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A large number of simultaneous frequency and amplitude data from an electronic

chaotic circuit (Chua’s circuit) have been obtained. These acquisitions are validated by

plotting the bifurcation diagrams of the experimental data versus the bifurcation parame-

ter. We introduce a topological parallel between the Colpitts oscillator and Chua’s circuit,

and look for similar behavior of the frequency fluctuations using the Allan deviation.
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1. Introduction

Chua’s circuit is a non-linear electronic circuit which exhibits chaotic behavior for high

enough values of one of its parameters, the inductor’s value in our case. We have studied

the characteristics of the the frequency and amplitude fluctuations of the oscillator in

the periodic and chaotic regime (while the signal is still pseudo-periodic, i.e. before the

bifurcation towards the double-scroll regime). The amplitude and period of successive

oscillations were measured and analyzed by plotting the return maps, the transfer func-

tions and the bifurcation diagrams. The type of fluctuations were characterized using

the Allan deviation, and compared to the classical results obtained for a quartz resonator

based Colpitts oscillator.

2. Motivation of this study

Our aim is to be able to characterize frequency instabilities in oscillators [Eckert et al.,

1996]. We have thus chosen to analyse Chua’s chaotic circuit as an example of a highly un-

stable oscillator. The conclusions can be tentatively extended to more classical oscillators

such as the Colpitts oscillator used in conjunction with a quartz resonator.

Quartz oscillators show a well known phase (and hence frequency) fluctuation behavior

observed to follow a series of power law functions. The power spectral density of relative

frequency fluctuations is thus Sy(F ) = hαF α, where F is the Fourier frequency, y = ∆ν
ν0

the

relative frequency shift with respect to the carrier of mean frequency ν0 and the integer

α varies from -2 to +2. The power spectral density of phase fluctuations is Sϕ(F ) =

ν0

F 2 Sy(F ). Hence a slope equal to -3 in Sϕ(F ) corresponds to 1/F noise in Sy(F ). This

type of noise is still not well understood. This is one reason for attempting to detect it

in a Chua’s oscillator. Instead of power spectra we will use the characterization of time

dynamics in terms of Allan variance which is defined as σ2
y(τ) = 1

2
〈(yk+1(τ) − yk(τ))2〉,

with yk(τ) the kth average of samples y over the integration time τ . The coefficient y is

obtained by computing the average yτ = 〈xn=[t;t+τ ]〉, xt being our time series indexed by t

and 〈•〉 an average over the data sets. For a stationnary fluctuation the power spectrum

and Allan variance are related. The graph of the variance against the sampling time also

obeys power laws σ2
τ (y) = τ−m, with m = α + 1 (if −2 ≤ α ≤ 1) and m = 2 (if α ≥ 1).
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Therefore the 1/F noise in Sy(F ) corresponds to a flicker floor m = 0. Allan variance

is often used for describing the stability of oscillators since it converges for the kinds of

noises observed experimentally, as opposed to the classical variance which does not always

converge to a finite value [Allan et al., 1997; Audoin et al., 2001].

A parallel between the schematics of the Colpitts oscillator and the canonical Chua’s

circuit [Sarafian and Kaplan, 1995; Kennedy, 1995] can be displayed and analyzed in

order to justify our extension of the results to quartz oscillators (Fig. 1). The circuit

we actually studied is the usual Chua’s circuit in which L and R2 are exchanged [Chua

and Lin, 1990]. The non-linear differential equations used to predict the behavior of the

circuit lead to chaotic oscillations after a series of bifurcations. Here we have studied

simultaneously the evolution of the instantaneous amplitude and instantaneous frequency

with the value L of the inductor parameter.

3. Experimental setup

A preliminary study shows a large variation in the shape of the power spectra (figure 2)

observed on Chua’s circuit for various kinds of attractors (from periodic to chaotic behav-

iors of the circuit with varying values of the bifurcation parameter). We will here attempt

to precisely characterize the various fluctuation regimes depending on the inductor value

by mean of signal processing tools including the Allan deviation and a display of return

maps.

For the realization of Chua’s circuit, we used a simulated inductor described by Weldon

[Weldon, 1990]: it is less bulky and its value is defined by a variable resistor and thus can

be computer controlled thanks to the availability of computer controlled variable resistors.

The non-linear negative resistor is a negative impedance converter (NIC) [Horowitz and

Hill, 1989] based on an operational-amplifier [Weldon, 1990]. The details of the electronic

circuits we built are given in Fig. 4.

An external circuit is used for detecting single periods and measuring their duration

thanks to a comparator and a frequency counter with an internal clock at 14.31818 MHz.

The amplitude is measured simultaneously by using a peak holder circuit and a 12 bit

analog to digital converter. The trigger signal for the frequency measurement and the
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amplitude signal can be seen on Fig. 6. All consecutive periods can be measured for

signals of frequency less than 1kHz.

4. Statistical analysis and bifurcation diagrams

All our statistical analysis have been limited to regions of the L parameter for which

the signal is observed to be periodic or pseudo-periodic with a constant mean value (as

opposed to smaller oscillations overlapping large scale fluctuations such as the signals

observed in the double scroll oscillator). This limitation is required by our data acquisition

electronic circuit as well as by our intuitive definition of frequency and amplitude of

pseudo-periodic signals.

We plotted the values taken by the amplitude and frequency time series against the

value of the L parameter in Fig. 7 and 8. One can observe the first bifurcation, followed

by the chaotic behavior [Feigenbaum, 1978; Feigenbaum, 1979].

We also display the Allan deviation σy(τ): a -0.5 slope in the Allan deviation indicates

a white frequency noise, while a -1 slope indicates α = +1 (flicker phase fluctuations) or

α = +2 (white phase noise) frequency fluctuation spectra (Fig. 8).

We then display the evolution of various parameters which are characteristic of the

dynamic of Chua’s circuit for several chosen values of the L parameter: the frequency

return maps (Fig. 9), the transfer functions (Fig. 10) and the amplitude return maps

(Fig. 11). The return map is defined by displaying fn+1 versus fn when given a time series

(fn,n∈[1..N ]). The amplitude and frequency measured are similar to their usual definition

when the signal is periodic, and is intuitively extended to respectively the maximum of

the voltage over each period and the inverse of the duration between two crossings of

a reference level, chosen here to be 0 V (ground level being the average value of the

voltages in the periodic and quasi-periodic regimes). Figure 6 illustrates these definitions

by displaying both the signal being analyzed (bottom signal) and the frequency (left)

and amplitude (right) measurements (top waveforms). We have selected values of the

parameter for which we can see a periodic signal followed by signals characteristic of each

further bifurcation, until obtaining a fully developed (Rössler like) chaotic attractor. The

chosen values of L are the following: 13.167 mH for a periodic signal, 13.497 mH and

4



13.926 mH for signals after the first bifurcation, 14.207 mH for a signal after the second

bifurcation, and finally 14.058 mH and 14.322 mH for fully developed chaos (Rössler-like

attractor).

Figure 10 displays the evolution of the transfer functions with the parameter L. Absi-

cissa are here given in duration units, rather than in the usual frequency units as classically

used. The splitting of the fundamental spot (top-left) is clearly identified. A major dif-

ference between the return maps of the frequency data (Fig. 9) and the return maps of

the amplitude data (Fig. 11) can be observed: the return maps of the frequency data

are always functions (fn defines one fn+1 only) while return maps of the amplitude data

are no longer functions for large enough values of the parameter L. By adding additional

dimensions, i.e. plotting an as a function of an+1 and an+2 (an,n∈[1..N ]) being the ampli-

tude data), the relation becomes a function again by unwrapping the return map, and

the prediction is again possible (Fig. 12).

5. Conclusion

After validating our data acquisition electronics and software by plotting the bifurcation

diagrams, we have shown the experimental return maps and transfer functions of Chua’s

circuit. We have then analyzed the frequency fluctuations using the Allan deviation.

The slope of the Allan deviation was shown to be equal to -0.5 over most of the bi-

furcation parameter range, meaning the frequency fluctuations are mainly characterized

by white frequency noise. The same kind of behavior is observed in quartz crystal based

oscillators far enough from the carrier (100 kHz to 1 MHz from the 11.0592 MHz carrier

for a Colpitts oscillator).
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Figure captions

Fig. 1. Comparison of the Colpitts oscillator often used for using a quartz crystal res-

onator in an oscillator configuration, and the canonical Chua circuit.

Fig. 2. Evolution of the power spectra around the oscillation frequency of Chua’s circuit.

A precise analysis is needed to describe the slope of the spectra depending on the

oscillation regime.

Fig. 3. Schematic of Chua’s circuit we used for our data acquisitions. The parameter is

the inductor’s value L. Other components value are C2 = 1847 nF, C1 = 20.3 nF,

inductor’s internal resistance 3.3 Ω. R2 is a 10 kΩ variable resistor. The variables

measured are the frequency and amplitude of the voltage at C2.

Fig. 4. Details of the electronic circuits used in these experiments. The nonlinear ele-

ment is described in the left schematic, the simulated inductance is depicted in the

middle schematic and includes a computer controlled variable resistance, P , whose

detailed schematic is presented on the right. The DS1669 computer controlled linear

potentiometers are powered between -1.44 V and 5.28 V. The value of the simulated

inductance is L = 0.1× 10−6 × 3.3× P H

Fig. 5. Experimental setup used for measuring the frequency and amplitude of successive

oscillations of Chua’s circuit. A buffer was included so as to minimize the disturbances

on the chaotic circuit due to the measurement apparatus. The diode used for the

amplitude detection is a germanium diode in order to minimize the voltage drop.

The frequency counter and the analog to digital converter (12 bits) are custom built

PC-104 cards: this allows fast transfer time and precise control of the timings, allowing

all successive periods to me measured during a given data acquisition time lapse.
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Fig. 6. Trigger signal for the frequency measurement (left, top curve) and amplitude

measurement analog signal (right, top curve) output from the electronic circuit con-

nected to Chua’s circuit. On both images, the bottom curve is the signal observed at

the output of Chua’s circuit (chaotic regime). The amplitude signal (right) is read by

a 12 bit analog to digital converter while a custom made frequency counter samples

the pulse (left). Both values are read in less than 500 µs, half of the duration of a

period of Chua’s circuit, and allows the measurement of all successive periods.

Fig. 7. Bifurcation diagram for the amplitude data.

Fig. 8. Slope of Allan deviation (top) and bifurcation diagram (bottom) for the frequency

data.

Fig. 9. Evolution of the return maps (an v.s. fn) for the period data with the L param-

eter.

Fig. 10. Evolution of the transfer functions (the abscissa are not here the frequency as

usually used when displaying transfer functions, but the period, which is more relevant

in this study) with the parameter L.

Fig. 11. Evolution of the return maps for the amplitude data with the L parameter.

Notice that the relation between an and an+1 (an being the amplitude data) is no

longer a function for a value large enough of L.

Fig. 12. 3D plots of the experimental amplitude return map at 1 and 2 steps in the

chaotic regime of the circuit. L = 14.415 mH. These plots can be compared with fig.

11: adding a third dimension unwraps the return map.
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