J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

High-overtone Bulk Acoustic Resonator as passive sensor acting as buried cooperative target interrogated by Ground Penetrating RADAR

J.-M Friedt, A. Saintenoy, T. Baron, É. Lebrasseur, T. Laroche, S. Ballandras, M. Griselin

Contact: jmfriedt@femto-st.fr Slides & references: http://jmfriedt.free.fr

funded by the French National Research Agency (ANR) CryoSensor grant

July 23, 2013

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

GPR for subsurface interface mapping

- Classical geophysical near-surface (<1000 m) mapping tool
- Pulsed mode RADAR with stroboscopic recording in the commercial implementations (GSSI, Sensors & Software, IDS, Malå)
- Dielectric and conductivity interfaces reflect part of the incoming electromagnetic energy
- electromagnetic velocity is dependent on the medium permittivity: $f = \frac{c_0}{2d \times \sqrt{\varepsilon_r(eff)}}$ with ground permittivity ε_r in $\varepsilon_r(eff) = \frac{(\varepsilon_r+1)}{2} \ (\varepsilon_r \in [3..15])$ $\Rightarrow f$ can vary by factor of 2

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic senso

HBAR

Conclusion

GPR for subsurface interface mapping

- Operating frequency range: 25-250 MHz (geophysics), 400-800 MHz (civil engineering), up to 1600 MHz (concrete monitoring)
- Basics: load a capacitor with high voltage (350 V), trigger the base of an avalanche transistor, unload in dipole antenna
- the time constant of the pulse is defined by the antenna min(S₁₁)
- electromagnetic velocity is dependent on the medium permittivity: $f = \frac{c_0}{2d \times \sqrt{\varepsilon_r(eff)}}$ with ground permittivity ε_r in $\varepsilon_r(eff) = \frac{(\varepsilon_r+1)}{2} \ (\varepsilon_r \in [3..15])$ $\Rightarrow f$ can vary by factor of 2

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

Acoustic sensor compatible with GPR

- Incoming electromagnetic pulse is converted to an acoustic wave through (a linear) inverse piezoelectric effect
 - Acoustic velocity is dependent on various physical properties (temperature, stress, mass loading=boundary conditions)
 - Record time of flight = electromagnetic + acoustic
 - Differential measurement to get rid of electromagnetic time of flight
 - 10^5 ratio of electromagnetic to acoustic velocity \Rightarrow microsystems with large antennas

J.-M Friedt & al, Surface Acoustic Wave Devices as Passive Buried Sensors, J. Appl. Phys. **109** (3), p. 034905 (2011)

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

HBAR sensor compatible with

- Complement to delay line geometry: High Overtone Bulk Acoustic Resonator (HBAR)
- Stack of an active piezoelectric thin layer over a low acoustic loss substrate
- Comb of acoustic modes (BAW) associated with the multiple overtones of the standing wave
- Fourier transform of comb is a time domain comb of echoes
- Broad frequency range (up to one decade) to operate in all GPR environments
- BUT loss of interrogation range ?! (35 m \rightarrow 1.5 m)

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

HBAR sensor compatible with GPR

- Complement to delay line geometry: High Overtone Bulk Acoustic Resonator (HBAR)
- Stack of an active piezoelectric thin layer over a low acoustic loss substrate
- Comb of acoustic modes (BAW) associated with the multiple overtones of the standing wave
- Fourier transform of comb is a time domain comb of echoes
- Broad frequency range (up to one decade) to operate in all GPR environments
- BUT loss of interrogation range ?! $(35 \text{ m} \rightarrow 1.5 \text{ m})$

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

HBAR as time-domain sensors: figure of merit $K^2 \times Q$

- Coupling coefficient is equivalent to the cross-section σ of the RADAR target $\frac{P_r}{P_t} = \frac{G_1 G_2 \sigma \lambda^2}{(4\pi)^2 d^4}, \ \sigma \propto K^2 \lambda^2$
- ∑ K² is equal to the thin piezoelectric film coupling coefficient (coupled resonator spreads acoustic energy in all overtones of a given envelope)
- Tradeoff: maximize coupling *K*, keep *Q* to separate echoes
- Operate on fundamental mode of piezoelectric layer (K² ↓ N²) & few overtones (thin substrate, close echoes)

frequency (MHz)

IFCS 2013, Prague

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

HBAR as time-domain sensors: figure of merit $K^2 \times Q$

- Coupling coefficient is equivalent to the cross-section σ of the RADAR target $\frac{P_r}{P_t} = \frac{G_1 G_2 \sigma \lambda^2}{(4\pi)^2 d^4}, \ \sigma \propto K^2 \lambda^2$
- ∑ K² is equal to the thin piezoelectric film coupling coefficient (coupled resonator spreads acoustic energy in all overtones of a given envelope)
- Tradeoff: maximize coupling *K*, keep *Q* to separate echoes
- Operate on fundamental mode of piezoelectric layer (K² ↓ N²) & few overtones (thin substrate, close echoes)

IFCS 2013, Prague

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

HBAR as time-domain sensors: figure of merit $K^2 \times Q$

- Coupling coefficient is equivalent to the cross-section σ of the RADAR target $\frac{P_r}{P_t} = \frac{G_1 G_2 \sigma \lambda^2}{(4\pi)^2 d^4}, \ \sigma \propto K^2 \lambda^2$
- ∑ K² is equal to the thin piezoelectric film coupling coefficient (coupled resonator spreads acoustic energy in all overtones of a given envelope)
- Tradeoff: maximize coupling *K*, keep *Q* to separate echoes
- Operate on fundamental mode of piezoelectric layer (K² ↓ N²) & few overtones (thin substrate, close echoes)

J.-M Friedt& al.

Interrogation unit: GPR

Acoustic sensor

HBAR

Conclusion

Conclusion

Broadband HBAR¹ is a suitable alternative to acoustic delay line ² as VHF/UHF RADAR (GPR) cooperative target (passive sensor) \Rightarrow design rules based on the $K^2 \cdot Q$ figure of merit

- Sensor identification strategy through hyperbola curvature (no convergence in Kirchhoff migration) + repetition of pattern (cross-correlate)
- Loss of interrogation range is due to poor electromechanical coupling in available HBAR
- Select a thin low acoustic loss substrate to minimize number of modes (=closely spaced echoes in time domain)
- Select piezoelectric film thickness to operate on fundamental mode

 ¹ J.-M Friedt & al, High-overtone Bulk Acoustic Resonator as passive Ground Penetrating RADAR cooperative targets, J. Appl. Phys. **113** (13), pp. 134904 (2013)
² J.-M Friedt & al, Surface Acoustic Wave Devices as Passive Buried Sensors, J. Appl. Phys. **109** (3), p. 034905 (2011)