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Besançon, France

Abstract—Acoustic wave devices are well known passive trans-
ducers for probing through a wireless link a physical quantity.
Amongst the two main classes of designs – resonators and
delay lines – the former have the advantage of providing
informations in a narrow band signal and are hence compatible
with an interrogation strategy compliant with radiofrequency
(RF) emission regulations, while the latter are probed by a short
RF pulse with larger instantaneous energy and shorter response
time. We here demonstrate the measurement of temperature
using the two configurations, and more specifically for sensors
buried in soil. While we demonstrate long term stability and
ruggedness of packaged resonators, and signal to noise ratio
compatible with the envisioned application, the interrogation
range in insufficient for most purposes and we focus towards
the use of delay lines. Indeed, the interrogation method of the
latter is similar to that used by ground penetrating RADAR
(GPR) which displays interrogation ranges in the meter to tens
of meters in the lower RF range, depending on soil water content,
permittivity and conductivity.

I. INTRODUCTION

Within the framework of wireless sensors, surface acoustic
wave piezoelectric devices provide unique performances in
terms of roughness and autonomy with respect to active de-
vices (better temperature stability compared to CMOS devices,
lack of battery), and better interrogation range than RFID pas-
sive tags. The use of piezoelectric delay lines and resonators
for monitoring physical quantities such as temperature, strain,
torque and pressure have already been demonstrated. The
short interrogation time (microsecond to millisecond range)
is compatible with the use of quickly moving sensors, but
ofter the size and metallic environment of the radiofrequency
antenna are challenges to the interrogation range. Here we are
interested in using surface acoustic wave (SAW) resonators
and delay lines as buried sensors: while interrogation speed
is hardly an issue, the interrogation range with define the
performances of the sensors and the range of use. If only a few
centimeters are reached, application are limited to concrete
surface properties monitoring, road aging or near surface
soil properties. The application range is greatly widened if
interrogation ranges in the tens of meters can be reached
[1], since deep soil properties are then reachable. We base
our analysis of the use of SAW device as buried sensor
on our own experiments and literature concerning Ground
Penetrating Radar (GPR). The latter technique is widely used

for monitoring dielectric interfaces in buried structures, with
range dependant upon the probe electromagnetic pulse dura-
tion and dielectric properties of the soil. We focus on providing
complementary informations from sensors with interrogation
techniques compatible with GPR, following a strategy com-
monly known as cooperative target [2].

II. BURIED RESONATORS AS PASSIVE TEMPERATURE
SENSORS

Three dual 433-MHz surface acoustic wave resonators (one
reference frequency and one measurement frequency within
the 1.7-MHz wide ISM band) packaged in 5×5 mm2 ceramic
packages were buried in clay after being connected to dipole
antenna whose length was adjusted prior to installation in soil
assuming a relative permittivity of 10. The purpose of this
experiment was to validate the survival of sensors buried in
soil and the evolution of the radiofrequency link quality over
time, as a function of temperature or climatic conditions (i.e.
moisture level in soil).
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Fig. 1. Experimental configuration: the 30 cm and 60 cm deep devices
are SAW resonators soldered to a 2×5 long dipole, buried in clay with a
conducting wire located in the hole but neither electrically connected to the
sensor nor to the interrogation unit. The 80 cm deep resonator was soldered
to an RG174 coaxial cable protruding from ground as an open-feed.

The first observation during installation of the experiment is
that an interrogation unit generating 10 dBm, with a detection
limit of -70 dBm, is unable to gather a usable signal from
devices buried even only 30 cm deep. The situation was
improved by inserting an electromagnetic waveguide in the
hole in the soil by inserting a conducting wire. Notice that no



electrical connection is provided between this metallic wire
and the sensor on one side, or the interrogation unit on the
other side, meaning that this setup is resistant to soil motion,
oxidation or surface disturbances such a lawn mowing (Fig.
1). The 80 cm deep sensor was soldered to a RG174 coaxial
cable protruding from the hole in the ground as a open feed
connexion. All 10 cm diameter holes were refilled with the
same clay of the surrounding area and watered to avoid any
air gap.
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Fig. 2. Evolution over more than one year of the temperature of buried
sensors at depths between 30 and 80 cm. The sensors survived this envi-
ronment for the duration of this experiment, with no noticeable drift or loss
in radiofrequency link quality, while providing data consistent with surface
temperatures. Only relative temperatures are provided by the sensors since no
calibration was performed prior to the experiment.

This setup provided relative temperatures informations (Fig.
2) over time since the sensors had not been calibrated prior
to the experiment. The evolution of the temperature provided
by the buried sensors is consistent with a sliding average over
several weeks of surface temperatures as provided on the web
site http://www.meteo-franche-comte.fr/.

III. INTERROGATING DELAY LINES

The simplest implementation of RADAR interrogation units
are designed to generate a short – ideally single – pulse
including as much energy as possible. This result is achieved
by, for example in the radiofrequency range, slowly loading
a capacitor with a high voltage (provided by a switching
power supply for embedded designs) and “instantaneously”
emptying this energy in an antenna through an avalanche
transistor. The duration of the energy transfer is defined by the
antenna impedance, which is itself designed by the antenna
dimensions and surrounding medium permittivity (Fig. 3).
Any impedance mismatch between the transistor output and
antenna through a balun will induce ringing and, in classical
RADAR applications, unwanted additional oscillations beyond
the main pulse. This ringing is suitable for interrogating delay
lines since more than a single pulse is necessary to efficiently

load energy into the acoustic sensor. The extreme case is the
resonator of quality factor Q which needs Q/π ' 2000 (at
433 MHz with Q '6000) periods to be efficiently loaded: the
quality factor of the antenna is usually much bellow this value,
of the order of unity, and hence a passive resonator (coaxial
line) might be added between the balun and the antenna to
store energy and induce enough ringing when interrogating
resonators.

As an example of such measurement, a Mala Ramac GPR
provides a 100 MHz bistatic configuration which, when used
on ice to monitor the bedrock interface of a glacier, allows the
identification of a usable signal more than 100 m deep (Fig.
3).
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Fig. 3. 100 MHz ground penetrating radar scans of the ice-rock interface: the
signal is detected for an interface deeper than 100 m. The red line emphasizing
the bedrock interface was added manually for clarity.

Interrogating delay lines using a RADAR setup includes
new challenges. We demonstrate experimentally (Fig. 4) that
the best performances of a delay line are achieved when
the number of periods in the probing signal is equal to the
number of finger pairs in the transducer. Below this value,
sub-optimal energy transfer occurs and the signal level is too
low. Above this value, the echo pulses from the delay line
are unnecessarily lengthened and make the identification of
time delay more difficult on these extended pulses. Controlling
the number of periods on a freely ringing antenna is hardly
reproducible since the dielectric environment of the mobile
emitting antenna changes during a spatial scan in the field.

We hence focus on a more reproducible and deterministic
approach of gating an RF emitter. The hardware we used is the
Universal Software Radio Peripheral (USRP, www.ettus.com),
and more specifically the RFX900 800 to 1000 MHz 200 mW
transceiver, with software developed using the opensource
tools provided by the GNURadio programs. The acoustic delay
line used in this demonstration are those used in Kongsberg’s
Sentry temperature monitoring system: the center frequency of
these transducers in 866 MHz, obviously unsuitable for buried
sensor purposes but compatible with the hardware available for
this demonstration. A single RFX900 daughter board allows



for a monostatic interrogation strategy after removing the band
pass filter on the emission which is usually installed to comply
with American FCC regulations.

In order to demonstrate our ability to gather and process
reflection signal from a delay line in a monostatic antenna
configuration, a wired connection between the transceiver port
of the RFX900 daughter board and delay line is provided.
We generate 200 ns pulses (the shortest the available software
is able to reliably generate) and monitor the response using
the onboard analog to digital converter. Once the I and Q
components of the delay line are recorded (16 repetitions
of the same interrogation sequence are acquired to provide
enough samples for averaging during the post-processing step),
magnitude and phase of the returned signals are computed and
the time delay between each echo is identified by second-order
polynomial fitting of the magnitude envelope. Although Reindl
& al. [3], [4] have demonstrated the greater accuracy achieved
by combining phase estimates this particular set of experiment
did not provide reliable phase information, probably because
of the too low received signal strength which was insufficient
to trigger the phase detection of the I/Q demodulator

IV. RANGE ESTIMATE

Considering the usable reflections recorded from ice-rock
interfaces more than 100 m below the surface (Fig. 3), we
wish to estimate the depth [5] at which a GPR-like interro-
gation scheme would be able to gather informations from a
buried delay line. Based on the reflection coefficient of the
permittivity mismatch at the interface between the two layers
and the insertion loss of delay lines, we can estimate the range
at which a delay line will provide the receiver of the radar with
enough power for a measurement.
• First, we estimate the losses for the experimental setup

depicted in section III. Assuming a plane wave reaching
an interface between ice and rock, the Fresnel reflection
coefficient R is computed using relative permittivities
εice = 3.1 [6] and εrock ' 5 as in equation (1)

R =
(√

εice −
√
εrock√

εice +
√
εrock

)2

. (1)

We deduce that in this case, the ice-rock interface displays
a -19 dB reflection coefficient. In this case, the Free
Space Propagation Loss (FSPL [7]) calculation defined
in equation (2) (f in MHz and d in km) shows that at
100 MHz, FSPL(2×100 m)'-117 dB. Eq. (2) is adapted
to the case of the RADAR reflection on a point-like target
giving a r−4 losses law (r is the distance for a round-trip
beteween the RADAR and the point-like target). In our
case, r = 2 × 100 m. So, the global losses are equal to
the sum of the FSPL and interface losses, i.e. '-136dB.

FSPL3D = 40 log10 d+ 40 log10 f + 64.88 (2)

• Now, we are interested in the delay line configuration.
The ice-rock interface hence displays a much greater
reflection coefficient than the typical delay line with a
S11 insertion loss at -35 dB, meaning that the delay line

Fig. 4. Two examples of echos observed on the delay line reflection signal,
as a function of excitation pulse length. Too long a pulse blurs the echos and
makes the identification of the time delay more difficult, without increasing the
reflected signal level: this experimental result is consistent with the matched
filter theory which states that the optimal number of periods is equal to the
number of interdigitated fingers in the transducer. The hardware used in this
experiment is unable to generate an excitation pulse with less periods than
the number of interdigitated fingers in the transducer of the delay line.

must be closer to the radar to provide a meaningful signal.
So, if we replace the interface by a delay line the FSPL
losses becomes '-101dB to obtain the same global losses
than previously. With such FSPL losses, we estimate the
delay line must not be buried deeper than 40 m.

The conclusion of this plane wave analysis is that a SAW
delay line buried in ice at a depth of 40 m should provide the
same signal level than the dielectric interface at 100 m. The
delay line signature in an echo v.s antenna position graphics
(as showin in Fig. 3 for example) is characterized by multiple
hyperbola translated in time towards greater depths since the
acoustic signal is an attenuated replica of the electromagnetic
pulse delayed a few microseconds in time. An intercorrelation
between the various pulses will thus allow accurate identi-
fication of the time delays within the delay line and hence



Fig. 5. The digitized I/Q components of the responses of the delay line,
sampled at a rate of 64 MHz. While the reflection peaks are clearly observed
on the magnitude, the received power is insufficient to allow the determination
of the phase.
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Fig. 6. Evolution of the pulses position as a function of temperature – in the
-20oC to +160oC range – based on the received power magnitude position
identification after fitting the reflected peaks with second order polynomials
and resampling for accurate positioning of the reflection positions.

identification of the physical quantity affecting these delays.

V. FDTD SIMULATIONS

The plane wave approximation is a rough approximation
hinting at the depth at which a SAW device can be interro-
gated, but a more accurate analysis is necessary for an accurate
estimate and to later allow a signal identification in which
the acoustic contribution is separated from the clutter of the
electromagnetic echos. To this end, we have developed two
Finite Difference Time Domain analysis, a 2D model with a
computation fast enough to allow spatial analysis of the echos
as the radar is scanned over dielectric interfaces and a point-
like delay line, and a 3D model for an accurate estimate of

the propagation losses with accurate distance squared energy
distribution.

The FDTD method is a well known numerical tool to
compute electromagnetic field propagation in a heterogeneous
window [8]. It is based on the Yee scheme [9]. Here, we just
present the different used parameters for both the two and
three dimensional cases. To achieve the numerical analysis, we
must follow the different rules of discretization and stability
according to the FDTD method.

Thus, we define spatial and time discretization as mentioned
in equation (3). This equation is defined for a n-dimensional
case. λ and c are respectively the smallest wavelength and
highest velocity of the electromagnetic field, ∆xn and ∆t are
respectively the spatial (in each xn directions) and temporal
discretization steps.

∆xn <
λ

20
,∆t <

1

c
√∑N

n=1
1

(∆xn)2

(3)

For instance, the Mala Ramac GPR used in the above experi-
ence to scan an ice-rock interface provides a wave at 100 MHz
in air, i.e., λa = 3 m. However, the rock medium has a higher
permittivity than air (εa = 1 and εs = 5). So, the smallest
wavelength is obtained in rock and is equal to λs ' 1.3 m. By
the equation (3), the spatial steps get ∆xn = 6 cm. Moreover,
air provides the highest electromagnetic field velocity c. Thus,
we choose ∆t = ∆xn

2c
√

3
, that is, ∆t ' 79 ps for 2D case and

∆t ' 64 ps for 3D case. If we change the studied media, all
these quantities must be adapted.

The source description is also a critical point of the FDTD
method as well as in the time domain as in the spatial one.
In time domain, we define the incident electromagnetic field
envelop as a Gaussian function. This function is defined by
a temporal spread ωt allowing around ten oscillations for the
highest wave length, i.e., 10 ns< ωt < 30 ns. However, to
match as well as possible the above experiences, we should
defined a temporal spread providing a 200 ns pulse, that is,
ωt ' 70 ns. Anyway, the second spread being bigger than the
basic first one, we can choose either as the one or the other. In
spatial Domain, we separately discuss the 2D and 3D cases.
First, a radiating dipole stand for the 2D source. This dipole is
defined by a hard source in a single cell of the FDTD main grid
[8]. Next, a hard source also stands for the source in the 3D
case. However, it is not only in a single cell but in a extended
area delineated by a 2D Gaussian function. This function is
written in the air-rock interface and its spreads stand for the
radar half dimensions into the both axes of this plan.

We are interested in the interaction between the electromag-
netic wave come from the GPR and the soil singularities like
caves. We also wish to be able to interpret the GPR experi-
mental results and to predict the losses due to the reflection
and diffraction phenomena. Thus, we choose to analyze the
experiment depicted in figure 7. The GPR is dragged on the
ice-rock interface in air (hs = 0 and ds = 14 m). The source
is TE polarized and λ = 3 m. The air permittivity is equal to
unity and the soil one is assumed εs = 13. The incident wave



Fig. 7. 2D model used to characterize the interaction between the incident
electromagnetic wave and a cave.

propagates in soil from the GPR to the cave. The distance from
the interface to the top of the cave is hc. In 2D case, the cave is
depicted by an infinite dc diameter cylinder. The cave is filled
by air. So, the wave is reflected on the cave surface and goes
back to the GPR which is also the detector. By computing the
diffracted electromagnetic field at the source position, we are
able to simulate the stored signal by the GPR.

In figures 8 to 10, we show some significant numerical
results by plotting the variation of the electromagnetic field
square modulus versus both time and source position. We vary
two parameters letting the others unchanged. In figure 8, we
put dc = 60 cm and hc = 10 m. In figure 9, we let the depth of
the reflector unchanged and increase the diameter to dc = 2 m.
At last, in figure 10, we decrease the depth to hc = 5 m.

Fig. 8. Variations of the electric field square modulus temporal evolution
versus the GPR position from the cave center. A thirty centimeters radius cave
is buried ten meters deep and λa = 3 m.

First, these results show that the expected experimental
signal should appear as multiple hyperbola. A brief analysis
provides the analytical formula of the source cave distance dsc

Fig. 9. Variations of the electric field square modulus temporal evolution
versus the GPR position from the cave center. A one meter radius cave is
buried ten meters deep and λa = 3 m.

Fig. 10. Variations of the electric field square modulus temporal evolution
versus the GPR position from the cave center. A one meter radius cave is
buried five meters deep and λa = 3 m.

in equation (4) where xs is the source-sensor position.

dsc = 2

√x2
s +

(
hc +

dc

2

)2

− dc

2

 (4)

This equation is a hyperbola function. This result matches the
previous numerical one. A second relevant result is the time
or distance between two consecutive hyperbola is equal to the
cave depth. Indeed, this distance in figure 8 and 9 is twice over
the one in figure 10 and as we can see the time is twice over
in the two first figures. These lapses are perfectly equal to the
results obtained by the analytical way : T = 2dcc0

√
εs (c0

is the vacuum light velocity). From these results, we could
have also discussed the losses due to the reflection and the
diffraction into the soil. However, we use a cross section of the
previous results. In figure 11, we plot the temporal evolution of
the electric field square modulus when the source is placed just
above the cave. These results are obtained for (a) an infinite
radius, 5 meters deep, (b) 30 cm radius, 5 meters deep, (c)
30 cm radius, 10 meters deep. It is obvious the losses are



strongly dependent on the cave size but also on the cave depth
(even if it is a little bit less sensible). Indeed, the losses in the
(b) case are 15 dB over those of the (a) one, i.e., more the cave
size decreases and more the losses increase. At last, we also
show in figure 11 a 3D result the (d) case. Thus we confirm
the previous result on the correlation between the cave size
and the losses. In fact, the cave is now depicted by a 30 cm
radius sphere and thus the efficient surface become smaller.
The losses are 35 dB more important in this new case than in
the previous (b) one.

An other important result is we can link the plane wave ap-
proximation defined in the section IV and the FDTD numerical
results. Indeed, the FSPL becomes:

FSPL2D = 20 log10 d+ 20 log10 f + 32.44. (5)

This new definition combined with interface losses match
the numerical results depicted in figure 11(a)(b) and (c). So, we
numerically demonstrate and verify that the FSPL follow a r−2

law in a 2D case. We can make the same remark for the curve
11(d) with a r−4 law for a 3D case (r is the distance radar-
(interface or delay line)-radar). Thus, we are able to define
the experimental setup to receive a meaningful signal from a
delay line buried in an underground medium.

Fig. 11. The electric field square modulus temporal evolution for several
cave radii and several depths. (a) infinite radius, 5 meters deep. (b) 30 cm
radius, 5 meters deep. (c) 30 cm radius, 10 meters deep. (a), (b), (c) are 2D
numerical analysis with ωt = 10 ns. (d) 30 cm radius, 5 meters deep in a
3D numerical analysis with ωt = 30 ns

In further works, we will discuss more specially about
the 3D cases and we also introduce the losses due to the
absorption by using already implemented model for dispersive
and absorbing media in [10], [11]. However, we are already
able to understand and predict the experimental results of GPR
experiments.

VI. CONCLUSION

We have demonstrated that SAW resonators packaged in
ceramic packages withstand the environment if sensors buried
in clay for over a year. Regular monitoring of these buried de-
vices provided temperature evolutions consistent with surface

temperatures, although the interrogation unit compliant with
the 434 MHz European ISM band did not allow the sensors
to be buried more than 80 cm deep.

In order to improve the interrogation depth of sensors, we
have analyzed the interrogation strategy of ground penetrating
radars, able to gather informations of reflected electromagnetic
energy at dielectric interfaces up to 100 m deep at 100 MHz
in low loss propagation media such as ice. We extend this
result to an estimate of the depth at which a SAW delay
line might provide the same amount of reflected energy by
compensating the larger insertion loss by brining the sensor
closer to the surface: a plane wave calculation of Fresnel
reflection coefficient hints at a possible depth of 40 m.

Further perspectives of this work include switching from a
monostatic delay line interrogation configuration to a bistatic
configuration as allowed by installing a second RFX900
daughter board on the USRP, as well as attempting a bistatic
resonator interrogation configuration which allows generating
much larger output power than the current 10 dBm.
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