Simultaneous AFM and QCM measurements: application to the adsorption of proteins on metallic surfaces

friedtj@imec.be, choik@imec.be, campi@imec.be

J.-M. Friedt, K.-H. Choi, F. Frederix, L. Francis,

A. Campitelli, G. Borghs

Linz, February 1-4 2002

Presentation overview

- Aim
- Detection methods
- Interaction of the two techniques
- Interaction analysis
- Experimental setup
- Results (AFM)
- Results (QCM)
- Conclusion and perspectives

Aim

Combine QCM and AFM:

- complementary scales (AFM: nm², QCM: cm²)
- complementary techniques (AFM: topography/stiffness, QCM: adsorbed mass)

Test QCM model hypothesis: uniform material layer strongly binded to the sensing (grounded) electrode $\Rightarrow \Delta f \propto \Delta m$

Biological application: identify protein adsorption method

Detection methods

AFM: sharp tip at the end of a flexible cantilever vibrates over the sample. Interaction forces fluctuations \rightarrow topography/stiffness of the sample High lateral resolution (tip convolution \Rightarrow 10 nm objects) adequat for vizualising large biomolecules (Molecular Imaging, AZ, USA).

QCM: piezoelectric resonator disturbed by mass addition to its electrode. Resonance frequency and Q factor tracking (Q-Sense AB, Göteborg, Sweden)

High mass sensitivity BUT sensitive to external parameters (hydrostatic pressure, temperature)

Interactions of the two techniques ?

- QCM \rightarrow AFM: resolution loss ? Surface flatness ?
- AFM \rightarrow QCM: frequency stability ?

Interactions analysis

Finite Element Analysis of *static* displacement of QCM (AT cut quartz) (Modulef, INRIA, France)

In-plane displacement (0.1 pm)

Out-of-plane displacements (0.1 pm)

Extension to the dynamic case by multiplying displacement by ${\boldsymbol Q}$ factor

→ in-plane displacement smaller than AFM pixel size ($Q \simeq 3000 \Rightarrow 0.3$ nm) → surprisingly high out-of-plane displacement (1/10 in-plane displacement)

The QCM does not affect the AFM imaging The AFM cantilever motion can affect the QCM stability

Interactions analysis (2)

Large out-of-plane displacement is due to the finite size of the counter electrode (should be 0 for an infinite electrode)

Interpretation: standing wave pattern between the QCM and the flat cantilever holder.

Depending on the node/anti-node position, QCM parameters fluctuate

 \Rightarrow stability loss \Rightarrow sensitivity loss

This effect should **NOT** happen with STM (no tip holder)

Schematic of the experiment

Flow produced by peristatic pump (pushing and sucking liquid): required for solution exchanges.

Teflon liquid cell. Both electrical contacts with the QCM are on the dry side.

 \rightarrow replace passive Au substrate by active Au surface

Experimental setup

QCM is a potentially flat (2 nm_{pp} roughness of the quartz wafer) Ti/Au coated surface.

Open-bottom SPM: a lot of space to introduce additional hardware.

Results (AFM)

Human Plasma Fibrinogen adsorption pattern on the QCM surface: proteins are visible on the $1 \times 1 \ \mu m^2$ image as dots and lines between Au grains Horizontal stripes: pump noise degrades AFM image quality (only during flow for solution exchange)

250 ng/ml 25 μ g/ml 25 μ g/ml Zoom in (300 × 300 nm² image): sharper shapes compatible with HPF shape (\simeq 10 nm beads separated by 40 to 60 nm, connected by thin rods.)

Results (QCM)

Simultaneous QCM resonance frequency shift and damping $(D \doteq Q^{-1})$ monitoring (3 modes, 1-3-5 around 5-15-25 MHz respectively) Fundamental mode (5 MHz) too sensitive to environmental changes to be useful

Conclusion

Development of a potentially interesting characterization tool

Demonstration of the ability of the tool to study protein adsorption

Test QCM model hypothesis: the adorption in not uniform. Compare Δf_{QCM} with the mass estimated from AFM images ...

Envisionned applications: electrochemisty, biology ... new acoustic wave modes ...