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Basics of Ground Penetrating
RADAR (GPR)

• bistatic configuration (physically separated
emitter and receiver)

• electromagnetic pulse propagates in soil
(εsoil � εair )

• echos due to electromagnetic impedance
variations (permittivity εr and conductivity σ)

v =
c√

εr

2

(√
1 + σ2

ε2ω2 + 1

)
• provides both magnitude and phase

informations on the returned pulse

• typical frequency range: 50-1600 MHz,
depending on antenna dimensions

• lighweight, cost-effective geophysical
characterization instrument

emitter antenna

receiver

antenna
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Basics of GPR (2)

• Wideband device but no signal generator,

• pulse defined by the trigger of an avalanche transistor, and pulse
width defined by antenna impedance,

• electromagnetic velocity in medium 1: 50-300 m/µs (ice '
170 m/µs) ⇒ typical sampling duration 0.5-5 µs

• stroboscopic (Equivalent-Time Sampling) acquisition with a pulse
rate of 100 kHz ⇒ maximum measurement duration <10 µs

• sampling rate ' 6 to 10 times emitted pulse central frequency (600
to 10000 MHz)

1J.L. Davis & A.P. Annan, Ground Penetrating RADAR for high resolution
mapping of soil and rock stratigraphy, Geophysical Prospecting 37, pp.531-551 (1989)
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Basics of Surface Acoustic Wave
(SAW) delay lines

• acoustic = propagation of a mechanical wave on a substrate

• most efficient way of converting electromagnetic (EM) to
mechanical: piezoelectric substrate + interdigitated transducers

• identification + sensor

• physical quantity measurement function of acoustic velocity

• incoming EM pulse generates mechanical pulse which returns as EM
with a time delay function of physical quantity (temperature,
stress, pressure ...)

• high electromechanical coupling coefficient (LNO)

• mirror = patterned electrodes

• time delay between incoming pulse and reflection
= measurement

• typical velocity: 1500-5000 m/s for most materials

• typical delays: 1-5 µs (3 µs at 3000 m/s ⇒
4.5 mm path)
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SAW delay line as GPR
cooperative target

Use GPR to probe SAW delay line 2

• complement passive interface monitoring with sensor interrogation
• intuitive: both techniques provide informations in the time domain
• small dimension (<1 cm×1 cm), passive, wireless, rugged
• linear conversion process from EM to mechanical: no threshold

voltage (cf diodes in Si based RFID)
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2
previous cooperative target research:

C.T. Allen, K. Shi, R.G. Plumb, The use of ground penetrating radar with a cooperative target, IEEE Geoscience and Remote Sensing 36
(5), 1821-1825 (1998)
G.S. Stump & C.T. Allen, Apparatus and method for detecting an underground structure, US Patent 5,819,859
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SAW delay line measurement
strategy

• time multiplexing of the sensor information

• typical time delay on acoustic sensor (1-3 µs)
easily separated from dielectric interfaces, yet still
accessible to GPR sampling duration

• identify the sensor signal, search for the envelope
(rough delay) followed by accurate velocity
(phase) identification ⇒ physical measurement a

• in case of uncertain identification, data migration
will not converge for sensors whose delays are not
due to EM travel time (hyperbola curvature)

4× c2t2 − x2 = d2

(sensor depth d)

aFriedt & al., Surface acoustic wave devices as passive buried
sensors, J. Appl. Phys 109 (3), 034905 (2011)
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Measurement strategy
Digital signal post-processing, no modification of GPR hardware

1 record the echos for as long as the delay line answers to incoming
RF pulse

2 Fourier transform to identify returned frequency

3 for each returned pulse (known time delay range), phase of Fourier
transform

4 difference of Fourier phases (referenced measurement) function of
the physical quantity measured (design of sensor)
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Link budget for delay lines

• RADAR illumination of point-like target: decay as 1/d4

• Free Space Propagation Loss (FSPL)

10× log10

(
λ2

4π
× 1

(4πd2)2

)
= 10 log10

(
λ2

(4π)3d4

)
• Considering we know the range at ice-rock interface and reflection

coeffient (
εice − εrock

εice + εrock

)2

' 19 dB

• FSPLice−rock + ILice−rock = FSPLSAW + ILSAW

⇒ dSAW = dice−rock × 10(ILice−rock−ILSAW )/40 ' 40 m

Result consistent with the signal to noise ratio of the 5 m
deep-measurement
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Alternate strategy: resonators

• Interrogation range of delay lines limited by high insertion losses

• Resonators: energy confinement of the acoustic energy in a cavity
formed by two Bragg mirrors around IDT

• Narrowband devices unsuitable in GPR interrogation ... or are they ?

Experimental demonstration using samples from Xeco mesa-shaped
(100 MHz) AT-cut fundamental mode resonators (www.xeco.net).
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Link budget for resonators
Low loss but only a fraction of the incoming energy lies within the
bandpass of the narrowband resonator

• ratio of the bandwidths: Q = 12500 resonator at 100 MHz
⇒ ∆f = 8000 Hz.

• A 25 MHz wide pulse hence only transfers about 3× 10−4 of its
energy to the resonator, or -35 dB.

• Adding intrinsic loss of resonator (-1 dB), the global resonator
losses are of the same order of magnitude of typical delay line
insertion loss (-30 to -40 dB)
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Resonator interrogation

• Time-domain response: Q/π periods ' 40 µs

• A GPR will usually record up to 5 µs at a sampling rate of 10×
emitted pulse frequency (1500 samples max with Mal̊a RAMAC)

• pulse central frequency defined by antenna dimensions +
environment ⇒ emitted pulse might not be centered on resonance
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Resonance frequency identification

Considering the signal has been recorded, how to extract a frequency
information from such a short (< 5 µs) measurement ?

Fourier: N time domain → N frequency domain = 200 kHz steps, typical sensor: up
to 60 ppm/K=6 kHz/K at 100 MHz

Time domain analysis for frequency identification (QSense, NMR):

• Levenberg-Marquart non-linear least square (requires strong decay
3)

• Pisarenko/MUSIC (rootmusic() under Matlab)

• Harmonic inversion (ab-initio.mit.edu, harminv under Debian
GNU/Linux) 4

• Prony/Cadzow

In all cases, add the assumption of a single, isolated frequency.

3M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, B. Kasemo, Quartz crystal
microbalance setup for frequency and Q-factor measurements in gaseous and liquid
environments, Rev. Sci. Instrum. 66, 3924 (1995)

4V.A. Mandelshtam & H.S. Taylor, Harmonic inversion of time signals and its
applications, J. of Chemical Physics 107 (17), pp. 6756-6769 (1997)
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Experimental result

Traces including a resonator response (red) and delay line response
(green)
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• Very low temperature drift with temperature of the Xeco resonator

• Issue: GPR pulse central frequency is defined my permittivity of
medium. What if a notch occurs at the resonance frequency ?
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Experimental result
• finite duration measurement ⇒ sinc() in frequency domain
• fit resonance with parabola

→ Comparison of a polynomial fit of the Fourier transform peak (blue)
and harmonic inversion strategy (harminv, red)
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Fixed number of points ⇒ reduce sampling rate in order to maximize
sampling duration
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Experimental result
Polynomial fit of FFT peak ⇒ 30-fold frequency resolution improvement
(dependent on Q, sampling rate and sampling duration)
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• σf '6500 Hz so might be useful if CTF1 '65 ppm/K: huge
temperature drift ! (or insufficient frequency resolution).

• Quartz max. temperature drift: '80 ppm/K.
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Differential strategy using
resonators

GPR provides a very poor time/frequency reference (2 Mal̊a RAMAC
units tested, one -3% off and the other one +18% off !)

• Use of dual mode-resonators, with two different dependecies of
velocity with temperature,

• one well known cut: SC-cut (3700 m/s and 4040 m/s) bulk
acoustic resonators

• or dedicated surface acoustic wave resonators with two different
propagation directions (SENSeOR’s TSE AS10)

Notice that we provide here a calibration strategy for GPR sampling
rate

April 7th, 2011 – RADCOM 2011



Piezoelectric
radiofrequency
transducers as
passive buried

sensors

Rétornaz & al.

GPR basics

SAW delay line
basics

SAW delay line +
GPR

Resonator + GPR

Conclusion

Conclusion
• use of a widely available geophysics characterization tool for probing

sensors (“cooperative targets”)
• piezoelectric-based (linear) transducers for improved interrogation

range (demonstrated: 5 m, estimated: 40 m in ice)
• signal processing for (time-based) delay line: temperature
• ⇒ acoustic delay lines for tagging or sensor applications
• assesment of this interrogation strategy to resonators
• comparable interrogation range but challenging for frequency

identification

Perspectives: High-overtone Bulk
Acoustic Resonator (HBAR) as an
intermediate transducer
beween delay line and resonator ?
Optimized antenna geometry for
practical applications (polarization,
size) ?
Acknowledgements: experiments
performed during the ANR/IPY
HydroSensorFlows program
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