
Discrete time real signal processing, introduction using GNU
Radio Companion

J.-M Friedt, November 7, 2018

Many radiofrequency signals acquired using basic hardware setups are real (as opposed to
complex) signals. The property that the Fourier transform of real signals is even make their
processing challenging, with risks of injecting in the band being analyzed around baseband
some unwanted spectral components. We will analyze a classical processing step – the Hilbert
transform – which, based on a real signal, generates an imaginary component designed to
eliminate the negative part of the spectrum and hence ease the processing of the acquired
samples.

1 Introduction

A radiofrequency signal has been transposed in
frequency, by the emitter, in order to allow shar-
ing the electromagnetic spectrum resource amongst
multiple users, and possibly to efficiently emit the
signal using an antenna whose dimensions are com-
patible with the object in which the emitter is em-
bedded – as a reminder, the characteristic dimen-
sions of an antenna is the half wavelength λ/2, with
λ = 300/f when the signal is emitted at f MHz.
Upon reception, the signal must be moved back from
its radiofrequency band – around the carrier fre-
quency – to baseband centered on 0 Hz to be pro-

RF LO

?
message

Figure 1: Transmitting a message over a radiofrequency
carrier aims at sharing the spectrum between multiple speak-
ers and make the antenna dimensions compatible with the
envisioned application. However, the frequency of the re-
ceiver local oscillator LO is not synchronozied with that of
the emitter: various strategies for locking the receiver on
the emitter are needed (demodulation) in order to decode
the message on the receiver side.

cessed (Fig. 1). A simple way of frequency transposition is to multiply in the time domain: a signal
s(t) = exp(jωt) is brought within the analysis bandwidth of the receiver sampling at fs if mixing with
a local oscillator of angular frequency ωLO following s(t) · exp(−jωLOt) = exp(j(ω − ωLO)t) meets the
condition |ω − ωLO| ≤ π · fs. Once this frequency transposition has been achieved, the analog to digital
conversion provides a datastream that can be once more frequency transposed, digitally this time, using
a new multiplication with exp(jω′LOt) using this time a discretized time t synthesized with 1/fs steps,
or in Matlab syntax t=[0:length(s)-1]/fs;

So far we have considered an ideal case, in which signals are complex, make the spectral analysis easier
since exp(jωt) only exhibits a single spectral component at ω. However, an antenna collects a voltage,
which is a real signal, and a radiofrequency synthesizer generates a voltage, a real valued quantity as well.
A real signal exhibits two spectral components at +ω and −ω since cos(ωt) = 1

2 (exp(jωt) + exp(−jωt)).
Even without going through a mixer for frequency transposition 1, connecting an antenna to a sound
card for example allows for sampling a voltage, again a real quantity. The concept of an imaginary
part is generated by introducing a second component in quadrature, following the notation exp(jx) =
cos(x) + j sin(x) which indeed exhibits a real part (cos) and an imaginary part (sin) in quadrature
(cos(x) = sin(x + π/2)). Many receivers only measure a voltage, a not the two quadrature components
as provided by an I/Q detector. We have mentioned using a sound card as a Very Low Frequency (VLF
[1]) receiver, but such a condition is also met in case of seismic measurements or RADAR measurements
(aerial or ground penetrating [2]), or any receiver using a single mixer for frequency transposition, or
actually directly sampling the radiofrequency band.

The issue with sampling a real-valued signal is that the imaginary part of the spectrum exhibits a
magnitude equal to that of the real part (Fig. 2). All the spectral components visible in the positive
frequency part of the spectrum are found on the negative part as well. Such an even spectrum becomes
an issue when the digital signal processing on the real datastream aims at shifting the frequency – using
digital multiplication of the signal – towards a lower frequency band. Indeed, during this operation, the
whole spectrum is shifted along the abscissa axis, due to the periodicity of the spectrum of the discrete-

1multiplying in the time domain yields an addition in the frequency domain, since exp(jω1t) × exp(jω2t) = exp(j(ω1 +
ω2)t)

1



Figure 2: Impact of frequency transposition of a real valued signal: right, transposing a 3 kHz signal
sampled at 32 kHz keeps the negative component of the signal in the [-16:0] kHz range, no aliasing
is observed and filtering the negative frequency spectral component is easy. Left: a 12 kHz signal,
meeting the sampling theorem, exhibits a negative frequency spectral component shifted to the positive
frequency band due to the periodicity hypothesis of the spectrum of the discrete-time signal, since
2 × (−12) kHz< −32/2 kHz. This positive frequency spectral component might reach the 0-frequency
or at least the baseband, introducing noise during the baseband signal processing.

time signal: any signal reaching below −fs/2 is brought to the other side of the spectrum at +fs/2 and
reciprocally: this effect is named aliasing, which can be used efficiently when the spectral components
are well understood and controlled, but which will he be considered as a nuisance.

2 Impact of the Hilbert transform in the frequency domain

We have seen that a periodic real signal expressed as cos(ωt) can be written as the sum of two com-
plex exponentials exp(jωt) = cos(ωt) + j sin(ωt) as can be easily demonstrated by remembering that
sin(−ωt) = − sin(ωt): cos(ωt) = 1

2 (exp(jωt) + exp(−jωt)), demonstrating that indeed a real periodic
signal exhibits two spectral components located at +ω and −ω. Furthermore, the expression of exp(jωt)
which only exhibits a single spectral component at +ω leads us towards the path to be followed, at
a single given frequency, to eliminate the negative spectral component: add an imaginary component
to the signal in quadrature to the real part. Due to the linearity of the Fourier transform, any signal
can be decomposed as a sum of various spectral components, and this operation can be performed on
each one of the spectral components, hence generalizing the concept to any real signal acquired. This
mathematical operation aiming at adding an imaginary part designed to cancel the negative frequency
spectral components is called the Hilbert transform.

Reading the source code of the implementation of hilbert.m in the Signal Processing Toolbox of
GNU/Octave shows that practically, no identification of the quadrature components of the initial sig-
nal are identified. The Fourier transform of the real valued signal is computed, its negative frequency
components defined as null, and the inverse Fourier transform of the resulting dataset is computed,
hence generating by definition an imaginary component in quadrature with the real component as shown
earlier: f=fft(f);f=[f(1,:); 2*f(2:(N+1)/2,:); zeros((N-1)/2,W)]; f=ifft(f);. On the oppo-
site, GNU Radio uses in github.com/gnuradio/gnuradio/blob/master/gr-filter/lib/hilbert_fc_

impl.cc an implementation of the Hilbert transform as a Finite Impulse Response (FIR) filter follow-
ing the methodology described for example in [3], since the coefficients of the filter are defined by
firdes::hilbert(d ntaps, window, beta);. We indeed find in github.com/gnuradio/gnuradio/

blob/master/gr-filter/lib/firdes.cc the filter used to approximate the impulse response h(t) ∝ 1/t
since float x = 1/(float)i; with i the index of each element in the filter. The details of the band
pass filter allowing to get rid of the unwanted impact of the finite bandwidth of the filter associated with
the number of coefficients are described in details in [4, section3.37, pp.168–177].

These concepts are investigated using GNU Radio (Fig. 3) by analyzing the spectrum of the signal

2

github.com/gnuradio/gnuradio/blob/master/gr-filter/lib/hilbert_fc_impl.cc
github.com/gnuradio/gnuradio/blob/master/gr-filter/lib/hilbert_fc_impl.cc
github.com/gnuradio/gnuradio/blob/master/gr-filter/lib/firdes.cc
github.com/gnuradio/gnuradio/blob/master/gr-filter/lib/firdes.cc


Figure 3: Impact of the Hilbert transform on a signal which is frequency transposed and decimated,
inducing with the second operation a narrower analysis bandwidth and increasing the risks of aliasing.

before and after frequency transposition and decimation in order to zoom in the frequency range of
interest around baseband and get rid of the high frequency components of the spectrum which are no
longer of interest, and this with or without Hilbert transform (Fig. 4). We observe that the parasitic
spectral component has been eliminated in the latter case.

3 Impact of the Hilbert transform in the time domain

The Hilbert transform is used during RADAR signal processing for extracting the envelope by computing
its magnitude (Fig. 5). Indeed, while the signal A(t)·cos(ωt) exhibits a periodic components with angular
frequency ω, adding the imaginary part jA(t)·sin(ωt) produces A(t)·(cos(ωt)+j sin(ωt)) = A(t) exp(jωt)
whos modulus is |A(t)| since | exp(jωt)| = 1 ∀t. Similarly, the phase of the signal thus computed
represents the delay of the signal.

As in most cases when performing digital signal processing, removing the mean value of the real signal
is mandatory prior to applying the Hilbert transform.

4 Transposition and décimation, and the need for filtering

We have just discussed decimating the data flow. In a radiofrequency digital signal processing chain, the
amount of information can only decrease but never increase by being created along the chain. We start
by sampling the signal over a wide bandwidth including all the spectral components of interest, and then
demodulate to extract the information content, and finally analyze the message payload at baseband to
generate letters (bits), words (bytes), and sentences (checksum and error correcting codes) ... each of
these steps requiring a narrower bandwidth.

The spectrum of a signal sampled at fs spans from −fs/2 to +fs/2. On the other hand, the processor
must process data at a rate of fs samples/second. If fs is large, only basic operations can be applied
to the datastream without risking loosing samples, due to the finite computational processing power.
However, shortly after the first processing steps (frequency transposition and filtering, as will be seen
below), the spectrum has become too wide and part of its spectral components are no longer needed.
How can we keep only part of the spectrum ? In the time domain, by only keeping one in N samples.
Doing so – decimating the datastream – we reduce the datarate and hence the number of samples to be
processed every second: for a given computational power, we can address more complex operations (e.g.
FM demodulation, Costas loop). The counterpart in the frequency domain is to consider a spectrum
spanning from −fs/(2N) to +fs/(2N): we only focus on the central part of the spectrum and get rid of
the parts ranging from fs/(2N) to fs/2.

However, what happens to the spectral components included in the band ranging from fs/(2N) to fs/2
during the decimation step ? It is brought to baseband [−fs/(2N),+fs/(2N)] due to the aliasing effect.
If we do not want to benefit from this effect on purpose, we must remember to filter out the initial signal
prior to decimating, with a filter cutoff frequency around fs/(2N) (Fig. 6). Since this filter is centered on

3



Figure 4: Top-left the real signal, and bottom-left the signal after transposition and decimation, inducing
an unwanted spectral component in the righmost part of the spectrum. Indeed, the spectral component
at -1200 Hz (frequency of the generated signal) is transposed to -2400 Hz by the Xlating FIR Filter, and
then the decimation by a factor of 8 reduces the frequency range from -2000 to 2000 Hz, bringing the
-2400 Hz spectral component to +1600 Hz by adding an integer number of sampling rates (spectrum
periodicity assumption inducing aliasing). Top-right: the Hilbert transform was applied to the real
signal, eliminating the negative frequency spectral component, which is hence no longer observed in the
investigated band following the transposition and decimation (bottom-right).

0 Hz, it is a low-pass filter, which will automatically cut negative frequency components below −fs/(2N).
Using GNU/Octave, decimation is achieved by keeping one in N samples using the notation x(1:N:end),
while filtering is achieved by applying the weighting coefficients b of a low pass filter (filter(b,1,x);)
identified as b=firls(M,[0 fs/2/N fs/2/N*1.1 fs/2]*2/fs,[1 1 0 0]);. We leave as an exercise
to the reader the detailed understanding of this filter definition which considers a transition width of
about 10% of the sampling frequency, with a number M of coefficients selected to be around a few tens.
The spectral resolution of a Fourier transform computed on M samples being fs/M , we must select
M large enough to be able to resolve the transition from fs/(2M) to fs/(2M) × 1.1 while keeping the
computational load reasonable. The result is the elimination of the spectral component aliased during
decimation, which might otherwise have crept into baseband if we had not been careful (Fig. 7).

5 From simulation to real signals

5.1 PlutoSDR for listening to 8 broadcast FM stations

We conclude this overview of GNU Radio Companion and discrete time signal processing by replacing
the synthetic signal source with “real” signals. Rather than again using a DVB-T receiver used as general

4



0 200 400 600 800 1000
0

10

20

30

40

50

60

frequency (a.u.)

|F
o
u
ri
e
r 

tr
a
n
s
fo

rm
| 
(a

.u
.)

rand(1001,1)

hilbert(rand(1001,1))

0 500 1000 1500 2000
-3

-2

-1

0

1

2

3

time (a.u.)

s
ig

n
a

l 
(a

.u
.)

sin(t).*(1.2+sin(.05*t))
abs(hilbert(sin(t).*(1.2+sin(.05*t))))

Figure 5: Using GNU/Octave, the hilbert.m fonction performs the same operation as depicted previ-
ously, eliminating the negative frequency component of the spectrum of the signal (left) or allowing for
the extraction of the envelope by removing the carrier (right).

Figure 6: Signal processing chain for illustrating the impact of filtering on the decimation result. Notice
that the decimation on the top chart uses a low-pass filter defined through its taps whose definition is
given as a comment under the associated variable block, while the bottom chart implements the same
operation without filtering (taps=1 meaning that yn = xn or an output equal to the input).

purpose Software Defined Radio (SDR) source, we demonstrate here receiving multiple broadcast FM
stations simultaneously (Fig. 8) by processing datastreams generated by Analg Devices’ PlutoSDR
(85 euros from Mouser, reference 584-ADALM-PLUTO).

Despite having already described such an application in [5], we use the opportunity of this new sub-
100 euro SDR platform to broaden our horizons to a wider bandwidth. Indeed, the Pluto provides a
10 MHz bandwidth (even 50 MHz when configuring the receiver to the higher grade model AD9364, even
if only the lower grade AD9363 is fitted on the board 2) and is perfectly integrated as a GNU Radio
peripheral with a continuous datastream transferred over the USB bus for a sampling rate up to 3.5 Msam-
ples/s. In order to use this peripheral, compile libad9361-iio (github.com/analogdevicesinc/
libad9361-iio.git) and then gr-iio (github.com/analogdevicesinc/gr-iio.git) and finally use
in GNU Radio Companion the newly created source PlutoSDR Source. Remember to add the user to
the plugdev group in /etc/group if the provided udev rule is to be used.

A 3.5 MHz bandwidth is enough to receive a bandwidth covering 8 broadcast FM stations since
the spacing between two stations is 400 kHz. We wish to listen simultaneously to all these stations,
not to report to the SACEM agency which music is being broadcast by which station [6] but simply
to demonstrate the ability to process all the data collected in the investigated band. Listening to a

2The procedure is officially described on the Analog Devices web site at wiki.analog.com/university/tools/pluto/

users/customizing

5

github.com/analogdevicesinc/libad9361-iio.git
github.com/analogdevicesinc/libad9361-iio.git
github.com/analogdevicesinc/gr-iio.git
wiki.analog.com/university/tools/pluto/users/customizing
wiki.analog.com/university/tools/pluto/users/customizing


Figure 7: Result of decimating a complex 7900 Hz signal, sampled at 32 kHz and decimated by 4,
aliased close to baseband if no filtering is applied (red). The filter (blue) prevents such problems, which
practically extend from the discrete spectral component to the continuous receiver noise background.
The transposition frequency is null so the Xlating FIR filter is not used here, but it allows combining
frequency transposition and decimation to get familiar with the impact of filtering when applying these
two processing steps.

single broadcast FM station is the first exercise performed by any SDR implementation and is trivially
achieved using the processing chain shown in Fig. 8, allowing to check the proper operation of the
PlutoSDR source. Having validated this step, we copy a Xlating FIR filter frequency transposition
block fitted with a “wisely” tuned low-pass filter designed with a broad enough transition width in
order to induce few enough coefficients to keep the necessary processing power low while still rejecting
the signal from adjacent bands. Hence, we have used a filter defined (Low Pass Filter Taps) with a
150 kHz transition band, or about 3500/150=24 coefficients. The processing power needed to compute
the convolution with so few coefficients is low enough for a single processor to compute the dataflow
for multiple stations: an Intel i5-3320M processor clocked at 2.60 GHz as found on a Panasonic CF-
19 computer is enough to simultaneously process all 8 stations available in the analyzed bandwidth.
Executing the the processng flow shown in Fig. 9 yields the results shown in Fig. 10, whose sound
can be heard at jmfriedt.free.fr/fmpluto.ogv. On this video, we have voluntarily initially selected
too narrow a filter transition width in order to induce an excessive number of coefficients, requiring
more computational power than available to continuously process the datastream from the 8 stations.
Broadening the transition width solves the issue by reducing the number of coefficients.

The many sliders are used to tune the audio level of each station and hence select which one or the
other is heard on the output of the sound card.

5.2 Exploiting the 2.4 GHz WiFi band for RADAR applications

A second case of applying the frequency transposition requiring the Hilbert transform is the acquisition of
signals for a RADAR measurement. WiFi is part of the signals constantly surrounding us: measuring the
direct (reference) signal and the reflected (surveillance) signal, possibly frequency shifted by the Doppler
effect if the target is moving, allows for detecting targets in the environment of the emitter [7]. The WiFi
signal only covers about 15 MHz (IEEE 802.11g) around the carrier, which is for example 2.422 GHz for
channel 3. While a PlutoSDR provides the complex signal generated by mixing with a local oscillator
and its copy shifted in quadrature (I/Q detector), such a circuit becomes more complex as the frequency

6

jmfriedt.free.fr/fmpluto.ogv


Figure 8: Signal processing chain to listen to a single broadcast FM station using Analog Devices’ Pluto
receiver. Notice that the synthetic signal source was replaced with a physical data source, hence requiring
the removal of the throttle scheduling block.

Figure 9: Processing chain to listen to multiple broadcast FM stations simultaneously.

7



Figure 10: Result of executing the processing chain displayed in Fig. 9. A video dyanmically exhibiting
this result can be seen at jmfriedt.free.fr/fmpluto.ogv.

is rising and its flaws (I/Q imbalance), namely different gains on the identity and quadrature channels,
and a phase different from the ideal 90◦ between the two channels) more obvious. Furthermore, if we
wish to collect signals by using an oscilloscope, most such instruments only provide two inputs and not
four as would be needed to acquire two complex signals from the two radiofrequency receiver outputs of
the reference and surveillance channels needed for a passive RADAR application [8].

An alternative to the I/Q receiver is to use a simple mixer followed by a low-pass filter (practically,
the finite bandwidth of the oscilloscope might be enough as a low-pass filter) to acquire a real (as opposed
to complex) copy of the radiofrequency signal transposed close to baseband (Fig. 11). However, we have
seens that the Fourier transform of a real signal is even: bringing the WiFi signal straight to baseband
would mix negative and positive frequency components of the spectrum introduced by the frequency
transposition, and prevent after acquisition their separation by filtering. An alternative solution is to
work with an intermediate frequency IF lower than half the bandwidth of the oscilloscope. Under such
conditions, a first analog frequency transposition is performed by the mixer – eliminating all flaw issues
related to the I/Q detector – and then a second digital transposition is performed after the signal was
digitized: the mathematical expression exp(−jωIF t) ensures the quadrature between the cosine and the
sine and the unity gain. Using a digital implementation of the complex freqency transposition ensures
the ideal behaviour of this processing step. However, we have seen that if we transpose by −ωIF the
spectral component located at +ωIF , we bring the signal of interest to baseband, but since a real signal
was recorded we also have a second component with a negative angular frequency −2ωIF which might,
if we are not careful, reach the frequency band of interest due to aliasing. Hence, using the Hilbert
transform prior to the digital transposition ensures that this spectral component has been eliminated
and solves the issue. This approach was used in [9] and [10].

5.3 Airspy receiver

This signal processing technique seems to be used in the Airspy receiver (airspy.com) which acquires
from a Rafael R820T(2) radiofrequency receiver a signal transfered with an intermediate frequency equal

8

jmfriedt.free.fr/fmpluto.ogv
airspy.com


LO=2480 MHz

RF=2422+/−8 MHz

IF=

58 MHz

oscilloscope
250 MHz

58 MHz−58 MHz

−125 MHz +125 MHz

0

5000

10000

15000

20000

25000

30000

-150 -100 -50 0 50 100 150

p
o

w
e

r 
(a

.u
.)

frequency offset (MHz)

chan 3

chan 5

chan 7

0

5000

10000

15000

20000

25000

30000

-150 -100 -50 0 50 100 150

p
o

w
e

r 
(a

.u
.)

frequency offset (MHz)

chan 3

Figure 11: Right: acquisition of signals in three adjacent WiFi frequency bands, combined by summing
their spectra computed through their Fourier transform and digitally transposed to baseband (top), and
same operation (bottom) on a single WiFi channel (channel 3 centered on 2.422 GHz).

to one quarter of the sampling frequency, before performing a Hilbert transform, filter and decimate on
the host computer 3 (Fig. 12, left). Despite analyzing the global processing sequence (Fig. 12, right) by
feeding the signal processing chain with a synthetic signal spanning from 0.05 times the sampling rate to
0.4 times the sampling rate (considering that the intermediate frequency is 0.25 the sampling frequency)
which demonstrates the proper operation of the whole algorithm, we have not been able to identify each
individual processing step by reading the source code, too optimized to allow for isolating each filter, but
which nevertheless seems to follow the operations described at [11, pp.210–214]: as observed in filters.h

of airspy, the even coefficients (real values) of the filter are all null except for the central coefficient
(called hbc in airspy to normalize the gain of both branches), and the odd coefficients represent the
impulse response of the Hilbert transform [11, Fig 8.10] implemented as a Half Band Centered filter. We
also find in this reference the demonstration justifying why the filter coefficients are only applied to the
samples with odd index of the measurement [11, Fig 8.14].

Since the signal processing chain does not seem to be explicitly documented currently, we have tested
by replacing the content of airspy.c available at github.com/airspy/airspyone_host/tree/master/
libairspy/src with:

1 #include <stdio.h>

2 #include <math.h>

3 #include "iqconverter_float.h"

4 #include "filters.h"

5
6 #define N (256*64)

7
8 void affiche(float *d)

9 {int c;for (c=0;c<N;c++) printf("%f \n",d[c]);}

10
11 int main()

12 {int c;

13 float output_buffer[N],freq;

14 iqconverter_float_t *cnv_f;

15
16 cnv_f=iqconverter_float_create(HB_KERNEL_FLOAT,HB_KERNEL_FLOAT_LEN);

17 iqconverter_float_reset(cnv_f);

18
19 for (c=0;c<N;c++) // signaux de synthese ...

20 output_buffer[sample_count]=cos(2*M_PI*0.205*(float)c);

21 for (freq=0.05;freq<0.4;freq=freq+0.01) // ... somme de sinusoides

22 for (c=0;c<N;c++)

23 output_buffer[c]+= (freq*3.)*cos(2*M_PI*freq*(float)c);

24 affiche(output_buffer); // affiche valeurs initiales

3opensourceradiotelescopes.org/pipermail/members_opensourceradiotelescopes.org/2018-April/000271.html

9

github.com/airspy/airspyone_host/tree/master/libairspy/src
github.com/airspy/airspyone_host/tree/master/libairspy/src
opensourceradiotelescopes.org/pipermail/members_opensourceradiotelescopes.org/2018-April/000271.html


25
26 iqconverter_float_process(cnv_f, (float *)output_buffer, N);

27 sample_count /= 2;

28
29 affiche(output_buffer); // ... et apres traitement

30 return(0);

31 }

in order to feed the processing chain with our own signals with known spectral characteristics. It is
furthermore interesting to display the results of intermediate steps of the computation as found in the
translate fs 4() function of iqconverter float.c (Fig. 12, right), remembering that the first step of
the computation which multiplies the real dataset with the vectors {1, 0, -1, 0} and {0, 1, 0, -1} matches
the frequency transposition by the quarter of the sampling rate, converting the real signals to complex
values. correspond à la transposition du

fs/2−fs/2 −fs/4 fs/4

2 2

fs/2−fs/2 −fs/4 fs/4

−fs/4 fs/4

fs/4 transposition

Hilbert Hilbert

I=[1 0 −1 0]
Q=[0 1 0 −1] -0.4 -0.2 0 0.2 0.4

0
2000
4000
6000
8000

10000

normalized frequency (no unit)

original samples

-0.4 -0.2 0 0.2 0.4

2000
4000
6000

normalized frequency (no unit)

fs/4 transposition

-0.4 -0.2 0 0.2 0.4

1000
2000
3000
4000

normalized frequency (no unit)

FIR interleaved

-0.4 -0.2 0 0.2 0.4

1000
2000
3000
4000

normalized frequency (no unit)

delay interleaved

Figure 12: Left: principle of the acquisition of a signal with an intermediate frequency equal to the
quarter of the sampling frequency, followed by the frequency transposition to bring the signal to baseband
and decimation to eliminate the part of the spectrum no longer necessary. Right: analysis of the
implementation of the host side of airspy executed on the computer. Notice how the positive part of
the spectrum (or negative, since both include the same information since the spectrum of a real signal is
even), centered on the quarter of the sampling rate (top) indeed shifts to baseband (bottom) following
the processing. The legend of each chart exhibits the name of the function in the source code of the host
processing software of airspy. Inset: figure from [11] which seems to describe the processing sequence.

6 Conclusion

These exercices using GNU Radio Companion allow for experimenting with some otherwise arid concepts
of discrete time digital signal processing when limited to the underlying formal mathematical expressions.
We have seen why radiofrequency signals are intrinsically complex values, how to create the imaginary
part if the sampling only provides the real part, and how this imaginary part eases further processing,
whether frequency transposition or decimation, by removing the negative frequency part of the spectrum
early in the processing chain. The Hilbert transform, name of this operation, is however computationally
intensive, since it requires a Fourier transform followed by an inverse Fourier transform on the collected
datastream.

Following the trend of software defined radio processing and in order to promote its PlutoSDR plat-
form, Analog Devices provides on its web site an excellent book mixing theory, practical demonstrations

10



on synthetic signals using Matlab (and hence GNU/Octave) and on experiemental datasets [12] which
deserves further reading in order to deepen the knowledge introduced in this article.

Acknowledgements

The content of this presentation was assembled as part of tutorial given during the laboratory sessions
of the First French GNU Radio days (gnuradio-fr-18.sciencesconf.org). Y. Touil has driven the
investigation on the signal processing chain used in Airspy on the host computer. All references not freely
available on the internet have been fetched at the Library Genesis at gen.lib.rus.ec, an invaluable
resource for our research and teaching work.

References

[1] J.-M Friedt & al., Software defined radio decoding of DCF77: time and frequency dissemination with
a sound card, Radio Science 53 (1), 48–61 (Jan. 2018)

[2] M.T. Taner, F. Koehler & R.E. Sheriff, Complex seismic trace analysis, Geophysics 44 (6), 1041–1063
(1979)

[3] Hilbert Transform Design Example, www.dsprelated.com/freebooks/sasp/Hilbert_Transform_

Design_Example.html

[4] L.R. Rabiner & B. Gold, Theory and application of digital signal processing, Prentice-Hall (1975)

[5] J.-M Friedt, La réception de signaux venus de l’espace par récepteur de télévision numérique terrestre,
OpenSilicium 13 (Dec 2014/Jan-Fev 2015), available at jmfriedt.free.fr/sdr2.pdf

[6] B. Happi Tietche, Proposition d’architectures radio logicielles FPGA pour démoduler simultanément
et intégralement les bandes radios commerciales, en vue d’une indexation audio, PhD Université
Pierre et Marie Curie – Paris VI (2014) as part of the SurfOnHertz project

[7] H. Guo & al., Passive radar detection using wireless networks, International IET Conference on Radar
Systems (2007), ou K. Chetty & al., Through-the-Wall Sensing of Personnel Using Passive Bistatic
WiFi Radar at Standoff Distances, IEEE Trans. Geoscience & Remote Sensing (2012)

[8] J.-M Friedt, RADAR passif par intercorrélation de signaux acquis par deux récepteurs de télévision
numérique terrestre, GNU/Linux Magazine France 212 pp.36- (Fév. 2018)

[9] J.-M. Friedt, G. Goavec-Merou, G. Martin, W. Feng & M. Sato, Passive RADAR acoustic delay line
sensor measurement: demonstration using a WiFi (2.4 GHz) emitter and WAIC-band (4.3 GHz),
Proc. WiSEE (2018), available at jmfriedt.free.fr/wisee2018.pdf

[10] W. Feng, J.-M Friedt, G. Goavec-Merou, M. Sato, Passive radar delay and angle of arrival mea-
surements of multiple acoustic delay lines used as passive sensors, soumis IEEE Sensors (2018)

[11] F.J. Harris, Multirate signal processing for communication systems, Prentice-Hall (2004), ou N.
Robertson, Simplest Calculation of Half-band Filter Coefficients (2017) at www.dsprelated.com/

showarticle/1113.php

[12] T.F. Collins, R. Getz, D. Pu & A.M. Wyglinski, Software-Defined Radio for Engineers, Artech
House (2018), available at www.analog.com/media/en/training-seminars/design-handbooks/

Software-Defined-Radio-for-Engineers-2018/SDR4Engineers.pdf

11

gnuradio-fr-18.sciencesconf.org
gen.lib.rus.ec
www.dsprelated.com/freebooks/sasp/Hilbert_Transform_Design_Example.html
www.dsprelated.com/freebooks/sasp/Hilbert_Transform_Design_Example.html
jmfriedt.free.fr/sdr2.pdf
jmfriedt.free.fr/wisee2018.pdf
www.dsprelated.com/showarticle/1113.php
www.dsprelated.com/showarticle/1113.php
www.analog.com/media/en/training-seminars/design-handbooks/Software-Defined-Radio-for-Engineers-2018/SDR4Engineers.pdf
www.analog.com/media/en/training-seminars/design-handbooks/Software-Defined-Radio-for-Engineers-2018/SDR4Engineers.pdf

	Introduction
	Impact of the Hilbert transform in the frequency domain
	Impact of the Hilbert transform in the time domain
	Transposition and décimation, and the need for filtering
	From simulation to real signals
	PlutoSDR for listening to 8 broadcast FM stations
	Exploiting the 2.4 GHz WiFi band for RADAR applications
	Airspy receiver

	Conclusion

