
Efficient USB communication under GNU/Linux for a wideband L-band
(GNSS) SDR receiver: positioning solution

J.-M Friedt
FEMTO-ST Time & Frequency, Besançon, France

From to

April 23, 2025
1 / 7



From acquisition to tracking
Ï Cold start: need to identify which satellite is visible with which frequency offset (acquisition)
Ï Once satellites are identified, tracking of frequency offset and delay in closed control loops
Ï Phase tracking using atan(Q/I) π-insensitive...
Ï ... and BPSK bit identification using atan2(Q,I) (using the sign of I and Q to be π sensitive)
Ï Existing implementations: gnss-sdr, PocketSDR and RTKLib tools (T. Takasu and demo5),

Output: Position, Velocity and Time (PVT), possibly in standard formats (RINEX, RTCM)
Current receiver time: 13 s
GPS L1 C/A tracking bit synchronization locked in channel 8 for satellite GPS PRN 20 (Block IIR)
GPS L1 C/A tracking bit synchronization locked in channel 1 for satellite GPS PRN 13 (Block IIR)
...
Current receiver time: 22 s
New GPS NAV message received in channel 8: subframe 2 from satellite GPS PRN 20 (Block IIR) with CN0=45 dB-Hz
New GPS NAV message received in channel 1: subframe 2 from satellite GPS PRN 13 (Block IIR) with CN0=44 dB-Hz
...
New GPS NAV message received in channel 1: subframe 1 from satellite GPS PRN 13 (Block IIR) with CN0=44 dB-Hz
GPS L1 C/A tracking bit synchronization locked in channel 10 for satellite GPS PRN 07 (Block IIR-M)
First position fix at 2024-Jul-22 17:57:18.100000 UTC is Lat = 47.2517 [deg], Long = 5.99328 [deg], Height= 364.788 [m]
Current receiver time: 1 min 17 s
Position at 2024-Jul-22 17:57:19.000000 UTC using 4 observations is Lat = 47.251622 [deg], Long = 5.993225 [deg],
Height = 361.46 [m]
Velocity: East: 0.32 [m/s], North: -0.04 [m/s], Up = -0.05 [m/s]
...

2 / 7



gnss-sdr

Ï clone (git) and compile (mkdir build && cd build && cmake ../ && make) to generate
build/src/gnss-sdr executable,

Ï use one of the configuration files in 250103_8MSps_4MHzIF/2MHzIF to process a file recorded
from one of the MAX2771 output

Ï tune all references in the configuration file to the sampling frequency
Ï tune the record file name and data storage format (byte, short, prefixed with i of interleaved

real/imaginary1)
Ï check the gnss-sdr online manual and the conf/ configuration files to decode various

constellations in a given frequency band, depending on sampling rate
Ï if an IF was introduced, gnss-sdr relies of GNU Radio’s Xlating FIR Filter to bring the signal

to baseband
Ï decode the current position and time
Ï notice the newly (≥1 April 2025) added MAX2771_EVKIT_Signal_Source_FPGA signal source2

(untested) – requires SPIdev support on the (unidentified) Linux platform collecting samples.

1https://gnss-sdr.org/docs/sp-blocks/signal-source/
2https://gnss-sdr.org/gnss-sdr-v0020-released/

3 / 7

https://gnss-sdr.org/docs/sp-blocks/signal-source/
https://gnss-sdr.org/gnss-sdr-v0020-released/


gnss-sdr’s Monitor tool

Ï GNSS-SDR allows for probing all Observables (pseudo-ranges) and PVT (Position, Velocity and
Time) solver internal states: the Monitor3 capability

Ï see https://github.com/acebrianjuan/gnss-sdr-pvt-monitoring-client for an example
of UDP client monitoring all variables...

Ï or consider ProtoBuf configuration4 files provided with gnss-sdr source codes for generating a
custom Python client.

3https://gnss-sdr.org/docs/sp-blocks/monitor/
4see the content of gnss-sdr/docs/protobuf/

4 / 7

https://gnss-sdr.org/docs/sp-blocks/monitor/


gnss-sdr real time capability

Ï gnss-sdr can accept signal streamed over a named pipe (FIFO) with the Fifo_Signal_Source
Ï ... or transferred through a 0-MQ socket (ZMQ_Signal_Source).
Ï An intermediate GNU Radio flowchart might handle the pocket_dump output to feed gnss-sdr

with the right data format
Ï Check processing capability for real time decoding. So far, I have only been able to real-time

process GPS L1 C/A.

Options
Title: MAX2771_transpose
Output Language: Python
Generate Options: No GUI
Run Options: Prompt for Exit

Low-pass Filter Taps
ID: filtre
Gain: 1
Sample Rate (Hz): 8M
Cutoff Freq (Hz): 2M
Transition Width (Hz): 2.2M
Window: Hamming
Beta: 6.76

Variable
ID: samp_rate
Value: 8M

outin
Char To Float
Scale: 127

out

File Source
File: /tmp/fifo1in
Repeat: No
Add begin tag: ()
Offset: 0
Length: 0

out
in

freq

Frequency Xlating FIR Filter
Decimation: 4
Taps: filtre
Center Frequency: 2M
Sample Rate: 8M

in

ZMQ PUB Sink
Address: tcp://lo:5555
Timeout (msec): 100
Pass Tags: No
Filter Key:

PocketSDR
pocket_dump /tmp/fifo1in /dev/null
mkfifo /tmp/fifo1in

(FIFO)

named pipe
GNU Radio
MAX2771_transpose.py

0MQ

PUB/SUB gnss−sdr
 

UDP

protobuf
 gnss−sdr −c \

ZMQ_GPS_1_grcomplex.conf

Python script
t, dt, x, y, z8 MS/s 2 MS/s

24 MHz

5 / 7



PocketSDR tools

Ï In addition to Tomoji Takasu’s pocket_acq for identifying constellations, pocket_trk can
provide a solution

Ï Consider how enhancements can be brought by merging solutions (e.g. NTRIP caster
broadcasting RTCM pseudo-ranges for real-time correction) from different receivers

Ï See ESA’s GNSS Data Processing Vol. 1 at 5, pages 140– (Eq. 6.6) on how to linearize range
equations and iteratively identify the position and time offset solution from the known satellite
positions and pseudo-ranges.

5https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
6 / 7

https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf


RTKLib

Ï RTK: Real Time Kinematic to merge multi-receiver solutions and correct for ionospheric and
tropospheric delay

Ï Low-quality GNSS receiver version: https://github.com/rtklibexplorer/RTKLIB described
in the online-articles at https://rtklibexplorer.wordpress.com/

Ï gnss-sdr can generate an RTCM stream processed with RTKLib (even though gnss-sdr is
using RTKLib to generate its own PVT solution, see
gnss-sdr/src/algorithms/libs/rtklib/ used in gnss-sdr/src/algorithms/PVT/.

7 / 7

https://github.com/rtklibexplorer/RTKLIB
https://rtklibexplorer.wordpress.com/

