J.-M Friedt & al

Introduction

Experimenta setup

Experimenta results

Data modelling

Conclusion

Thickness and viscosity of organic thin films probed by combined surface acoustic Love wave and surface plasmon resonance

J.-M Friedt<sup>1</sup>, L.A. Francis<sup>2</sup>, S. Ballandras <sup>1</sup>

<sup>1</sup>FEMTO-ST/LPMO (Besançon, France), <sup>2</sup>IMEC MCP/TOP (Leuven, Belgium)

slides available at http://jmfriedt.free.fr

16 septembre 2005

J.-M Friedt & al

Introduction

Experimenta setup

Experimenta results

Data modelling

Direct detection biosensor

Aim : detect DNA hybridation, antibody/antigen interaction without labeling (fluorescence, radiolabeling  $\dots$ )

- *in-situ* measurement (not in dry state) : microfluidics ...
- time resolution  $\simeq 1$  s for kinetics measurements

 $\Rightarrow$  detect mass bound to the surface : acoustic method (QCM, SAW)  $\Rightarrow$  detect optical index change (ellipsometry, SPR)

- $\Rightarrow$  detect surface topography change due to adsorption (SPM)
  - Acoustic methods beyond Sauerbrey : density, thickness, viscosity
  - Optical methods : thickness, optical index
  - Scanning probe microscopies : molecule conformation, density of molecules, thickness

Modelling is required for extracting quantitative information on the physical properties of the adsorbed layer

J.-M Friedt & al

- Introduction
- Experiment: setup
- Experimenta results
- Data modelling
- Conclusion

### Various solvent concentrations

From QCM-D measurement we know that collagen and fibrinogen provide challenging properties :

- S-layer, IgG : behaves as a rigidly bound mass (Sauerbrey)
- collagen : displays a behaviour consistent with a predominantly viscous interaction
- fibrinogen : intermediate situation ...

| Analyte (bulk               | $\Delta f_n/\sqrt{n}$ | $\Delta f_n/n$         | $\Delta D \ (	imes 10^{-6})$ |
|-----------------------------|-----------------------|------------------------|------------------------------|
| concentration, $\mu g/ml)$  | (Hz) QCM              | (Hz) QCM               | QCM                          |
| S-layer                     | NO                    | 45=900                 | 3-5                          |
| СТАВ                        | NO                    | 8=160                  | 0.2-0.5                      |
| collagen (30 $\mu$ g/ml)    | 1000                  | NO                     | 100                          |
| collagen (300 $\mu$ g/ml)   | 1200                  | NO                     | >120                         |
| fibrinogen (46 $\mu$ g/ml)  | 110±5                 | $55{\pm}5{\simeq}1110$ | 4-10                         |
| fibrinogen (460 $\mu$ g/ml) | NO                    | 100=1700               | 8-10                         |

- J.-M. Friedt et al., J. Appl. Phys. 95 (4) 1677-1680 (2004)
- C. Zhou et al., Langmuir 20 (14) 5870-5878 (2004)

#### J.-M Friedt & al

#### Introduction

Experimental setup

Experimenta results

Data modelling

Conclusion

## SAW/SPR combination

- Objective : identify physical properties of protein films.
- Acoustic methods are sensitive to layer thickness, density and viscosity, but provide only insertion loss and phase variations.
- Combine with optical method : optical index and thickness.
- Assume that density and optical index vary linearly with solvent content  $\Rightarrow$  3 unknowns and 3 measurements.



#### J.-M Friedt & al

#### Introduction

Experimenta setup

Experimental results

Data modelling

Conclusion

# Data collected with combined SAW/SPR setup

- Globular protein (IgG, BSA, S-layer), fibrilar protein (collagen, fibrinogen) and polymers (pNIPAM) adsorption have been investigated.
- Globular proteins display a mostly rigid behaviour
- pNIPAM displays a behaviour dependent on temperature



#### J.-M Friedt & al

#### Introduction

Experimental setup

Experimenta results

#### Data modelling

Conclusion

# Data modelling approaches (acoustics)

Two complementary approches for modelling the acoustic data :

• transmission line model



 harmonic admittance computation based on the Blötekjaër-model extended to include the viscous contribution of a newtonian fluid (linear response)

$$T_{ij} = -\left(P + j\omega\left(\frac{2}{3}\eta - \zeta\right)S_{kk}\right)\delta_{ij} + 2\omega\eta S_{ij}$$

6/10

#### J.-M Friedt & al

## Data modelling predictions (acoustics : Blötekjaër)



An insertion loss drop of -**6 dB cannot be modelled** by a newtonian fluid+rigid mass interactions.



#### L-M Friedt & al

A degrees)

-20

A IL (dB)



Data modelling

## Data modelling predictions (acoustics : TLM)



Transmission line model ( $\eta = [1, 1.5, 2, 3]$ )

(harmonic admittance computation)

Here (left) we find a possible set of parameters for the fibrinogen data : a viscosity around 2.6 cP and a thickness around 22.4 nm assuming a density of 1.4.

Additional work requires sweeping the density parameter to extract water content. (a)

### Data modelling results (SPR)

<sup>plasmon</sup> resonance 2D model of reflected intensity of a laser by a stack of planar interfaces : J.-M Fried & al requires optical index of all layers at a given wavelength+incident angle



Acoustic frequency shift+insertion loss and SPR angle shift  $\rightarrow$  density  $\rho$ , optical index n, viscosity and water content x **assuming**   $\rho = x \times \rho_{protein} + (1 - x) \times \rho_{water} \& n = x \times n_{protein} + (1 - x) \times n_{water}$   $\rightarrow$  with a thickness of 22.4 nm, SPR (755 m°) tells us x $\simeq$ 0.25 *i.e.*  $\rho \simeq 1.10$  and iterate ...

- J.-M Friedt & al
- Introduction
- Experimental setup
- Experimenta results
- Data modelling
- Conclusion

## Conclusion and perspectives

- Experimental measurement of thin film adsorption by acoustic and optical means
- Simultaneously monitor using both techniques the *same* area in liquid with time resolution
- Implementation of models for the predictions of SPR angle shift and acoustic frequency shift and insertion loss as a function of adsorbed layer properties
- Models are incomplete : cannot justify large insertion loss decrease upon collagen adsorption
- Possible extension : add Maxwellian liquid behaviour (complex : non-linear, delayed effects, incompatible with transmission line model)