-08-07T14:42:12 Dir:DL Mode:2 REG:GFHFX ACK:8 Label:_7 (Demand mode) bID:Z

Result: ACARS message 3 from a plane between Rome and Milan (Italy), beyond the horizon from Besangon (France)

3https ://thebaldgeek.github.io/Iridium.html 7/7

