Quartz tuning fork stroboscopic displacement field measurement

J.-M Friedt

FEMTO-ST/Time & Frequency department

jmfriedt@femto-st.fr

slides and references at jmfriedt.free.fr

September 2, 2022

Quartz tuning fork

- the "quartz" in quartz watch
- ▶ the time reference is given by a tuning fork ^{1 2} vibrating at $32768 = 2^{15}$ Hz \Rightarrow counter (binary frequency divider) to reach 1 Hz
- piezoelectricity as an efficient way of generating mechanical vibration under control of an electrical signal
- acoustic signal: compact component since wave velocity is shrunk by 10⁵ with respect to electromagnetic (10 km →10 cm)
- ▶ initially a single beam vibrating at a few kHz: many spurious modes + lower quality factor
- ▶ 1960: replace a single beam with a tuning fork (Seiko Quartz Astron at 8192 Hz)
- from an engineering perspective: tuning fork = electrical dipole with extremely high quality factor
- from a physicist perspective: vibrating prongs made of a piezoelectric crystal ¹W.E. Newell, *Miniaturization of tuning forks*, Science **161** (3848), 1320–1326 (1968) ²later an atomic transition from an atom in the Cs clock

Tuning fork fundamental mode_frequency

$$f_0 \simeq 0.1615 \frac{w}{L^2} \sqrt{\frac{E}{
ho}}$$

with length $L\simeq 3.36$ mm and width $w\simeq 436~\mu\text{m},$ Young modulus $E\in 75:100$ GPa (anisotropic) and density $\rho\simeq 2650~\text{kg/m}^3$ – N.A: $f_0\in[33:38]$ kHz L. Bates & al., Determination of the temperature dependence of Young's modulus for stainless steel using a tuning fork, J. Undergrad. Res. in Physics 18 (1), 9–13 (1999)

Note: J. Falter & al.. Calibration of quartz tuning fork spring constants ... (2014): the length of the prong should be to the stress minimum > geometrical length

- high $Q \simeq 70000$ (drops to 7000 in air)
- Q is defined as the stored energy/energy dissipated during each oscillation
- the time needed to release the stored energy is Q/π oscillations or Q/(πf) s @ f = 32768 Hz
- in an second order resonator circuit, the width at half height of the resonance (real part of admittance) is $\delta f = f/Q$
- Iow temperature coefficient

32.768kHz WATCH CRYSTAL, 6.2 x 02.1MM CYLINDER PACKAGE

AB26T

RoHS Compliant

AB26T

itional frequencies contact Abracon

6.2 x #2.1 mm

Watch frequency

Watch requency
 32.768kHz standard frequency

Real time clock Measuring instruments Clock source for communication or A/V equipment

STANDARD SPECIFICATIONS:

ABRACON P/N:	AB26T Series	
Standard frequency:	32.768kHz	
Additional frequencies available*	32.000kHz, 36.000kHz, 38.000kHz, 38.400kHz, 40.000kHz, 60.000kHz, 65.536kHz, 76.800kHz, 96.000kHz, 100.000kHz	* For add please
Frequency range:	30kHz to 200kHz	1
Operating temperature:	-10°C to + 60°C (see option)	1
Storage temperature:	-40°C to + 85°C	1
Turn-over temperature:	+25°C ± 5°C	
Frequency tolerance:	± 20 ppm max. for 32.768kHz (see option) ± 30 ppm max. for 30kHz ~ 200kHz (not including 32.768kHz)	
Temperature Coefficient:	-0.034 ± 0.006 ppm/ T ²	1
Equivalent series resistance:	35 kΩ max. (32.768kHz) 35 kΩ ~ 50 kΩ max. (30kHz ~ 200kHz)	
Shunt capacitance C0:	0.8pF to 1.7pF typ.	
Load capacitance CL:	12.5 pF typ. (see option)	
Motional capacitance C1:	1 ~ 4 fF typ.	1
Capacitance ratio:	425 ~ 800 typ.	1
Quality factor:	70,000 typ. (32.768kHz)	1
Drive level:	1.0 µW max.	1
Aging @ 25° C first year:	± 3 ppm max. (32.768kHz) and ± 5 ppm max. (others)	1
Insulation resistance:	500 Mohms min. at 100Vdc ± 15V	1

Quartz tuning fork characterization

We wish to characterize the tuning fork electrical transfer function Y(f) by sweeping f and monitoring the current (measured as voltage on a load resistor)

Questions:

- 1. what is the frequency step df at which f must be swept ?
- 2. how long shall we wait between two steps of df

 \Rightarrow challenge: observe the tuning fork prong motion using a personnal computer sound card and a commercial, off the shelf (COTS) webcam

Sound card

- ▶ Many current sound cards will exhibit >48 kS/s sampling rate (usually 96 kS/s or 192 kS/s)
- Driving the 32768 Hz tuning fork with this signal is possible ...
- ... but COTS webcams exhibit much lower framerate 25 or 30 fps
- Can we "freeze" the prong motion during such long (40-33 ms) exposures ?
- Yes if the tuning fork is only illuminated when the prongs are in the same position: stroboscopy

Stroboscopic setup

However, illuminating for a short duration (1/10th of the period is 3 μ s or 300 kHz bandwidth) is way beyond the capability of a sound card

- \Rightarrow dedicated hardware controlled by a stereo sound card.
- Pulse = convert a sine wave to a square wave and to a pulse
- Pulse = phase shifted copies of the same sine wave
- Phase shift = time delay = RC circuit
- ▶ sine → Schmitt trigger (square, 2) → RC delay → Schmitt trigger (square) → & with (2) → pulse

Stroboscopic setup

However, illuminating for a short duration (1/10th of the period is 3 μs or 300 kHz bandwidth) is way beyond the capability of a sound card

- \Rightarrow dedicated hardware controlled by a stereo sound card.
- Pulse = convert a sine wave to a square wave and to a pulse
- Pulse = phase shifted copies of the same sine wave
- Phase shift = time delay = RC circuit
- ▶ sine → Schmitt trigger (square, 2) → RC delay → Schmitt trigger (square) → & with (2) → pulse

Hardware setup: the bias T

- a digital gate triggers around 1.5 V
- sound card output is 0-mean value
- offset the mean value without changing the AC spectral characteristics: bias T

Question: considering the resistors have been selected as 1 k Ω resistances so that the current in the voltage divider bridge is DC/2 mA, how do we select the capacitor value so that the bias T output is the sum of DC+AC around 32768 Hz ?

Image processing

Movies (.avi format) have been recorded for various f driving frequencies

- 1. Decompose each movie to a series of pictures (mplayer -vo jpeg movie.avi)
- 2. Select an area representative of the prong motion
- 3. Compute the displacement of this area as the cross-correlation maximum position between the first image and the second image
 - 60 80 200 600 400 800 මී 20 40 03 200 600 800 nosition (nixel) 200 mesure 150 modele 100 50 200 400 600 800
- 4. Repeat for all images, cross-correlating the *N*th image with the first
- 5. Display the motion of the prong
- 6. Since the motion is only a few pixels, we use an oversampling technique of fitting the correlation maximum and identifying the position of the fit maximum

20

40

7. Repeat for each frequency

Image processing

Movies (.avi format) have been recorded for various f driving frequencies

- 1. Decompose each movie to a series of pictures (mplayer -vo jpeg movie.avi)
- 2. Select an area representative of the prong motic
- Compute the displacement of this area as the cross-correlation maximum position between the first image and the second image
- 4. Repeat for all images, cross-correlating the *N*th image with the first
- 5. Display the motion of the prong

- 6. Since the motion is only a few pixels, we use an oversampling technique of fitting the correlation maximum and identifying the position of the fit maximum
- 7. Repeat for each frequency

Image processing

Movies (.avi format) have been recorded for various f driving frequencies

- 1. Decompose each movie to a series of pictures (mplayer -vo jpeg movie.avi)
- 2. Select an area representative of the prong motion
- 3. Compute the displacement of this area as the cross-correlation maximum position between the first image and the second image
- 4. Repeat for all images, cross-correlating the *N*th image with the first
- 5. Display the motion of the prong
- 6. Since the motion is only a few pixels, we use an oversampling technique of fitting the correlation maximum and identifying the position of the fit maximum
- 7. Repeat for each frequency

For more information ...

Tuning fork:

- T. Hunkin & R. Garrod, Secret Life Of Machines: The Quartz Watch (1991), at https://www.youtube.com/watch?v=nQ9_b01j49s
- 2. M.A. Lombardi, *The Evolution of Time Measurement, Part 2: Quartz Clocks*, IEEE Instrumentation & Measurement Magazine (Oct. 2011), pp.41–
- 3. J.-M Friedt, É. Carry, Introduction au diapason à quartz, Bull. de l'Union des Physiciens 879 1137–1146 (2005) [in French]
- 4. J.-M Friedt, É. Carry, Introduction to the quartz tuning fork, American Journal of Physics, pp.415-422 (2007)
- J.Marc, C. Canard, A. Vailly, V. Pichery, J.-M. Friedt, Le diapason à quartz comme capteur : utilisation de la carte son de PC pour l'instrumentation, Bull. de l'Union des Physiciens 958, pp.1051–1073 (2013) [in French]
- J.-M. Friedt, Mesure stroboscopique du champ de déplacement d'un diapason à quartz au moyen d'une carte son et d'une webcam, Bull. de l'Union des Physiciens 999 (2017) [in French]
 Stroboscopy:
- 1. N.S. Gingrich, Stroboscopic Aids in the Teaching of Physics, American Journal of Physics 5, 277 (1937)
- 2. S. Gupta & B. Jalali, Time stretch enhanced recording oscilloscope Appl. Phys. Lett. 94, 041105 (2009)
- 3. J.S. Baskin & A.H. Zewail, Freezing Atoms in Motion: Principles of Femtochemistry and Demonstration by Laser Stroboscopy, J. Chem. Educ. **78** (6), p 737 (2001)

Software for image processing example

$\mathsf{GNU}/\mathsf{Octave}$ version

```
pkg load signal
frequence = [32728:32753]; films=dir('./?????.avi');
for nfilm =1:length(films)
  system('rm -f ./*ipg');
  system(['mplayer -vo jpeg ./', films(nfilm).name]);
  d=dir('./*.jpg');
  x=imread(d(20).name);
% figure(1); imagesc(x);
  x = x(: . : .1):
  reference = x(440, 492; 600):
  reference=reference-mean(reference);
  m = 1
  for k = 21.180
    x=imread(d(k).name);
    x = x(:...1):
    mesure = x(440.492;600):
    mesure=mesure-mean(mesure);
    xc=xcorr(reference, mesure);
    [a(m), b(nfilm, m)] = max(xc);
    [u, v] = polyfit ([b(nfilm, m)-2:b(nfilm, m)+2], xc([b(nfilm, m)-2:b(nfilm, m)+2]), 2);
    x_{i=1} inspace (b(nfilm.m) - 2.b(nfilm.m) + 2.1024):
    v_i = polvval(u, x_i):
    [aa, bb]=max(vi): solution (m, nfilm)=xi(bb):
    m=m+1:
  and
  figure (2): plot(solution - mean(solution)): hold on
  amplitude (nfilm)=std (solution (:, nfilm))
end
```

Movies at http://jmfriedt.org/TP_diapason.tar.gz