Developing
embedded
devices using
opensource tools:
application to
handheld game
consoles

maewa Developing embedded devices using opensource
tools: application to handheld game consoles

Digital output

Analog input

R G. Goavec-Merou, S. Guinot, J.-M Friedt
R
wifi

Association Projet Aurore, Besancon, France
uClinux &
bootloader
o W manuscript, slides and associated documents at

http://jmfriedt.free.fr

August 14, 2009

http://jmfriedt.free.fr

Developing
embedded
devices using

S Introduction

application to
handheld game
consoles

Friedt & al . . .
e Hardware is hardly understandable in modern computers: serial

introductions (SATA, 12C) or fast (PCl) protocols difficult to understand
e Parallel protocols — easiest to use — are no longer available (ISA,
processor bus 6502 or Z80, parallel port)
e Older, well documented hardware is still accessible on handheld
gameconsoles.

e availability of an opensource emulator desmume
= use the handheld game console Nintendo Dual Screen (NDS) for

getting familiar with hardware/software interaction and instrument
developement

This is not “yet another platform on which to run GNU/Linux". The
principles described here are valid for any platform: the NDS is widely
available and “low” cost, well documented.

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Introductions

Available hardware

e Two processors: ARM9 CPU and ARM7 coprocessor (bus sharing)
= ARM crosscompiler (gcc, newlib and binutils, appropriately
patched depending on the target)

4 MB RAM (DS and DSLite: avoid DSi)

wifi interface, but no asynchronous serial port (RS232)

e a legacy bus for Gameboy Advance compatibility: slot2

e a synchronous serial bus for reading game software: slotl cartridge.

Requirement: get a cartridge for executing our own programs (games)
on the NDS (M3DS Real).

Objective: display and transfer over the wifi network some “real world"
data (sensor node, robotics ...)

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

DSLinux
Digital output

Analog input
Draw, compute
RT

wifi

uClinux &
bootloader

Serial
communication

Let's start with a familiar
environment

Ready to use DSLinux image: Linux port to ARM9 processor thanks
to the availability of gcc ! (+newlib & binutils + patches)

e Familiar environment: posix, most hardware accessed through
hardware modules /dev, no need to understand the underlying
architecture, keyboard for typing commands on the bottom
touchscreen

o Pre-compiled toolchain and linux image at
http://kineox.free.fr/DS/

= shell and “simple”
interfaces such as
framebuffer (/dev/£b0) |
are readily available
thanks to the work of
the DSLinux team

Ltoolchain compiled for x86 platform:
http://stsp.spline.de/dslinux/toolchain

http://kineox.free.fr/DS/
http://stsp.spline.de/dslinux/toolchain

Developing
embedded
devices using
opensource tools:
application to
handheld game
consoles

Friedt & al

DSLinux

Let's start with a familiar
environment

struct fb_var_screeninfo sinfo;
unsigned short % s_ptr;

inline void draw_pixel(int x, int y, int color)

{unsigned short xloc = s_ptr + \
((y+sinfo.yoffset)*sinfo.xres)+x+sinfo.xoffset;

#loc = color; // 5R, 5G, 5B

#loc |= 1 << 15; // transparence ?

int main(int argc, char xargv[])

{char «c;

screen_fd = open(”/dev/fb0", ORDWR);

joctl (screen_fd , FBIOGET.VSCREENINFO, &sinfo);

s_ptr = mmap(0,screen_heightxscreen_width /8 ,PROT_READ|PROT_WRITE, MAP_SHARED, screen_fd , 0);
I...
i

e Understand the frambuffer data organisation (16 bit
depth=5R5G5B)

e common interface with classical framebuffer: port from one
architecture to another is mostly transparent as long as an hardware
abstraction layer exists

e /dev/ and /proc are supported

Developing
embedded
devices using

L Slot2 cartridge bus

application to
handheld game
consoles

Friedt & al e All processors are based on the same architecture: a data bus holds
the information (what), the adress bus the location where the data
are fetched/stored (where), the control signals indicate which
operation to perform (read, write, interrupt, dma ...)

DSLinux

e The older gameboy advance — including ARM7 bus — was well

documented
e \ /S N\ /)
Let's try to use it to interface to the world ...
Two steps:

@ write informations to communicate with the world (no risk of
damaging the hardware since output only)

@ read informations to gather informations on the environment (more
challenging since the hardware must comply with the other
peripherals of the CPU: but timing, high impedance bus)

6/33

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output
Analog input

Draw, compute
RT
wifi

uClinux &
bootloader

Serial
communication

Hardware interfacing

CS# temporary link beetween one GPIO
output and the interrupt in order to
validate the kernel module

RD#, WR# \ / \ / /
ADDR. DATA DATA

Parallel bus =

e address defines where the
action takes place,

e data bus defines what is
transfered,

e control bus defines how the
transfer occurs

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output
Analog input

Draw, compute
RT

wifi

uClinux &
bootloader
Serial

communication

Blinking LED

e No need for fancy hardware: use a Rumble Pack cartridge
e Program example for accessing a hardware address (memory
mapped 1/O in Freescale architecture):

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>

int main(int argc,char xxargv)
{printf("demo rumble : 1/3=%f\n" ,1./3.);
if (arge>1) {
#(unsigned short=)(0x8000000)=(unsigned short)atoi(argv[1l]);
sleep (1) ; // active le moteur sur argv—
S)=2
#(unsigned short)(0x8000000)=0;

¥
return (0);

@ define which address is associated with which hardware (address
decoder)

@ define the data size (*(unsigned short*))

© define which value to put on the data bus

O the control signal are automagically generated by the processor

Developing
embedded

devices using " .
e Blinking LED

application to

handheld game .
o e No need for fancy hardware: use a Rumble Pack cartridge
Friedt & al e Program example for accessing a hardware address (memory

mapped 1/O in Freescale architecture):

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>

Digital output

int main(int argc,char xxargv)
{printf("demo rumble : 1/3=%f\n" ,1./3.);
if (arge>1) {
#(unsigned short=)(0x8000000)=(unsigned short)atoi(argv[1l]);
sleep (1); // active le moteur sur argv—
<1]=2
#(unsigned short)(0x8000000)=0;

return (0);

@ define which address is associated with which hardware (address
decoder)

@ define the data size (*(unsigned short*))

© define which value to put on the data bus

@ the control signal are automagically generated by the processor

9/33

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output

Analog input
Draw, compute
RT

wifi

uClinux &
bootloader

Serial
communication

Data acquisition
The only additional trick is to keep the data bus lines high
impedance when you are not supposed to talk
Use of an analog to digital converter in parallel (bus sharing thanks
to RD#/WR# and CS#) to the latch
This example: fast analog to digital conversion (ADC), theoretically
1 MS/s, practically half that speed

ADC is more fancy than a latch: start conversion, wait, read
conversion result (fixed delay or interrupt = kernel module)

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output

Analog input
Draw, compute
RT

wifi

uClinux &
bootloader

Serial
communication

ADC control example

#include <stdio.h>
#include <stdlib.h>
#include <unistd .h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>

#define TAILLE 255

{int f,taille=TAILLE;
volatile int k;

char xc;
c=(charx)malloc(TAILLE);
for (f=0;f<TAILLE; f++)

// usleep(7):

return (0);

int main(int argc,char sxargv)

// demonstrates the use of malloc without MMU

{*(unsigned shortx)(0x8000000)=(unsigned short)O0;
for (k=0;k<10;k++) {} // DO NOT compile with —02

// call to usleep is too long !

c[f]=%(unsigned short=)(0x8000000)&0xff;

for (f=0;f<TAILLE; f++) printf("%x ",c[f]);printf("\n");

e user-space memory mapped device with fixed delay (uClinux < no

MMU)

o kernel space with fixed delay
e hardware interrupt generated by end-of-conversion (slow !)

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Analog input

Problem with uClinux

Conclusion of DSLinux: memory footprint too large for a 4 MB system
= follow the trend and add RAM, or find a better use of the
available resources.

e most programs in busybox will run out of memory, even less !
only a few hundred kB remain after loading the kernel

e no luck in using portable graphic interfaces (SDL, Qtopia)

e one option is to use the memory expansion pack ... on slot 2, i.e.
no access to the ARM9 bus left

Yet another solution: use another development environment, POSIX
compatible yet with a small footprint.

12/33

Developing
embedded
devices using
openscunce ol RTEMS on NDS
application to

handheld game
consoles

e RTEMS is an executive environment for embedded devices, i.e. a
framework for developing a monolithic application based on multiple
modules.

Friedt & al

e From the developper point of view, similar to an operating system,
but no memory management, no scheduler, no dynamic loading of
application ...

e Yet availability of OS functionalities such as TCP/IP stack, file
format, threads ... even a shell & user input interface (Graffiti) !

RTEMS

o Dedicated functionalities for embedded system debugging: CPU
use, stack use

e Real time + strong support (used by large national & international
agencies)

o compiled with gcc (+ patches) = familiar environment

An NDS BSP has been developed by M. Bucchianeri, B. Ratier,
R. Voltz & C. Gestes >

’http:
//wwu.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual. html

http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html
http://www.rtems.com/ftp/pub/rtems/current_contrib/nds-bsp/manual.html

Developing
embedded
devices using -
o Basic program
application to
handheld game

ol e RTEMS provides stdxx and POSIX compatibility

Friedt & al
e runs on desmume for all non-hardware related developments
e provides an hardware abstraction layer
Digital output) .
sve o but not a fully dynamic operating system so the resources needed by the
RTEMS application must be defined in the program

Draw, compute
RT

wifi

uClinux &
bootloader

Embedded With

RTEMS®

Serial
communication

F3] ksrmsiecguasizacrortet

s HELLO WORLD TEST
Hello World
% END OF HELLO WORLD TEST %

- It

Hello World framebuffer display wireless data transfer

14 /33

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output
Analog input
RTEMS

Draw, compute
RT

wifi

uClinux &
bootloader

Serial
communication

#include <bsp.h>
#include <stdlib .h>
#include <stdio.h>
#include <nds/memory.h>

rtems_id timer.id;
uintl6.-t 1=0;

void callback ()

{ printk (" Callback %x\n",1);
(*(volatile uintl6-t+)0x08000000)=;
1=0xfFFF—I;

rtems_timer_fire_after(timer_id , 100, callback, NULL);

rtems_task Init(rtems_task-argument ignored)
{ rtems_status_code status;

rtems_name timer.name = rtems_build_name('C','P','U",

printk ("\n\nkxx HELLO WORLD TEST sxx\n"

T

)i
(*(vuint16x)0x04000204) = ((*(vuint16)0x04000204) & ~ARM7_OWNS.ROM);

status = rtems_timer_create (timer_name &timer.id);
rtems_timer_fire_after(timer_id, 1, callback, NULL);

rtems_stack_checker_report_usage(); // requires #define CONFIGURE.INIT

printk ("sxx END OF HELLO WORLD TEST sxx\n");
while (1)
exit(0);

}

/% configuration information x/

#define CONFIGURE.APPLICATION_.NEEDS_CONSOLE_DRIVER
#define CONFIGURE.APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE.RTEMS_INIT_TASKS_TABLE

/* configuration information x/

#define CONFIGURE-MAXIMUM_DEVICES
#define CONFIGURE-MAXIMUM.TASKS

#define CONFIGURE.MAXIMUM.TIMERS
#define CONFIGURE.MAXIMUM_SEMAPHORES
#define CONFIGURE-MAXIMUM_MESSAGE_-QUEUES
#define CONFIGURE.MAXIMUM_PARTITIONS
#define CONFIGURE.MAXIMUM_REGIONS

40
100

100
20

100
100

// bus access to ARM9

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output
Analog input

Draw, compute,
RT
wifi

uClinux &
bootloader

Serial
communication

Framebuffer access & math lib.

Framebuffer access similar to DSLinux: minor changes to adapt to the
new device naming convention (exemple provided by M. Bucchianeri)

inline void draw_pixel(int x, int y, int color)
{ uint16_t* loc = fb_info.smem_start;

loc += y * fb_info.xres + x;

*loc = color; *loc |=1 << 15; // BR, 5G, 5B
}

struct fb_exec_function exec;

int fd = open("/dev/£b0", O_RDWR);
exec.func_no = FB_FUNC_ENTER_GRAPHICS;
ioctl(fd, FB_EXEC_FUNCTION, (void+)&exec);
ioctl(fd, FB_SCREENINFO, (void*)&fb_info);

#define CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE > O topte i
Band - painl® a0 Caliaw for o
rtems_driver_address_table Device_drivers[] =
{ CONSOLE_DRIVER_TABLE_ENTRY,
CLOCK_DRIVER_TABLE_ENTRY,
FB_DRIVER_TABLE_ENTRY,
{ NULL,NULL, NULL,NULL,NULL, NULL }
};

Drawing of a fractal displaying the resolution of a 3rd order polynom:
@ the NDS can be used for useful calculations including solving
equations: floating point calculation emulation
® access to framebuffer
® adding a new command to the RTEMS shell

16 /33

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output

Analog input

Draw, compute,
RT

uClinux &
bootloader

Serial
communicatior

Hardware access (GP1O & ADC)
Bus control must be granted to the ARM9 CPU

#include <nds/memory.h>

[...]
void callback()
{ printk("Callback %x\n",1);
(*x(volatile uint16_t*)0x08000000)=1;
1=0xffff-1;
rtems_timer_fire_after(timer_id, 100, callback, NULL);
}

rtems_task Init(rtems_task_argument ignored)
{rtems_status_code status;
rtems_name timer_name = rtems_build_name(’C’,’P’,’U’,’T’);

// cf rtems-4.9.1/c/src/lib/libbsp/arm/nds/libnds/source/arm9/rumble.c

// sysSetCartOwner (BUS_OWNER_ARM9) ;

// defini dans rtems-4.9.1/c/src/lib/libbsp/arm/nds/libnds/include/nds/memo
(*(vuint16%)0x04000204) = ((*(vuint16%)0x04000204) & ~ARM7_OWNS_ROM) ;

status = rtems_timer_create(timer_name,&timer_id);
rtems_timer_fire_after(timer_id, 1, callback, NULL);

[...]

} 17 /33

Developing
embedded

devices using . 2
S Real time *

application to

handheld game

conseles e Real time is defined as a system with maximum latency between a
Friedt & signal and the processing of the information.
e The shorter the better, but an upper boundary must never be
Digital output reached

Analog input

Draw, compute,
RT

wifi

uClinux &
bootloader

Serial
communication o

RTEMS : DSLinux

Three threads, two for blinking diodes and one running the Newton
fractal drawing for ~10 seconds upon user request.
— DSLinux diplays latency shift during contect changes.

18/33

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output

Analog input

Draw, compute
RT

wifi
uClinux &
bootloader
Serial

communication

TCP/IP over wifi

correction of a bug in
the data structure
handling TCP/IP
packets

convenient connection
to the shell (as opposed
to the Graffiti interface)

use of the wireless
interface for data
transfer (the telnetd
server can handle other
applications than a
shell)

networking

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output
Analog input

Draw, compute,
RT
wifi

uClinux &
bootloader

Serial
communication

TCP/IP over wifi networking

correction of a bug in
the data structure
handling TCP/IP
packets

convenient connection
to the shell (as opposed
to the Graffiti interface)

use of the wireless
interface for data
transfer (the telnetd
server can handle other
applications than a
shell)

valeur (bits)

Neveear

e 1
wifi router

4

3

temps (2,6 us/point)

20/33

Developing
embedded
devices using b o .
opensource tools TCP/IP over wifi networking
application to
handheld game

consoles 3. telnetd: (server)
IR s el . . rtems_telnetd_initialize(
1_ |fCOnf|g: rtemsShell, /* "shell" function */
LL, /* no context necessary for echoShell */
atic struct rtems bsdnet ifconfie metded fig o ¢ false, /* listen on sockets */
BEREE BT SAD L SO SEI G FOSEE AR A S RTEMS_MINIMUM_STACK_SIZE%20, /* shell needs a large stack */
- RTEMS_BSP_NETWORK_DRIVER_NAME, A praip——
igital outpu 5
RTEMS_BSP_NETWORK_DRIVER_ATTACH,
Analog input L, e [T bty ALeEIEED O >'false /* telnetd does NOT ask for password */
"10.0.1.20", /* IP address */ j
. 255.255.255.0", /* IP net mask */ i .
R compute NULL, /* Driver supplies hw addr */ 4. app||cat|on:
wifi ¥
void rtemsShell(char *pty_name, void *cmd_arg) {
2. route: printk(" Starting Shell =
;‘(‘HW & rtems_shell_main_loop(NULL);
bootloader i ", iti
el /* Network configuration */ 3 EoiEEC Exiting Shell
Communication Struct rtems_bsdnet_config rtems_bsdnet_config = {
&metdriver_config,
WULL, /+ do ot use bootp +/ OR (another server than the shell)
0, /* Default network task priority */
o, /* Default mbuf capacity */ . .
0. /* Default mbuf cluster capacity #/ Void telnetADC(char *pty name, void *cnd_arg) {
"rtems", /* Host name */ char *c; int f;
“"trabucayre.com",/* Domain name */ Caonare e oA EEp
"10.0.1.1", /* Gateway */ while (1) {
"10.0.1.13", /x Log host */ ar (CCOpi i)
{"10.0.1.13" }, /* Name server(s) */ *(unsigned shortx) (0x8000000)=(unsigned short)O0;
{"10.0.1.13" }, /* NTP server(s) */ c[f]=+(unsigned short*) (0x8000000)&0x£f;
}; i

for (£=0;f<TAILLE;f++) printf("%x ",c[£]);
printf("\n");
¥

Developing
embedded

opiiillfffc_isizzs TCP/IP over wifi networking

application to -

handheld game
consoles

Friedt & al

wifi

Configuration of AP MAC ad- | Direct connection from NDS to
dress (commercial game) eeePC configured as AP 3

= fully functional TCP/IP stack for connection to the NDS running

RTEMS through a wifi link
Shttp://jmfriedt.free.fr/fred/fred.html

http://jmfriedt.free.fr/fred/fred.html

Developing
embedded
devices using
opensource tools:
application to
handheld game
consoles

Friedt & al

Digital output

Analog input

Draw, compute
RT

uClinux &
bootloader
Serial
communicatio

uClinux on PSP

e So far we have used readily available toolchains (DSLinux, RTEMS)
targetted towards ARM architectures.

e The toolset gcc, binutils & newlib will run on most
architectures, including MIPS.

e The PSP is based on a MIPS4 architecture, provides 32 MB RAM

e Let's try to build a cross compilation environment for uClinux
towards the PSP

Less hardware oriented and more to-
wards software: the newer PSP has
hardly any communication peripher-
als (RS232 as IR and headset port,
USB & wifi not supported)

= external microcontroler for hard-
ware interface and communicate
through RS232

23/33

Developing
embedded

devices using .
cpensoures togs Requirements
application to

handheld game
consoles

Friedt & al

e Flash a new firmware to replace the original Sony firmware which
does not allow executing programs from the MemoryStick.

e Install the crosscompilation toolchain (PSP SDK # and the toolset
called the PSP SDK ® to generate homebrew games: the bootloader
copying the uClinux kernel + rootfs to RAM is a game

bootiosder e The games have access to the Sony OS functions for accessing
hardware peripherals. Most functions are not reverse engineered
(IPL SDK) and hence hardware peripherals are not accessible from
uClinux

“http://ps2dev.org/psp/Tools/Toolchain/psptoolchain-20070626.tar.bz2
Shttp://ps2dev.org/psp/Projects/PSPSDK

24

http://ps2dev.org/psp/Tools/Toolchain/psptoolchain-20070626.tar.bz2
http://ps2dev.org/psp/Projects/PSPSDK

Developing
embedded
devices using

opensource tools:

application to
handheld game
consoles

Friedt & al

Digital output

Analog input
Draw, compute
RT

wif

uClinux &
bootloader

Serial
communication

The bootloader

Uncompress the kernel + rootfs image, copy to memory and jump to the
starting address after initializing the hardware: last chance to use the
Sony OS functions (e.g. pspDebugScreenPrintf ())

#define KERNEL_ENTRY 0x88000000

#define KERNEL_PARAM_OFFSET 0x00000008

#define KERNEL_MAX_SIZE (size_t)(4 * 1024 * 1024) /% 4M %/
#define printf pspDebugScreenPrintf

BOOL loadKernel(void ** buf_, int * size_)
{

gzFile zf;

void * buf;

int size;

zf = gzopen(s_paramKernel, "r");

buf = (void *)malloc(KERNEL_MAX_SIZE);

size = gzread(zf, buf, KERNEL_MAX_SIZE);

gzclose(zf);

*buf_ = buf;

*size_ = size;
I
/ /
void transferControl(void * buf_, int size_)

KernelEntryFunc kernelEntry = (KernelEntryFunc) (KERNEL_ENTRY);

memCopy ((void *) (KERNEL_ENTRY), buf_, size_); /* prepare kernel image */
uart3_setbaud(s_paramBaud);

uart3_puts("Booting Linux kernel...\n");

kernelEntry(0, O, kernelParam);

Developing
embedded

evemore o9 uClinux for MIPS: toolchain
application to

handheld game
consoles

e The MIPS cross-compilation toolchain is known to work well:
architecture used on routers

o MMU-less CPU on PSP =- generate BFLT outputs instead of the
usual ELF.

e requires a dedicated linker: elf2f1t includes

o the shell script 1d-elf2f1t
e the program elf2f1t able to convert ELF binaries to th Binary Flat
uClinux & (BFLT) format
bootloader e the program flthdr for editing the header of BFLT files.
e 1d-eld2flt replaces the usual 1d linker when the -elf2f1t
compiler option is used

Friedt & al

If the 1d script is called with the -e1f2f1t option, then 1d.real
(original linker) followed by 1d-e1f2f1t are successively called.

mipsel-psp-gcc -Wl,-elf2flt -o test test.c

1s
test.gdb test

26

33

Developing
embedded

e uClinux for MIPS: buildroot

application to
handheld game
consoles

Friedt & al

e Linux kernel + associated tools for generating a roots = complex
environment
e One of the most commonly used BSP which manages patches &
Makefiles for generating a coherent environment for compiling the
toolchain, kernel and userspace tools: buidroot
uClinux & e buildroot = a structured set of Makefiles and patches for most
bootloader 0 0 . . .
e CPU architectures + scripts for downloading the right archives to
build a functional uCinux image

Result of the compilation: the cpio image including kernel + rootfs
(including busybox) as initramfs at
buildroot-psp/project_build mipsel/linuxonpsp/linux-2.6.22/arch/mips/boot/

vmlinux.bin.

27/33

Developing
embedded
devices using

apeocs s Running uClinux and
handhad game]]
consoles Communlcatlon
et e uClinux runs on the PSP, the OnScreen Keyboard has been ported (SMS
S ike)
DSLinux

Digital output

Analog input
RIS el iE‘"a»
SREFYOETS R
Draw, compute, ‘,_.,E S =
RT ugk ;mk device EW
5§ =]
wifi e
i e H
PSP
uClinux & + “unkn
3 P GorhED o neB 481 knoun srror 2
bootloader X 3 ;‘ggam 2.1 :reﬁz#fﬁacf".m Mo Xk
Serial
icati 5504 UTC) puilt-in shell (e
communication [REERTE RS
- root:/ _
Conclusion

—_—

e The PSP provides enough memory to run graphic interfaces such as

SDL, so porting many GNU/Linux tools to the MIPS based PSP is
possible

e what about hadware interfacing ?

28/33

Developing
embedded
devices using

opensource todl: Running uClinux and

application to
handheld game

S communication

T T LClinux runs on the PSP, the OnScreen Keyboard has been ported (SMS
like)

Digital output
Analog input mws py=2196e8)

B eer_deui
ieing 593K 8% B2EE nowers

b
Draw] compute, oA o e 1 mocven
RT

wifi

uClinux & "‘Sn Rt - i A TS S 2 i et
ool SIS Rintng Ddeosnea on snog saiied ko ey

bootloader ﬁe"lfg:;n:gmad 2" erpeb bu-Jack r 9 '?“l;) ‘?Z . e i

Serial o 1

g of2 TAIE '““ S om =
gl S0, 2.6.22 000 42 PREEHPT Fri How 2 23,45739 UTC 2608 aipe uni
Poe

icati 9.9 (2008: :58:04 UTC) built-in shell (nsh)
communication RS ERIRERS saTg R ARt R CRI R

root:s> _

—_—

e The PSP provides enough memory to run graphic interfaces such as
SDL, so porting many GNU/Linux tools to the MIPS based PSP is
possible

e what about hadware interfacing ?

29/33

Developing
embedded

e o Using the serial port to
e communicate with the PSP

Friedt & al

o First approach: use a terminal software since the serial port has
been linked to the keyboard layer

R e the serial port is periodically polled (CPUTIMER interrupt 66), cf
linux/drivers/serial/serial psp.c
Draw, compute ° ‘.EOid psp_uart3_txrx_tick()
if (!s_psp_uart3_port_data.shutdown &&
uClinux & (s_psp_uart3_port_data.txStarted ||
cooload (!'s_psp_uart3_port_data.rxStopped &&

Serial

Compnication ! (PSP_UART3_STATUS & PSP_UART3_MASK_RXEMPTY))))
{ // wakes up the kernel thread for receiving char
up(&s_psp_uart3_port_data.sem);
}
}

e this interrupt service routine wakes up a kernel thread in charge of
testing whether a character is available in the queue of the UART

e use the serial port and a dedicated microcontroller to add hardware
functionalities

30/33

Developing
embedded
devices using

e o5 Converting a PS2 keyboard stream
handheld game

i to RS232

Friedt & al

Introductions

DSLinux
Digital output
Analog input
RTEMS

Draw, compute,
RT

wifi
PSP

uClinux &
bootloader
Serial
communication

Conclusion

Use of one of the examples provided with msp-gcc (the gcc
cross-compiler targetting the MSP430) in
examples/mspgcc/pc_keyboard.

e instead of displaying the keystroke on an LCD, transfer via RS232

e notice that the key number is transferred on PS2 when the key is
hit and released

e no need for a PC, autonomous PSP with keyboard !

31/33

Developing
embedded
devices using
opensource tools:
application to
handheld game
consoles

Friedt & al

Conclusion

Conclusion

A game console provides the resources typically found in high grade
embedded systems (e.g. routers, digital cameras) and hence a
playground to get familiar the techniques associated with scarce
resource

NDS hardware bus still understandable and usable for hardware
interfacing

gcc is our friend, with a ports to MIPS and ARM-architectures
DSLinux requires too much memory to perform any useful function
switch to a low memory footprint executive environment: RTEMS
patched RTEMS for NDS to add full wifi communication
functionality = initial goal reached, i.e. wireless transmission of
physical quantities obtained on an A/D converter

coherent environment to compile uClinux + tools on MIPS based
PSP

little hardware extension capabilities on PSP, so add external
microcontroler communicating through RS232 link

use and expand some of the available demonstration applications to
suite most of our needs (framebuffer, text mode interface, character
input ...)

Developing
embedded
devices using

o Acknowledgement

application to
handheld game
consoles

e Pierre Kestener (CEA/IRFU, Saclay, France) mentioned the NDS
BSP of RTEMS

e M. Bucchianeri answered our questions concerning the use of the
RTEMS BSP

e Santa Claus brought the PSP and NDS handheld game consoles

Friedt & al

Further readings:

e S. Guinot & J.-M. Friedt, GNU/Linux sur Playstation Portable,
GNU/Linux Magazine France 114, March 2009, pp.30-40 [in French]

Conclusion e J.-M Friedt & G. Goavec-Merou, Interfaces matérielles et OS libres
pour Nintendo DS : DSLinux et RTEMS, GNU/Linux Magazine
France Hors Série 43 (August 2009) [in French] (and inluded
references)

e these articles were partially translated for HAR2009, the resulting
article is available at
https://har2009.org/program/events/37.en.html

https://har2009.org/program/events/37.en.html

	Introductions
	DSLinux
	Digital output
	Analog input

	RTEMS
	Draw, compute, RT
	wifi

	PSP
	uClinux & bootloader
	Serial communication

	Conclusion

