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Quartz tuning fork

▶ the “quartz” in quartz watch
▶ the time reference is given by a tuning fork 1 2

vibrating at 32768 = 215 Hz ⇒ counter (binary
frequency divider) to reach 1 Hz

▶ piezoelectricity as an efficient way of
generating mechanical vibration under control
of an electrical signal

▶ acoustic signal: compact component since
wave velocity is shrunk by 105 with respect to
electromagnetic (10 km →10 cm)

▶ initially a single beam vibrating at a few kHz: many spurious modes + lower quality factor
▶ 1960: replace a single beam with a tuning fork (Seiko Quartz Astron at 8192 Hz)
▶ from an engineering perspective: tuning fork = electrical dipole with extremely high quality

factor
▶ from a physicist perspective: vibrating prongs made of a piezoelectric crystal

1W.E. Newell, Miniaturization of tuning forks, Science 161 (3848), 1320–1326 (1968)
2later an atomic transition from an atom in the Cs clock
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▶ Tuning fork fundamental mode frequency

f0 ≃ 0.1615
w

L2

√
E

ρ

with length L ≃ 3.36 mm and width w ≃ 436 µm,
Young modulus E ∈ 75 : 100 GPa (anisotropic) and
density ρ ≃ 2650 kg/m3 – N.A: f0 ∈ [33 : 38] kHz
L. Bates & al., Determination of the temperature dependence of Young’s modulus
for stainless steel using a tuning fork, J. Undergrad. Res. in Physics 18 (1), 9–13
(1999)
Note: J. Falter & al.. Calibration of quartz tuning fork spring constants ... (2014):
the length of the prong should be to the stress minimum > geometrical length

▶ high Q ≃ 70000 (drops to 7000 in air)

▶ Q is defined as the stored energy/energy
dissipated during each oscillation

▶ the time needed to release the stored energy
is Q/π oscillations or Q/(πf ) s @
f = 32768 Hz

▶ in an second order resonator circuit, the
width at half height of the resonance (real
part of admittance) is δf = f /Q

▶ low temperature coefficient

| | | | | | | | | | | | | | |
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APPLICATIONS:FEATURES:

30332 Esperanza, Rancho Santa Margarita, California 92688
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STANDARD SPECIFICATIONS:

• Watch frequency
• 32.768kHz standard frequency

• Real time clock
• Measuring instruments
• Clock source for communication or A/V equipment

OPTIONS & PART IDENTIFICATION: (Left blank if standard)

Revised: 06.29.10Visit www.abracon.com for Terms & Conditions of Sale 

OUTLINE DRAWING:
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PARAMETERS

    

ABRACON P/N: AB26T Series
   Standard frequency: 32.768kHz

   Frequency range: 30kHz to 200kHz
   Operating temperature: -10°C to + 60°C (see option)
   Storage temperature: -40°C to + 85°C
   Turn-over temperature: +25°C ± 5°C
   Frequency tolerance: ± 20 ppm max. for 32.768kHz (see option)

± 30 ppm max. for 30kHz ~ 200kHz (not including 32.768kHz)
Temperature Coefficient:

   Equivalent series resistance: 35 kΩ max. (32.768kHz)
35 kΩ ~ 50 k max. (30kHz ~ 200kHz)

   Shunt capacitance C0: 0.8pF to 1.7pF typ.
   Load capacitance CL: 12.5 pF typ. (see option)
   Motional capacitance C1: 1 ~ 4 fF typ. 
   Capacitance ratio: 425 ~ 800 typ. 
   Quality factor: 70,000 typ. (32.768kHz)
   Drive level: 1.0 µW max.
   Aging @ 25° C first year: ± 3 ppm max. (32.768kHz) and ± 5 ppm max. (others)

   Insulation resistance: 500 Mohms min. at 100Vdc ± 15V

-0.034 ± 0.006 ppm/ T²

6.2 x 02.1 mm

Ω

Pb RoHS
Compliant

Additional frequencies 
available*

* For additional frequencies
   please contact Abracon.

32.000kHz, 36.000kHz, 38.000kHz, 38.400kHz, 40.000kHz, 
60.000kHz, 65.536kHz, 76.800kHz, 96.000kHz, 100.000kHz

32.768kHz WATCH CRYSTAL, 6.2 x 02.1MM CYLINDER PACKAGE

E
B

Please specify load cap. 
in pF (ex. 6pF) 

AB26T- Frequency-  -

CL Option
0°C to + 70°C

-20°C to + 70°C

Temperature options

0.236 Min
6
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Quartz tuning fork characterization

We wish to characterize the tuning fork electrical transfer function Y (f ) by sweeping f and
monitoring the current (measured as voltage on a load resistor)

f
load

synthesizer

tuning
fork

Questions:

1. what is the frequency step df at which f must be swept ?

2. how long shall we wait between two steps of df

⇒ challenge: observe the tuning fork prong motion using a personnal computer sound card and a
commercial, off the shelf (COTS) webcam
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Sound card
▶ Many current sound cards will exhibit >48 kS/s sampling rate (usually 96 kS/s or 192 kS/s)
▶ Driving the 32768 Hz tuning fork with this signal is possible ...
▶ ... but COTS webcams exhibit much lower framerate – 25 or 30 fps
▶ Can we “freeze” the prong

motion during such long
(40-33 ms) exposures ?

▶ Yes if the tuning fork is only
illuminated when the prongs
are in the same position:
stroboscopy
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Stroboscopic setup
However, illuminating for a short duration (1/10th of the period is 3 µs or 300 kHz bandwidth) is
way beyond the capability of a sound card
⇒ dedicated hardware controlled by a stereo sound card.
▶ Pulse = convert a sine wave to a square wave and to a pulse
▶ Pulse = phase shifted copies of the same sine wave
▶ Phase shift = time delay = RC circuit
▶ sine → Schmitt trigger (square, 2) → RC delay → Schmitt trigger (square) → & with (2) →

pulse

&

Vcc

f+df

f

SA B C D

(oscilloscope)

right

audio

left

audio
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Hardware setup: the bias T

▶ a digital gate triggers around 1.5 V

▶ sound card output is 0-mean value

▶ offset the mean value without changing the AC spectral characteristics: bias T

DC

AC
AC+DC

Question: considering the resistors have been selected as 1 kΩ resistances so that the current in
the voltage divider bridge is DC/2 mA, how do we select the capacitor value so that the bias T
output is the sum of DC+AC around 32768 Hz ?

8 / 13



Image processing
Movies (.avi format) have been recorded for various f driving frequencies

1. Decompose each movie to a series of pictures (mplayer -vo jpeg movie.avi)

2. Select an area representative of the prong motion

3. Compute the displacement of this area as the
cross-correlation maximum position between the
first image and the second image
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4. Repeat for all images, cross-correlating the
Nth image with the first

5. Display the motion of the prong

6. Since the motion is only a few pixels, we use an
oversampling technique of fitting the correlation maximum and identifying the position of the
fit maximum

7. Repeat for each frequency
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Image processing

Movies (.avi format) have been recorded for various f driving frequencies

1. Decompose each movie to a series of pictures (mplayer -vo jpeg movie.avi)

2. Select an area representative of the prong motion

3. Compute the displacement of this area as the
cross-correlation maximum position between the
first image and the second image

4. Repeat for all images, cross-correlating the
Nth image with the first

5. Display the motion of the prong

6. Since the motion is only a few pixels, we use an
oversampling technique of fitting the correlation
maximum and identifying the position of the fit
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For more information ...
Tuning fork:
1. T. Hunkin & R. Garrod, Secret Life Of Machines: The Quartz Watch (1991), at

https://www.youtube.com/watch?v=nQ9_bOIj49s

2. M.A. Lombardi, The Evolution of Time Measurement, Part 2: Quartz Clocks, IEEE Instrumentation &
Measurement Magazine (Oct. 2011), pp.41–

3. J.-M Friedt, É. Carry, Introduction au diapason à quartz, Bull. de l’Union des Physiciens 879 1137–1146 (2005)
[in French]

4. J.-M Friedt, É. Carry, Introduction to the quartz tuning fork, American Journal of Physics, pp.415-422 (2007)

5. J.Marc, C. Canard, A. Vailly, V. Pichery, J.-M. Friedt, Le diapason à quartz comme capteur : utilisation de la
carte son de PC pour l’instrumentation, Bull. de l’Union des Physiciens 958, pp.1051–1073 (2013) [in French]

6. J.-M. Friedt, Mesure stroboscopique du champ de déplacement d’un diapason à quartz au moyen d’une carte
son et d’une webcam, Bull. de l’Union des Physiciens 999 (2017) [in French]

Stroboscopy:
1. N.S. Gingrich, Stroboscopic Aids in the Teaching of Physics, American Journal of Physics 5, 277 (1937)

2. S. Gupta & B. Jalali, Time stretch enhanced recording oscilloscope Appl. Phys. Lett. 94, 041105 (2009)

3. J.S. Baskin & A.H. Zewail, Freezing Atoms in Motion: Principles of Femtochemistry and Demonstration by
Laser Stroboscopy, J. Chem. Educ. 78 (6), p 737 (2001)
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Software for image processing example

GNU/Octave version

pkg l oad s i g n a l
f r e qu en c e =[32728 :32753 ] ; f i l m s=d i r ( ’./?????. avi’ ) ;
f o r n f i lm =1: l e n g t h ( f i l m s )

system ( ’rm -f ./* jpg’ ) ;
system ( [ ’mplayer -vo jpeg ./’ , f i l m s ( n f i lm ) . name ] ) ;
d=d i r ( ’./*. jpg’ ) ;
x=imread ( d (20) . name ) ;

% f i g u r e (1 ) ; imagesc ( x ) ;
x=x ( : , : , 1 ) ;
r e f e r e n c e=x (440 ,492 :600) ;
r e f e r e n c e=r e f e r e n c e−mean ( r e f e r e n c e ) ;
m=1;
f o r k=21:180

x=imread ( d ( k ) . name) ;
x=x ( : , : , 1 ) ;
mesure=x (440 ,492 :600 ) ;
mesure=mesure−mean ( mesure ) ;
xc=x c o r r ( r e f e r e n c e , mesure ) ;
[ a (m) , b ( n f i lm ,m) ]=max( xc ) ;
[ u , v ]= p o l y f i t ( [ b ( n f i lm ,m)−2:b ( n f i lm ,m) +2] , xc ( [ b ( n f i lm ,m)−2:b ( n f i lm ,m) +2]) ,2 ) ;
x i=l i n s p a c e ( b ( n f i lm ,m)−2,b ( n f i lm ,m) +2 ,1024) ;
y i=p o l y v a l ( u , x i ) ;
[ aa , bb]=max( y i ) ; s o l u t i o n (m, n f i lm )=x i ( bb ) ;
m=m+1;

end
% f i g u r e (2 ) ; p l o t ( s o l u t i o n−mean ( s o l u t i o n ) ) ; ho ld on

amp l i t ude ( n f i lm )=s td ( s o l u t i o n ( : , n f i lm ) )
end

Movies at http://jmfriedt.org/TP_diapason.tar.gz
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